Xiaojie Mao

Xiaojie Mao
  • Doctor of Philosophy
  • Associate Professor at Tsinghua University

About

29
Publications
3,336
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
439
Citations
Current institution
Tsinghua University
Current position
  • Associate Professor

Publications

Publications (29)
Preprint
Full-text available
Data-driven inverse optimization seeks to estimate unknown parameters in an optimization model from observations of optimization solutions. Many existing methods are ineffective in handling noisy and suboptimal solution observations and also suffer from computational challenges. In this paper, we build a connection between inverse optimization and...
Article
In many experimental and observational studies, the outcome of interest is often difficult or expensive to observe, reducing effective sample sizes for estimating average treatment effects (ATEs) even when identifiable. We study how incorporating data on units for which only surrogate outcomes not of primary interest are observed can increase the p...
Article
We study the identification and estimation of long-term treatment effects by combining short-term experimental data and long-term observational data subject to unobserved confounding. This problem arises often when concerned with long-term treatment effects since experiments are often short-term due to operational necessity while observational data...
Preprint
Contextual linear optimization (CLO) uses predictive observations to reduce uncertainty in random cost coefficients and thereby improve average-cost performance. An example is a stochastic shortest path with random edge costs (e.g., traffic) and predictive features (e.g., lagged traffic, weather). Existing work on CLO assumes the data has fully obs...
Preprint
We consider estimation of parameters defined as linear functionals of solutions to linear inverse problems. Any such parameter admits a doubly robust representation that depends on the solution to a dual linear inverse problem, where the dual solution can be thought as a generalization of the inverse propensity function. We provide the first source...
Preprint
Full-text available
We study the problem of learning with selectively labeled data, which arises when outcomes are only partially labeled due to historical decision-making. The labeled data distribution may substantially differ from the full population, especially when the historical decisions and the target outcome can be simultaneously affected by some unobserved fa...
Preprint
We study an online joint assortment-inventory optimization problem, in which we assume that the choice behavior of each customer follows the Multinomial Logit (MNL) choice model, and the attraction parameters are unknown a priori. The retailer makes periodic assortment and inventory decisions to dynamically learn from the realized demands about the...
Preprint
Full-text available
In this paper, we study nonparametric estimation of instrumental variable (IV) regressions. Recently, many flexible machine learning methods have been developed for instrumental variable estimation. However, these methods have at least one of the following limitations: (1) restricting the IV regression to be uniquely identified; (2) only obtaining...
Preprint
We study generic inference on identified linear functionals of nonunique nuisances defined as solutions to underidentified conditional moment restrictions. This problem appears in a variety of applications, including nonparametric instrumental variable models, proximal causal inference under unmeasured confounding, and missing-not-at-random data wi...
Article
We study contextual stochastic optimization problems, where we leverage rich auxiliary observations (e.g., product characteristics) to improve decision making with uncertain variables (e.g., demand). We show how to train forest decision policies for this problem by growing trees that choose splits to directly optimize the downstream decision qualit...
Article
Incorporating side observations in decision making can reduce uncertainty and boost performance, but it also requires that we tackle a potentially complex predictive relationship. Although one may use off-the-shelf machine learning methods to separately learn a predictive model and plug it in, a variety of recent methods instead integrate estimatio...
Preprint
Off-policy evaluation and learning (OPE/L) use offline observational data to make better decisions, which is crucial in applications where experimentation is necessarily limited. OPE/L is nonetheless sensitive to discrepancies between the data-generating environment and that where policies are deployed. Recent work proposed distributionally robust...
Preprint
We study the identification and estimation of long-term treatment effects when both experimental and observational data are available. Since the long-term outcome is observed only after a long delay, it is not measured in the experimental data, but only recorded in the observational data. However, both types of data include observations of some sho...
Article
Dynamic Personalized Decision Making Beyond the Super-Extrapolatable and Super-Local Cases Contextual bandit problems model the inherent trade-off between exploration and exploitation in personalized decision making in marketing, healthcare, revenue management, and more. Specifically, the trade-off is characterized by the optimal growth rate of the...
Preprint
We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspirat...
Article
The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where i...
Preprint
We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available. Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions. In this paper, we tackle the primary challenge to causal inference using negative controls: the identif...
Preprint
Incorporating side observations of predictive features can help reduce uncertainty in operational decision making, but it also requires we tackle a potentially complex predictive relationship. Although one may use a variety of off-the-shelf machine learning methods to learn a predictive model and then plug it into our decision-making problem, a var...
Preprint
Full-text available
We study conditional stochastic optimization problems, where we leverage rich auxiliary observations (e.g., customer characteristics) to improve decision-making with uncertain variables (e.g., demand). We show how to train forest decision policies for this problem by growing trees that choose splits to directly optimize the downstream decision qual...
Preprint
Full-text available
We study the problem of estimating treatment effects when the outcome of primary interest (e.g., long-term health status) is only seldom observed but abundant surrogate observations (e.g., short-term health outcomes) are available. To investigate the role of surrogates in this setting, we derive the semiparametric efficiency lower bounds of average...
Preprint
Full-text available
We consider the efficient estimation of a low-dimensional parameter in the presence of very high-dimensional nuisances that may depend on the parameter of interest. An important example is the quantile treatment effect (QTE) in causal inference, where the efficient estimation equation involves as a nuisance the conditional cumulative distribution e...
Preprint
Full-text available
We study a nonparametric contextual bandit problem where the expected reward functions belong to a H\"older class with smoothness parameter $\beta$. We show how this interpolates between two extremes that were previously studied in isolation: non-differentiable bandits ($\beta\leq1$), where rate-optimal regret is achieved by running separate non-co...
Preprint
Full-text available
The increasing impact of algorithmic decisions on people's lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly-color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policymaking, where in...
Preprint
Full-text available
Assessing the fairness of a decision making system with respect to a protected class, such as gender or race, is challenging when class membership labels are unavailable. Probabilistic models for predicting the protected class based on observable proxies, such as surname and geolocation for race, are sometimes used to impute these missing labels fo...
Preprint
Full-text available
We study the problem of learning conditional average treatment effects (CATE) from observational data with unobserved confounders. The CATE function maps baseline covariates to individual causal effect predictions and is key for personalized assessments. Recent work has focused on how to learn CATE under unconfoundedness, i.e., when there are no un...
Preprint
Full-text available
Valid causal inference in observational studies often requires controlling for confounders. However, in practice measurements of confounders may be noisy, and can lead to biased estimates of causal effects. We show that we can reduce the bias caused by measurement noise using a large number of noisy measurements of the underlying confounders. We pr...

Network

Cited By