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Nomenclature

c = speed of light in vacuum, 2:998 � 108 m=s
e = emissive power,W=m2

h = Planck’s constant, 6:626 � 10�34 J � s
kB = Boltzmann’s constant, 1:381 � 10�23 J=K
T = temperature, K
� = logarithmic frequency
� = wavelength, m
� = frequency, Hz
� = logarithmic wavelength

Subscripts

b = blackbody
n = power of � or ��1 in the distribution functions
ref = reference frequency or wavelength
� = logarithmic frequency
� = wavelength
� = frequency
� = logarithmic wavelength

I. Introduction

I T IS well known that Wien’s displacement law takes a different
formwhenPlanck’s lawisexpressedintermsoffrequencythanthat

in terms of wavelength (in vacuum) [1,2]. This can be explained by
the different functional relationships because the wavelength is
inversely proportional to the frequency of electromagnetic radiation.
By introducing a logarithmic frequencyorwavelength scale, aunified
Wien’s displacement law is obtained regardless of whether the fre-
quency or wavelength is used as the independent variable. The new
characteristic wavelength is approximately 26.6% longer than the
conventional Wien’s displacement law in terms of wavelength.

II. Existing Theory

Planck’s law can be derived from Bose–Einstein statistics of a
phonon gas in a three-dimensional isothermal enclosure (blackbody
cavity) with two polarizations. The result can be expressed as [1–3]

eb;���; T� �
2�h�3

c2�exp� h�
kBT
� � 1� (1)

Here, eb;���; T� is the emissive power, T is the temperature of the
cavity measured by its wall temperature, � is the frequency, c is
the speed of light in vacuum, h is Planck’s constant, and kB is
Boltzmann’s constant. In terms of wavelength, Planck’s law can be
expressed as

eb;���; T� �
2�hc2

�5�exp� hc
kB�T
� � 1� (2)

Equation (2) can be derived from Eq. (1) using

eb;� d���eb;� d� (3)

because �� c��1, and d���c��2 d�.
By setting the derivative of Eq. (1) with respect to frequency to

zero, one obtains

x3 �
hv3
kBT
� hc

kB�3T
� 2:8215

or

�3T � 5099:3 �m � K (4)

Similarly, by differentiating Eq. (2) with respect to wavelength and
setting it to zero, one obtains

x5 �
hc

kB�5T
� 4:9651

or

�5T � 2897:7 �m � K (5)

Equation (5) is known as Wien’s displacement law in most heat
transfer texts [1–4]. In Eq. (4) or Eq. (5), subscript 3 or 5 signifies the
power of � or ��1 in the distribution functions given, respectively, by
Eq. (1) or Eq. (2). If a compromise were made between Eqs. (1) and
(2) by using a fourth-power function, one would end up with the
following relation:

�4T � 3669:7 �m � K (6)

This has been called a wavelength-frequency-neutral peak [5].
Notice that in all of the previous equations

xn �
hc

kB�nT

is the root of the transcendental equation

�n � xn� exp�xn� � n� 0 (7)

where n is a positive integer. Equation (7) was obtained by setting the
derivative of the following function with respect to x to zero:

fn�x� �
xn

exp�x� � 1
(8)

Interestingly, if two-dimensional space is considered, the density of
states (DOS) will be reduced from D3D��� � 8��2=c3 to D2D����
4��=c2, as is often done when studying the specific heat of a two-
dimensional solid [3,6]. For one-dimensional space, the DOS
becomes independent of frequency [3]. This is to say that in the
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two-dimensional case, Planck’s function is proportional to �2 in the
frequency domain but �4 in the wavelength domain. Further-
more, in the one-dimensional case, Planck’s function will be pro-
portional to � in the frequency domain but ��3 in the wavelength
domain. It is noted that there does not exist a finite solution for x1
because f1�x� is a monotonically decreasing function of x. On the
other hand, the peak does exist for the one-dimensional case in the
wavelength domain, and the location is at x3.

III. Proposed Distribution Functions

The previous discrepancies can be resolved by using a logarithmic
frequency or logarithmic wavelength as the variable. Let �� log10�,
where � is in Hz, and �� log10�, where � is in nm. One can define
�� log10��=�ref� with �ref � 1 Hz and �� log10��=�ref� with
�ref � 1 nm. Note that � and � are linearly related by

�� log10�c� � �� 17:4768 � � (9)

where the unit of c is adjusted to nm=s. From Eq. (1), it can be seen
that

eb;���; T� d��
2�h�3

c2�exp� h�
kBT
� � 1� � ln �10� d� (10)

which can be expressed as

eb;���; T� �
2�bh�4

c2�exp� h�
kBT
� � 1� (11)

Here, b� ln �10� and �� �ref10�. The substitution of � for �was not
made on the right side of the equation to keep the form simple. One
may choose to use natural logarithm to define � to remove ln �10� in
the previous equation, but thevalue of�� log10��=�ref� can be easily
related to the actual frequency when plotted. Similarly, Planck’s
distribution function in terms of � is

eb;���; T� �
2�bhc2

�4�exp� hc
kB�T
� � 1� (12)

where �� �ref10� is in nm. The peaks for both Eqs. (11) and (12)
occur at the same frequency or wavelength location, which is
prescribed by Eq. (7) with n� 4. In terms of wavelength, the peak is
given by Eq. (6).

The previous derivation offers a justification for using Eq. (6) as
the wavelength-frequency-neutral peak or the unified Wien’s
displacement law. The distribution function in terms of � calculated
from Eq. (12) is shown in Fig. 1 at various temperatures. Because

� is dimensionless, eb;���; T� is in W=m2, which is the same as the
total emissive power. Similar to the classical Planck distribution of
spectral blackbody emissive power, the peak of the emissive power
shifts to smaller � (shorter wavelengths) at higher temperatures. The
peak emission for a blackbody near room temperature (300K) occurs
at �� 4:09, which corresponds to 12:2 �m and is slightly shifted
toward longer wavelength (by 26.6%) as compared with that
predicted by the original Wien’s formula given in Eq. (5). For solar
radiation, which can be approximated as a blackbody at 5800 K, the
peak emission occurs at �� 2:80 with a peak wavelength of
632.7 nm.

When Eq. (12) is normalized by �T4 and plotted against
log10��T=�m � K�, all curves in Fig. 1merge into one curve as shown
in Fig. 2. It should be noted that for fixed temperature, the derivatives
of log10��� and log10��T� with respect to wavelength are the same.
The area under the normalized distribution function is one.
Furthermore, the normalized distribution function can be integrated
from 0 to a given �T to give the cumulative distribution function,
which is also shown in Fig. 2.

The use of logarithmic frequency or wavelength scale has several
other advantages:

1) The physical meaning of Eq. (1) is the emitted energy per unit
frequency interval and that of Eq. (2) is the emitted energy per unit
wavelength interval. Inmany practical applications, the bandwidth is
specified in terms of the relative variation of the frequency ��1�� or
wavelength ��1��. Equations (11) and (12) give the distribution
functions in terms of the relative variation of frequency and wave-
length, respectively, because d� is proportional to ��1 d� and d� is
proportional to ��1 d�.

2) As shown in Fig. 1, the abscissa gives the wavelength to the
tenth power. Thewavelength region for thermal radiation is generally
from �� 2 to 6. When plotted on a linear scale according to �, the
area under the curve in the given spectral region represents the
blackbody emissive powerwithin that band. This is not the casewhen
Eq. (2) is plotted against the wavelength on a log scale, as is usually
done in thermal radiation texts [1,2].

3) The fraction of energy emitted by a blackbody from 0<
� < �5 is 25.0%, suggesting that the peak in the conventional
Wien’s law divides the total energy 1:3 between the shorter and
longer wavelength regions. This ratio is independent of which
variable is used to express Planck’s law. When plotted on a loga-
rithmic scale, the peak wavelength �4 is given by Eq. (6). The
energy is divided more evenly in the shorter (� < �4) and longer
(� > �4) wavelength regions, with approximately 41.8% in the
shorter wavelength region, as shown in Fig. 2, by the cumulative
distribution function. Hence, the new peak divides the blackbody
radiation more evenly between the shorter and longer wavelength
regions.
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Fig. 1 Emissive power in terms of the logarithmic wavelength scale x.
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Fig. 2 Normalized emissive power and the cumulative distribution

function.
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4) In near-field radiation, sometimes it is necessary to evaluate the
peak of the mean energy of a Planck oscillator, which is a function
similar to f1�x� given in Eq. (8). Unfortunately, this function does
not have a peak because it is a monotonically decreasing function.
When the distribution function is converted to logarithmic frequency
(or wavelength), it becomes f2�x�, which has a peak at

�2T � 9034:6 �m � K (13)

The use of Eq. (13) allows the optimization of the dielectric function
for nanoscale thermal radiation [7,8].

IV. Conclusions

A logarithmic frequency or wavelength scale is proposed for the
Planck blackbody distribution, whose peak location is the same in
terms of both log10��� or log10���. The consequence is a unified
Wien’s displacement law that is no more dependent on whether
wavelength or frequency is chosen as the variable to express Planck’s
law. The results can be easily extended to two-dimensional and one-
dimensional Planck distributions and may be useful in analyzing
near-field radiative transfer.
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