Xiaohong Wang

Xiaohong Wang
University of Texas MD Anderson Cancer Center | MD Anderson · Institute for Applied Cancer Science

MD/PhD

About

31
Publications
8,715
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,608
Citations
Introduction
Working on immunotherapy drug development at ORBIT (Oncology Research for Biologics and Immunotherapy Translation), a novel organization within the MD Anderson Cancer Center with goal to guide, inform, accelerate and execute the translation of novel discoveries into clinically efficacious monoclonal antibodies.
Additional affiliations
September 2013 - November 2015
University of Texas MD Anderson Cancer Center
Position
  • PostDoc Position
July 2006 - July 2012
Baylor College of Medicine
Position
  • Research Assistant
July 2006 - July 2012
Baylor College of Medicine
Position
  • Research Assistant

Publications

Publications (31)
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Immunotherapies revolutionized cancer treatment by harnessing the immune system to target cancer cells. However, most patients are resistant to immunotherapies and the mechanisms underlying this resistant is still poorly understood. Here, we report that overexpression of BMP7, a member of the TGFB superfamily, represents a mechanism for resistance...
Article
Purpose: The limitation of hypofractionated radiation efficacy is due partly to the immunosuppressive tumor microenvironment. Indoleamine 2,3-dioxygenase 1 (IDO1) is an important regulator of tumor immune suppression. We evaluated the effects of IDO1 in hypofractionated radiation using a Lewis lung carcinoma (LLC) mouse model and tested whether ID...
Article
Indoleamine 2,3-dioxygenase 1 (IDO1), involved in the catabolism of tryptophan (Trp) to kynurenine (Kyn) is an important regulator of tumor-mediated immunosuppression implicated in resistance to anti-PD1 immunotherapy. We investigated the role of IDO1 in an anti-PD1-resistant lung cancer model (344SQ_R) compared to the parental 344SQ tumors (344SQ_...
Article
e14103 Background: Anti-PD1 inhibitors are effective in only a subset of lung cancers, and many that respond later develop resistance. We recently found in a mouse model of anti-PD1 resistance that tumor-infiltrating lymphocytes (TILs) overexpressed indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting step in the catabolism of tryptophan (Trp) to...
Article
Immunotherapies targeting programmed cell death receptor-1 (PD-1) have shown some clinical success, validating the role of immune modulation in the treatment of cancer. However, only 18% of non-small cell lung cancer patients have responded to anti-PD1 treatment thus far, the remaining 82% have not. This raises fundamental questions about mechanism...
Chapter
Understanding of the biological underpinnings of the development of metastatic disease and therapeutic resistance has greatly increased over the past few decades. Initially, these insights came slowly because only one protein or gene or signaling pathway could be studied at a time. The process of elucidating how one gene could influence downstream...
Article
Full-text available
Expression of programmed cell death ligand 1 (PD-L1) is an important process by which tumor cells suppress antitumor immunity in the tumor microenvironment. Bone marrow (BM)–derived immune cells are an important component of the tumor microenvironment. However, the link between PD-L1 induction on tumor cells and communication with BM cells is unkno...
Article
Full-text available
Background: Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non-small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. Methods: p53 wild-type and p53-deficient cell lines (p53(-/-) and p53(+/+) HCT116, p53-inducible H1299, an...
Article
Background: The immune system has important roles in tumor development and outcomes after cancer treatment. We evaluated whether single-nucleotide polymorphisms (SNPs) in the gene encoding casitas B-lineage lymphoma b protein (Cbl-b), an E3 ubiquitin ligase that maintains immune tolerance by negatively regulating T-cell activation and function, we...
Article
Full-text available
Radiation therapy controls local disease but also prompts the release of tumor-associated antigens and stress-related danger signals that primes T cells to promote tumor regression at unirradiated sites known as the abscopal effect. This may be enhanced by blocking inhibitory immune signals that modulate immune activity through a variety of mechani...
Article
MAP kinase kinase kinase kinases (MAP4Ks) belong to the mammalian Ste20-like family of serine/threonine kinases. MAP4Ks including MAP4K1/HPK1, MAP4K2/GCK, MAP4K3/GLK, MAP4K4/HGK, MAP4K5/KHS, and MAP4K6/MINK have been reported to induce JNK activation through activating the MAP3K-MAP2K cascade. The physiological roles of MAP4Ks in immunity and infla...
Article
Full-text available
With the recent success of checkpoint inhibitors and other immunomodulating agents, there has been renewed interest in the combination of such agents with radiation. The biologic premise behind such a strategy is that the tumor-antigen release achieved by localized radiation will promote specific tumor targeting by the adaptive immune system, which...
Article
Full-text available
Proinflammatory cytokines play important roles in insulin resistance. Here we report that mice with a T-cell-specific conditional knockout of HGK (T-HGK cKO) develop systemic inflammation and insulin resistance. This condition is ameliorated by either IL-6 or IL-17 neutralization. HGK directly phosphorylates TRAF2, leading to its lysosomal degradat...
Article
Full-text available
JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and...
Article
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular func...
Article
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular func...
Article
Full-text available
SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) is an adaptor protein that is essential for T cell development and T cell receptor (TCR) signaling activation. Previous studies have identified an important negative feedback regulation of SLP-76 by HPK1 (hematopoietic progenitor kinase 1; MAP4K1)-induced Ser-376 phosphorylation. Ser-376 ph...
Article
Full-text available
Protein kinase C (PKC)-θ is a serine/threonine kinase belonging to the calcium-independent novel PKC subfamily; its expression is restricted to certain tissues and cell types, including T cells. The signals delivered from T cell receptor (TCR) and CD28 costimulatory molecules trigger PKC-θ catalytic activation and membrane translocation to the immu...
Article
Full-text available
Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. B cell receptor (BCR) signaling activates HPK1 by inducing BLNK/HPK1 interaction. Whether HPK1 can reciprocally regulate BLNK during BCR signaling is unknown. Here, we show that HPK1-deficient B cells display hyper-pro...
Article
Full-text available
Protein kinase C-θ (PKC-θ) is required for activation of the transcription factor NF-κB induced by signaling via the T cell antigen receptor (TCR); however, the direct activator of PKC-θ is unknown. We report that the kinase GLK (MAP4K3) directly activated PKC-θ during TCR signaling. TCR signaling activated GLK by inducing its direct interaction wi...
Article
Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. B cell receptor (BCR) signaling activates HPK1 by inducing BLNK/HPK1 interaction. Whether HPK1 can reciprocally regulate BLNK during BCR signaling is unknown. Here, we show that HPK1-deficient B cells display hyper-pro...
Article
Full-text available
T cell receptor activation inhibits expression of the E74-like factor (ELF) 4 and Krüppel-like factor 4 genes to release naive CD8(+) T cells from their quiescent state. In this study, we show that ELF4 controls the ERK-mediated proliferative response by maintaining normal levels of dual-specificity phosphatases 1 and 5 in CD8(+) T cells. In activa...
Article
Full-text available
Although the proinflammatory cytokine interferon-gamma (IFN-gamma) has been generally thought to enhance antitumor immune responses and be involved in antitumor mechanisms of many other immunotherapy molecules, it has also been reported that IFN-gamma could promote tumor immune evasion. In this report, by using an ideal mouse model that expresses I...
Article
To explore the effect of soluble PD-1 (sPD-1) on the anti-tumor immunity induced by HSP70-peptide. BALB/c mice were immunized with HSP70-peptide, then the cytotoxic activity of splenocytes was detected by MTT colorimetry. Expression of PD-1 and its ligand on splenocytes was determined by semi-quantitative RT-PCR. For some mice, sPD-1 plasmid was in...
Article
Full-text available
The negative signal provided by interactions of programmed death-1 (PD-1) and its ligands, costimulatory molecules PD-L1 (also B7-H1) and PD-L2 (also B7-DC), is involved in the mechanisms of tumor immune evasion. In this study, we found that this negative signal was also involved in immune evasion in tumor immunotherapy. When we used different dose...
Article
The negative signal provided by interactions of costimulatory molecules, programmed death-1 (PD-1) and its ligands, PD-L1 (also B7-H1) and PD-L2 (also B7-DC), is involved in the mechanisms of tumor immune evasion. To block PD-Ls-PD-1 interactions by a soluble receptor of PD-1, we constructed a eukaryotic expression plasmid that expresses extracellu...
Article
By using semi-quantitative RT-PCR method, it was found that PD-L1 mRNA but not PD-L2 mRNA was expressed in H22 hepatoma cells and both PD-L1 and PD-L2 mRNAs were expressed in tumor tissues of tumor-bearing mice and upregulated as compared with muscle tissues in normal mice and H22 hepatoma cells. PD-L1 and PD-L2 were also expressed on the surface o...

Network

Cited By