
Xiaohua Liu- PhD
- Professor (Full) at Texas A&M University
Xiaohua Liu
- PhD
- Professor (Full) at Texas A&M University
About
136
Publications
39,697
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,513
Citations
Introduction
Current institution
Additional affiliations
July 2010 - present
Texas A&M University College of Dentistry
Position
- Professor (Associate)
Publications
Publications (136)
Purpose
The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM‐250G) group.
Materials and Methods
3D‐printed NTG was compared for its influence on gro...
Purpose
Cell adhesion and subsequent proliferation on material surfaces depend on the physical and chemical characteristics of the material. There is a lack of literature on human gingival fibroblast proliferation on comparatively newer additively manufactured materials like silicon nitride. This study focused on the physical characteristics of the...
Destructive periodontitis destroys alveolar bone and eventually leads to tooth loss. While guided bone regeneration, which is based on creating a physical barrier to hinder the infiltration of epithelial and connective tissues into defect sites, has been widely used for alveolar bone regeneration, its outcomes remain variable. In this work, a multi...
Periodontal mesenchymal stem cells (MSCs) play a crucial role in maintaining periodontium homeostasis and in tissue repair. However, little is known about how periodontal MSCs in vivo respond under periodontal disease conditions, posing a challenge for periodontium tissue regeneration. In this study, Gli1 was used as a periodontal MSC marker and co...
Guided tissue regeneration (GTR), which is based on creating a physical barrier to prevent the downgrowth of epithelial and connective tissues into the defect site, has been widely used in clinical practice for periodontal regeneration for many years. However, its outcomes remain variable due to highly specific indications, the demand for proficien...
Legg-Calvé-Perthes disease is juvenile idiopathic osteonecrosis of the femoral head (ONFH) that has no effective clinical treatment. Previously, local injection of bone morphogenetic protein-2 (BMP2) for ONFH treatment showed a heterogeneous bone repair and a high incidence of heterotopic ossification (HO) due to the BMP2 leakage. Here, we develope...
Purpose:
The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities.
Material and methods:
Total of 40 bars (8×4×3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities i.e., 0...
Legg-Calvé-Perthes disease is juvenile idiopathic osteonecrosis of the femoral head (ONFH) that has no effective clinical resolutions. Previously, local injection of bone morphogenetic protein-2 (BMP2) for ONFH treatment showed a heterogeneous bone repair and a high incidence of heterotopic ossification (HO) due to the BMP2 leakage. Here, we develo...
MicroRNAs (miRNAs) play a pivotal role in regulating gene expression and are considered new molecular targets in bone tissue engineering. However, effective delivery of miRNAs to the defect areas and transfection of the miRNAs into osteogenic progenitor cells has been an obstacle in the application. In this work, miRNA-218 (miR-218) was used as an...
As a widespread chronical disease, periodontitis progressively destroys tooth-supporting structures (periodontium) and eventually leads to tooth loss. Therefore, regeneration of damaged/lost periodontal tissues has been a major subject in periodontal research. During periodontal tissue regeneration, biomaterials play pivotal roles in improving the...
Periodontal ligament (PDL) is assembled from highly organized collagen fiber bundles (PDL principal fibers) that are crucial in supporting teeth and buffering mechanical force. Therefore, regeneration of PDL needs to reconstruct these well-ordered fiber bundles to restore PDL functions. However, the formation of PDL principal fibers has long been a...
As a new type of injectable biomaterials, functional microspheres have attracted increasing attention in tissue regeneration because they possess some advantageous properties compared to other biomaterials, including hydrogels. A variety of bio-inspired microspheres with unique structures and properties have been developed as cellular carriers and...
Oral cancer has a high mortality rate, and its treatment often causes debilitating complications. More than 90% of oral cancers are oral squamous cell carcinomas (OSCCs) that may develop from clinically recognizable oral premalignant lesions (OPLs). To eradicate OPLs before they turn into cancers, a non‐invasive topical formulation is developed bas...
Oxaliplatin (OXP), a third-generation platinum-based chemotherapy drug, was often indirectly analyzed via total platinum by an ICP-MS because it was difficult to directly quantify using an LC-MS/MS method, due to its instability, bad column separability and severe MS signal inhibition. Here, we developed and validated a specific, sensitive and repr...
Dental pulp stem cells (DPSCs) have the potential to polarize, differentiate, and form tubular dentin under certain conditions. However, the factors that initiate and regulate DPSC polarization and its underlying mechanism remain unclear. Identification of the factors that control DPSC polarization is a prerequisite for tubular dentin regeneration....
MicroRNAs (miRNAs) are emerging as a novel class of molecular targets and therapeutics to control gene expression for tissue repair and regeneration. However, a safe and effective transfection of miRNAs to cells has been a major barrier to their applications. In this work, a multifunctional polyplex micelle named PPP-RGI was developed as a non-vira...
Background and Objective
Periodontal ligament stem cells (PDLSCs) are the primary cell source for the regeneration and remodeling of periodontal ligament (PDL). It is crucial to prevent PDLSCs from mineralization when using the PDLSCs for PDL regeneration. At present, little is known about how to inhibit PDLSC mineralization. This study investigate...
Mycophenolic acid (MPA) is commonly used for organ rejection prophylaxis via oral administration in the clinic. Recent studies have shown that MPA also has anticancer activities. To explore new therapeutic options for oral precancerous/cancerous lesions, MPA was designed to release topically on the dorsal tongue surface via a mucoadhesive patch. Th...
Dental pulp is a highly vascularized tissue, situated in an inextensible environment surrounded by rigid dentinal walls. The pulp receives its blood supply solely from the small apical foramen of a tooth root. Due to the unique anatomy that controls nutrition supply, regeneration of pulp tissue in a full-length tooth root has long been a challenge...
Bone is composed of dense and solid cortical bone and honeycomb-like trabecular bone. Although cortical bone provides the majority mechanical strength of a bone, there are few studies focusing on cortical bone repair or regeneration. Osteons (the Haversian system) form structural and functional units of cortical bone. In recent years, emerging evid...
Dental pulp stem cells (DPSCs) are the primary stem cell source for regenerative endodontics. DPSCs need to undergo a polarization process and retain the permanent polarization status to perform the function of odontoblasts. However, the factors that control DPSC polarization and its underlying mechanism remain unknown. In this study, we establishe...
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss.
Conventional clinical therapy for PD aims at eliminating infecti...
Introduction
Legg–Calvé–Perthes disease is a juvenile ischemic osteonecrosis which produces extensive necrotic cell debris and release of damage associated molecular patterns (DAMPs) in the femoral head. The necrotic bone environment induces a chronic inflammatory repair response with excessive bone resorption leading to deformity and early osteoar...
Bacteria and their by-products are the primary cause of pulpal and periapical diseases that are one of the most common oral diseases. Root canal treatment (RCT) is the most effective procedure to treat pulpal and periapical diseases with severe infection. RCT aims to eliminate the infection from root canals and place filling materials to seal the s...
An in-depth understanding of biomaterial cues to selectively polarize macrophages is beneficial in the design of “immuno-informed” biomaterials that positively interact with the immune system to dictate a favorable macrophage response following implantation. Given the promising future of ECM-mimicking nanofibrous biomaterials in biomedical applicat...
Introduction
Legg-Calvé-Perthes disease is a juvenile ischemic osteonecrosis which produces extensive necrotic cell debris and release of damage associated molecular patterns (DAMPs) in the femoral head. The necrotic bone environment induces a chronic inflammatory repair response with excessive bone resorption leading to deformity and early osteoar...
Residual bacteria and microleakage in a complicated root canal can often result in reinfection of the periapical tissues. To promote the antibacterial and sealing effects of a root canal filling, core-shell structured CaO/ZnO nanospheres were synthesized using a precipitation method based on a traditional root canal sealer, zinc oxide-eugenol(ZOE)....
Background and objective:
The Sharpey's fibers of periodontal ligament (PDL) anchor the PDL to alveolar bone and cementum and are essential for the function of PDL. While qualitative analyses of the Sharpey's fibers have been widely explored, a comprehensive quantitative characterization of the Sharpey's fibers is not available. In this work, we s...
Mycophenolic acid (MPA) has being used clinically for organ rejection prophylaxis. Recent studies have revealed that MPA can also act as a chemo-sensitizing agent when used in combination with various chemotherapeutic agents in a cancer type-specific manner, including with oxaliplatin on oral squamous cell carcinoma (OSCC) cells. To prepare for the...
In the initial published version of this article, there was an error in the “MATERIALS AND METHODS” section. The catalog number of PEGMMA500 for preparing tB-PEG dehydration solution and BB-PEG clearing medium was listed as Sigma-Aldrich 409529. The correct catalog number should be Sigma-Aldrich 447943. The catalogue number for the same chemical pr...
Purpose:
To evaluate the effects of simvastatin in a new injectable microsphere hydrogel system on bone healing process of tooth sockets.
Materials and methods:
Simvastatin was loaded in poly (lactic-co-glycolic acid) (PLGA) microspheres using an emulsion process, and the drug-loaded PLGA microspheres were further entrapped in a gelatin hydrogel...
Extracellular matrices (ECMs) derived from native tissues/organs have been used as biomaterials for tissue engineering and regenerative medicine in a wide range of preclinical and clinical settings. The success or failure of these applications is largely contingent on the host responses to the matrices in vivo. Despite retaining their native struct...
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limite...
Diabetes mellitus (DM) affects hundreds of million people worldwide and the impaired bone healing is an important DM-related complication. Understanding how DM affects the activities of osteoclasts and the underlying mechanisms is crucial to the development of effective approaches for accelerating bone healing in DM condition. To date, however, the...
Cells exhibit distinct 3D morphologies in vivo, and recapitulation of physiological cell morphologies in vitro is pivotal not only to elucidate many fundamental biological questions, but also to develop new approaches for tissue regeneration and drug screening. However, conventional cell culture methods in either a 2D petri dish or a 3D scaffold of...
Objectives:
To study the effects of polyphenol resveratrol on TNFα-induced inflammatory signaling as well as the underlying mechanism in human dental pulp stem cells (DPSCs).
Materials and methods:
Human DPSCs were cultured and treated by TNFα in the presence or absence of resveratrol. NF-κB and mitogen-activated protein kinase (MAPK) signaling...
Understanding cell-material interactions is a prerequisite for the development of bio-inspired materials for tissue regeneration. While nanofibrous biomaterials have been widely used in tissue regeneration, the effects of nanofibrous architecture on stem cell behaviors are largely ambiguous because the biomaterial systems used for nanofiber-cell in...
Tissue clearing technique enables visualization of opaque organs and tissues in 3-dimensions (3-D) by turning tissue transparent. Current tissue clearing methods are restricted by limited types of tissues that can be cleared with each individual protocol, which inevitably led to the presence of blind-spots within whole body or body parts imaging. H...
The mineralization-front theory is historically rooted in mineralization research fields for many decades. This theory is widely used to describe mineralization events in both osteogenesis and dentinogenesis. However, this model does not provide enough evidence to explain how minerals are propagated from the pulp-end dentin to dentin-enamel junctio...
In article number 1700738, Xiaohua Liu and co-workers develop biomimetic 3D matrices with highly-organized tubular architecture to guide stem cell migration and differentiation. When using this tubular matrix as a scaffold, functional tubular dentin is successfully regenerated with the same well-organized microstructure as its natural counterpart....
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in...
Micropatterning is a widely used powerful tool to create highly ordered microstructures on material surfaces. However, due to technical limitations, the integration of micropatterned microstructures into bioinspired 3D scaffolds to successfully regenerate well-organized functional tissues is not achieved. In this work, a unique maskless micropatter...
Objective:
This study was to evaluate the potential of Erbium:Yttrium Aluminum Garnet laser-activated sodium hypochlorite irrigation (Er:YAG + NaOCl) for minimally invasive endodontics (MIE).
Background data:
Er:YAG laser irradiation can dramatically enhance the penetration of NaOCl, which may be a promising protocol for MIE.
Methods:
Extracte...
Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including n...
Regeneration of the pulp-dentin complex with stem cells is a potential alternative to conventional root canal treatments. Human dental pulp stem cells (hDPSCs) have been extensively studied because of their ability to proliferate and differentiate into mineralized dental and nondental tissues. In this work we combined hDPSCs with two types of injec...
Endodontic sealers with antibacterial capability play an important role in preventing reinfection of an endodontically treated root canal and improving the long-term success of root canal treatment. However, current endodontic sealers rapidly lose their antibacterial properties after fixation. In this work, we designed and synthesized quaternized m...
Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate...
Introduction:
This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant.
Methods:
Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms...
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative bio...
Statement of significance:
The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully...
In multicellular organisms, cells live in a complex environment composed of other cells and an extracellular matrix (ECM). The ECM is a dynamic three-dimensional (3D) network that actively interacts with cells through ECM receptors. Such interactions are crucial for normal biological processes and wound healing, including cell adhesion, survival, p...
The integration of controlled growth factor delivery and biomimetic architecture into a microsphere is a hallenging but attractive strategy for developing new injectable biomaterials. In this work, a unique hierarchical
nanosphere-encapsulated-in-microsphere scaffolding system is developed.First, heparin-conjugated gelatin (HG) is synthesized, whic...
Dental caries is one of the most prevalent chronic diseases in all populations. The regeneration of dentin-pulp tissues (pulpodentin) using a scaffold-based tissue engineering strategy is a promising approach to replacing damaged dental structures and restoring their biological functions. However, the current scaffolding design for pulpodentin rege...
An in-depth understanding of the interactions between cells and three-dimensional (3D) matrices (scaffolds) is pivotal to the development of novel biomaterials for tissue regeneration. However, it remains a challenge to find suitable biomimetic substrates and tools to observe cell-material and cell-cell interactions on 3D matrices. In the present s...
Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-...
Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposite...
Objective: While a number of biomaterials have been tested for dentin/pulp regeneration, there is still a challenge to develop a suitable scaffold which can provide the proper microenvironment for dentin pulp stem cells (DPSCs) adhesion, proliferation, differentiation, and biomineralization. Bioactive magnesium-based glasses have been recently cons...
Dental caries is one of the most prevalent chronic diseases in the United States, affecting 92% of adults from 20 to 64 years old. Scaffold-based tissue engineering represents a promising strategy to replace damaged dental structures and restore their biological functions. Current single-component scaffolding materials used for dental tissue regene...
A delivery device includes a hollow container, and a plurality of biodegradable and/or erodible polymeric layers established in the container. A layer including a predetermined substance is established between each of the plurality of polymeric layers, whereby degradation of the polymeric layer and release of the predetermined substance occur inter...
Tooth decay is one of the most common chronic disorders throughout the world. Regenerating decayed dentin/pulp structure requires the design of novel scaffolding materials that mimic the architecture of natural dental extracellular matrix (ECM) and provide suitable environments for the attachment, proliferation, differentiation, and biomineralizati...
Objectives: The use of calcium hydroxide (CH) as an intra-canal medicament for apexification is widespread. However, due to a short residence time in the root canal, the CH must be refreshed frequently, increasing the number of appointments required and leading to patient non-compliance. In this study, we aim to develop a core/shell-structured CH m...
Objective:
In contrast to pre-formed biomaterials, injectable biomaterials can fill irregularly shaped defects and wounds with easy manipulation and minimally invasive procedures, as well as cause less patient complications and discomfort. On the other hand, fluorescent biomaterials enable us to track the biomaterials after transplantation and mo...
Objective: The development of gelatin hybrid scaffolds can potentially be used in many tissue-engineering applications since these scaffolds mimic the structure and biological functions of native extracellular matrix (ECM). Silica-based bioactive glasses promote mineralized tissue formation by releasing inorganic ions such as Si4+, therefore; have...
Biomimetic approaches are widely used in scaffolding designs to enhance tissue regeneration. In this study, we integrated non-collagenous proteins (NCPs) from bone extracellular matrix (ECM) with three-dimensional (3D) nanofibrous gelatin (NF-Gelatin) scaffolds to form an artificial matrix (NF-Gelatin-NCPs) mimicking both the nano-structured archit...
The development of suitable scaffolds for bone tissue engineering requires an in-depth understanding of the interactions between osteoblasts and scaffolding biomaterials. Although there have been a large amount of knowledge accumulated on the cell-material interactions on two-dimensional (2D) planar substrates, our understanding of how osteoblasts...
The use of calcium hydroxide (CH) as an intracanal medicament for apexification is widespread. However, because of a short residence time in the root canal, the CH must be refreshed frequently, increasing the number of appointments required and leading to patient non-compliance. We hypothesized that a core-/shell-structured CH microsphere system wo...