
Configuration Selection Using Code Change Impact Analysis for Regression Testing

Xiao Qu, Mithun Acharya, Brian Robinson
Industrial Software Systems

ABB Corporate Research
Raleigh NC USA 27606

{xiao.qu, mithun.acharya, brian.p.robinson}@us.abb.com

Abstract— Configurable systems that let users customize
system behaviors are becoming increasingly prevalent. Testing
a configurable system with all possible configurations is very
expensive and often impractical. For a single version of a
configurable system, sampling approaches exist that select a
subset of configurations from the full configuration space for
testing. However, when a configurable system changes and
evolves, existing approaches for regression testing select all
configurations that are used to test the old versions for testing
the new version. As demonstrated in our experiments, this
retest-all approach for regression testing configurable systems
turns out to be highly redundant. To address this redundancy,
we propose a configuration selection approach for regression
testing. Formally, given two versions of a configurable system,
S (old) and S' (new), and given a set of configurations CS for
testing S, our approach selects a subset CS' of CS for regression
testing S'. Our study results on two open source systems and a
large industrial system show that, compared to the retest-all
approach, our approach discards 15% to 60% of
configurations as redundant. Our approach also saves 20% to
55% of the regression testing time, while retaining the same
fault detection capability and code coverage of the retest-all
approach.

Keywords- Configurable System Testing; Configuration
Selection; Regression Testing; Static Program Slicing; Change
Impact Analysis.

I. INTRODUCTION
Just as software has become essential in our daily

activities, so has the ability to configure or customize it.
Users configure the software by setting their own application
preferences ranging from features that are cosmetic to
features that modify the system behavior.

It is well known that testing a configurable system under
different configurations exposes different faults [11][18][25].
Hence, it is desirable to test a configurable system
exhaustively with all possible configurations. But exhaustive
testing of configurations is usually infeasible [10]. Recent
work has shown that approaches such as Combinatorial
Interaction Testing (CIT) can improve the cost-effectiveness
of testing a single version of a configurable system by
sampling the full configuration space [11][15][18][25]. Let S
be a version of a configurable system with a test suite T and
let CS be a sampled set of configurations for testing S, which
is generated by the CIT approach. Our previous work [17]
shows that running the full test suite T under each
configuration in CS for testing S is highly redundant. To
address this redundancy, our previous work introduced a test

case selection approach – given an existing test suite T used
for testing S under a configuration C∈CS, our previous
approach [17] selects a subset T’⊆T for testing S under a
different configuration C’∈CS.

However, the challenges of testing a configurable system
also persists in later stages of the software lifecycle, where
new release of the system (denoted as S’) must be regression
tested. Let CS’ be the set of configurations that will be used
for regression testing S’. Existing configuration selection
approaches for regression testing select all configurations
that are used to test the old versions for testing the new
version, i.e., CS’ = CS. Such retest-all configuration selection
approach for regression testing, however, can be expensive,
in spite of using the CIT sampling approach to select a subset
of configurations from the full configuration space. For
example, as demonstrated in our previous work [18], when
the CIT sample CS was used for regression testing a target
system, each configuration required eight hours to regression
test, and regression testing of all 60 configurations in the CIT
sample CS required almost three weeks.

To address this problem, our previous work [18]
introduced a configuration prioritization approach to reorder
the configurations to be regression tested. The prioritization
approach improves the rate of fault detection, but it neither
discards redundant configurations nor detects all the faults
detected by the retest-all approach. In this paper, we
introduce a configuration selection approach that selects a
small set of configurations from CS while still retaining the
fault detection capability (measured by the number of
detected faults) of the retest-all approach. Formally, given
two versions of a configurable system, S (old) and S' (new),
and given a set of configurations CS for testing S, our
approach selects a subset CS' ⊆CS of configurations for
regression testing S'. Our configuration selection approach
uses slicing-based code change impact analysis [4] to assist
configuration selection. As demonstrated in our study
(Section IV.C), our approach can largely reduce the
redundancy of the retest-all approach without sacrificing the
fault detection capability.

The state of the art in configurable system testing is
summarized in TABLE I. “NA” in the table indicates that the
prioritization approaches are not applicable for single version
systems. As shown in this table, regression testing has been
extensively researched at the test case level [21][22][23],
whereas the problem of regression testing at the
configuration level has received very less attention. Our
previous work [20] and the approach proposed in this paper
(highlighted in the table) addresses this lack.

978-1-4673-2312-3/12/$31.00 ©2012 IEEE

TABLE I. THE STATE OF THE ART IN CONFIGURABLE SYSTEM TESTING

Problems Single Version
Testing

Regression
Testing

Configuration
Level

Selection [11][15][18][25] Focus of
this paper

Prioritization NA [18]

Test Case
Level

Selection [17] [22][23]a

Prioritization NA [21] a

a. Regression testing techniques at the test case
level are applied on a per-configuration basis for
configurable software system.

Overall, our paper makes the following contributions:

· We introduce the first configuration selection approach
for regression testing configurable systems.

· We evaluate our approach on two open source systems
and a large industrial software system. Our study results
show that, compared to the retest-all approach, our
approach discards 15% to 60% configurations as
redundant, and can save 20% to 55% of the testing
time, while retaining the same fault detection capability
and code coverage of the retest-all approach.

The rest of the paper is organized as follows. Section II
presents the background required for understanding our
approach. Section III describes our configuration selection
approach using an illustrative example. The study design
and the results are presented in Section IV. Finally, Section
V discusses the related literature and Section VI concludes
our paper with pointers to future work.

II. BACKGROUND AND NOTATIONS
In this section, we provide the basic background on

configurable systems (Section II.A) and configurable system
testing (Section II.B). Particularly, configuration generation
using the Combinatorial Interaction Testing (CIT) sampling
approach [9][11][15] is described (Section II.B.1)). We also
introduce static program slicing (Section II.C), which is used
by our approach for analyzing the impact of code changes.
The notations introduced in this section will be used
throughout the rest of the paper.

A. Configurable Systems and Configurations
A configurable system has various configurable options

that control the system’s execution. The specific execution
of the system depends on the actual values supplied for
these options. For example, Internet Explorer (IE), a
popular web browser, is a configurable system. In IE, users
can select different values (or settings) for the configurable
option, privacy, from allow all cookies to block all cookies.

Given a configurable system S (we use S to denote both
the configurable system S and its source code), let us denote
the set of m configurable options by P={P1, P2, P3, …, Pm}.
A particular assignment of values to each configurable
option forms a configuration instance, denoted as C. In this
paper, we use the term configuration and configuration

instance interchangeably. For each Pi, let |Pi| be the number
of values that the users can choose for this option.
Accordingly, each possible value of option Pi is denoted as
pij, where j ∈ [1, |Pi|]. For each configurable option Pi, let
௜஼݌ , chosen from {pij, j ∈ [1, |Pi|]}, represent the value
assigned to Pi in configuration C. Hence, the configuration
instance C can be represented by the set {݌ଵ஼ ଶ஼݌ , ௠஼݌ … , }. A
collection of |CS|=k such configuration instances, {C1, C2, C3
… Ck}, used for testing S, is denoted as CS.

B. Configurable System Testing
Effectively testing a configurable system requires that the

system is tested with its test suite under different
configurations [11][18][25]. Hence, approaches for testing
configurable systems consider both configurations and test
cases. With hundreds or even thousands of configurable
options in practice, it is not possible to exhaustively test a
system with all possible configuration instances. To address
this problem, testing approaches use configuration
generation to sample a subset of configuration instances
from the set of all possible configurations for testing.

Combinatorial Interaction Testing (CIT) [9] is a
systematic and an automated approach for the configuration
generation process. CIT has been shown to be superior to
both random and exhaustive configuration generation
approaches [18][19]. Empirical studies [11][15] on real
configurable systems have shown that CIT is effective in
generating configurations for testing, measured by the fault
detection capability. Yilmaz et al. [25] have shown that
configurations generated by the CIT approach can detect
configuration-dependent failures and characterize faults
more efficiently, compared to the exhaustive generation
approaches. CIT is also a widely used technique in the
industry [20].

1) The CIT Approach
For a given configurable system, the CIT approach

models its configurable options and their associated values,
and combines them systematically so that all combinations
of values for each t-way (t > 1) combination of options are
tested together [9]. Here, t is called the strength of testing,
and the case when t=2 is called pair-wise testing.

TABLE II shows a partial set of configurable options and
their values for the text editor vim, a configurable system.
There are four configurable options P={P1, P2, P3, P4}. P1,
P2, and P3 are binary options (with two possible values), i.e.,
| P1|=| P2|=| P3|=2. P4 has three possible values (i.e., |P4|=3),
with p41=0, p42=2, and p43=78. A total of |P1|×|P2|×|P3|×|P4|=
2×2×2×3= 24 configuration instances are possible.
Exhaustively testing all possible configuration instances is
infeasible for systems in practice, a problem that is
addressed by the CIT approach.

TABLE III shows the set CS={C1, C2, …, C6} of
configurations generated by the pair-wise CIT approach,
which requires that all possible value combinations of each
pair of options (totally 4C2=6 pairs of options) should appear
in at least one of the configurations.

For example, there are |P1|×|P2|= 4 value combinations for
the pair (P1=background, P2=autoread), which are (dark,
ar), (dark, noar), (light, ar), and (light, noar). In TABLE
III, the shaded boxes denote these four value combinations.
Each of these value combinations should be covered by at
least one configuration. The value pair of (dark, ar) is
covered in C1, (light, noar) is covered in C2, (dark, noar) is
covered in C3, and (light, ar) is covered in C4. It is easy to
verify from TABLE III that for the other 5 pairs,
(background, tabstop), (background, textwidth), (autoread,
tabstop), (autoread, textwidth), and (tabstop, textwidth), all
value combinations are covered in at least one of the six
configurations. But as shown in our previous work [18],
even if the number of configurations generated by the pair-
wise CIT approach is much smaller than the number of all
possible configurations, it is still very expensive (and
redundant, as our experiments demonstrate in Section IV.C)
to rerun all configurations generated by the CIT approach,
especially in a regression testing environment with time and
resource constraints.

TABLE II. CONFIGURABLE OPTIONS AND VALUES OF VIM

Options
P1 P2 P3 P4

background autoread tabstop textwidth

Values of
Options

dark ar 8 0

light noar 1 2

 78

TABLE III. CONFIGURATIONS GENERATED BY PAIR-WISE CIT FOR VIM

P1 P2 P3 P4

background autoread tabstop textwidth

C1 dark ar

 8

 78

C2 light noar

 1

 78

C3 dark noar 1 2

C4 light ar 1 0
C5 light ar 8 2
C6 dark noar 8 0

C. Static Program Slicing
Static program slicing, first introduced by Weiser [24],

refers to the computation of program points that effect or
are affected by a given program point. The forward slice of
a program point includes all the program points in the
forward control flow affected by the computation or
conditional test at the program point. Program points are the
most basic fragments of the source code. A program may
contain multiple files, a file may contain multiple functions,
a function may contain multiple lines, and a line may
contain multiple program points. A change or a change
block can be considered as a set of program points.

Let S be a configurable system and suppose that the
configurable system evolves from S to a new version, S’.
The source code of S’ is shown in Figure 1. Let us assume
that only Line 7 has changed between versions S and S’. Let
∆(S, S’) denote the changes in the code between S and S’. In
Figure 1, ∆(S, S’)={7}. Let imp(∆(S, S’)) represent the code
that is statically impacted by the change, ∆(S, S’). In S’, the
forward slice of Line 7 includes lines 7, 10, and 13
(highlighted in the figure), i.e., imp(∆(S, S’))={7, 10, 13}.
Since the impact of the changed code trivially includes the
changed code itself, ∆(S, S’)⊆ imp(∆(S, S’)). For our
example code in Figure 1, we measure the change and its
impact at the line granularity. In this paper, however, we
measure the change and its impact at the function
granularity.

Figure 1. The forward slice of sum=0.

III. OUR APPROACH
In this section, we describe our approach of selecting

configurations for regression testing configurable systems.
In Section III.A, we describe the problem of configuration
selection using a simple example, which will also be used to
illustrate our approach. In Section III.B, we describe the
various steps in our approach. In Section III.C, we provide
the implementation details of our approach.

A. Example and Problem Description
Suppose S is a simple configurable system as shown in

Figure 2. S contains eight functions f1 to f8. S has three
configurable options, i.e., P={P1, P2, P3}. As shown in
TABLE IV, each configurable option is binary and may be
either True or False, i.e., |P1|=|P2|=|P3|=2, p11=p21=p31=True
and p12= p22= p32=False. A given configurable option of
system S, Pi, can be mapped to its corresponding
configuration variables (usually used to receive the values of
the options from the user) in the source code of S. In our
example, each of the configurable options P1, P2, and P3 are
mapped to one configuration variable of the same name
(unsigned global integers P1, P2, and P3 in lines 26 to 28) in
the source code. These configuration variables, and hence
their corresponding configuration options, control the
different executions of S. Let imp(Pi) represent the code in S
that is statically impacted by the configuration variables
corresponding to Pi. As we measure the impact at the
function granularity, imp(Pi) is a set of function calls along
the static paths in S that are impacted by Pi.

The Control Flow Graph (CFG) of S is shown in Figure
3. In the CFG, a dashed arrow indicates a function call. For

example, functions f2 and f6 call the function f1. The
configurable options (variables), highlighted by shaded
diamonds in the CFG, determine which static paths are taken
in the source code. Depending on the values supplied for the
three configurable options, seven static paths (e1 to e7) are
possible in our example code. In our example, static paths e1,
e2, e5, e6 and e7 are impacted by the configurable option
(variable) P1, e6 and e7 by P2, and e3 and e4 by P3.

Figure 2. The source code of our example configurable system S.

TABLE IV. CONFIGURABLE OPTIONS AND VALUES OF S

Options P1 P2 P3

Values of Options
True True True

False False False

For S, a total of |P1|×|P2|×|P3|=8 configuration instances
are possible. We applied pair-wise CIT [11][15] to generate a
subset of four configurations for testing the initial version of
the system S. The configuration set generated by pair-wise
CIT, CS={C1, C2, C3, C4}, is shown in TABLE V. Though
CIT is used in this example and our experiments in this
paper, our selection approach does not require that the
original set of configurations be generated by CIT.

Let us assume that a new version of our example system,
S’, has been released. Let us also assume that only the source
code of the function f1 has been modified between S and S’,
i.e., ∆(S, S’)={f1}. The problem we seek to solve in this
paper is to select a set of configurations CS’ from CS={C1, C2,
C3, C4} for testing S’. A naïve approach is the retest-all
approach, which is to regression test S’ with all four
configurations, i.e., CS’ = CS. The primary advantage of the
retest-all approach is that CS’ achieves the best possible code
coverage and fault detection capability.

However, there are several disadvantages with the retest-
all approach. Though the retest-all approach may scale for
small systems such as the one in our illustrative example, the
retest-all approach is impractical for large industrial systems
with hundreds or even thousands of configurations. As

shown in our previous work [18], it is still very expensive to
retest all the configurations, even if it is a relatively small set,
generated by the pair-wise CIT approach, especially in a
regression testing environment with time and resource
constraints. Furthermore, some configurations involve heavy
setup overhead, which will add substantial additional testing
cost. Finally, as demonstrated by our experimental results
presented in Section IV.C, the retest-all approach turns out to
be highly redundant – in most cases it is possible to achieve
the same fault detection capability of the retest-all approach
with a small subset of CS. Therefore, given two versions of a
configurable system, S and S’, and given a set of
configurations CS to test the old version S, the problem
addressed by this paper is to select a small subset CS’ of
configurations in CS that retains the code coverage and
regression fault detection capability of the retest-all
approach.

Figure 3. The CFG of our example configurable system S.

TABLE V. CS GENERATED BY PAIR-WISE CIT FOR TESTING S

P1 P2 P3

C1 True True True

C2 True False False

C3 False True False

C4 False False True

Random-selection is another naïve approach to select a

subset of CS. However, as we demonstrate in Section IV.C,
the subset of configurations selected by the random-selection
approach may not retain the regression fault detection

1. int f1(int x){
2. return ++x;
3. }
4.
5. int f2(int x){
6. int s = -f1(x);
7. return s;
8. }
9.
10. int f6(int x){
11. int s = f1(x)%4;
12. return s;
13. }
14.
15. void f3(){ printf("f3"); }
16.
17. void f4(){ printf("f4"); }
18.
19. void f5(){ printf("f5"); }
20.
21. void f7(){ printf("f7"); }
22.
23. void f8(){ printf("f8"); }
24.
25. //configurable options
26. unsigned int P1;
27. unsigned int P2;
28. unsigned int P3;

29. void main(){
30. int x;
31. if (x == 0) {
32. if(P1)
33. f1(1);
34. else
35. f2(2);
36. } // end x==0
37.
38. else { // x != 0
39. f3();
40. if(x < 0){
41. f5();
42. if(P3)
43. f4();
44. } // end x < 0
45.
46. else{ //x > 0
47. if(P1){
48. if(P2)
49. f8();
50. else
51. f7();
52. }
53. else
54. f6(6);
55. } // end x > 0
56.
57. } // end x != 0
58. }

capability of the retest-all approach. In the next section, we
introduce our slicing-based configuration selection approach.

B. Description of Our Approach
In this paper, we assume that P’, the set of configurable

options for S’, is same as P, the set of configurable options
for S, i.e., P’=P. Configuration-aware regression testing in
cases where P’ is a superset or subset of P involves
configuration augmentation or reduction besides selection.
Configuration augmentation and reduction techniques are
outside the scope of this paper and we plan to explore them
as a part of our future work.

The goal of regression testing is to retest all the changes
in the code (i.e., ∆(S,S’)) and the code impacted by these
changes (i.e., imp(∆(S,S’))), to ensure that the code changes
do not introduce new faults (regression faults). Let R denote
the code to retest, i.e., R=∆(S,S’)∪imp(∆(S,S’)=imp(∆(S,S’),
since ∆(S,S’)⊆imp(∆(S,S’)). Consequently, the goal of our
configuration selection approach for regression testing is to
select only those configurable options (and hence,
configurations) that impact the static paths in R.

The high-level overview of our approach is shown in
Figure 4. Our approach has two main steps, selecting
configurable options and selecting configuration instances,
as shown by the dotted boxes in the figure. First, among all
the configurable options in P’ of S’, our approach selects a
subset of configurable options P’sel⊆P’, that impacts the
static paths in R. Only the configurable options in P’sel need
to be retested for S’. Second, our approach selects a subset
CS’ of configurations from CS that will cover the pair-wise
interactions between the selected configurable options in
P’sel. We use pair-wise interaction as the criteria for CIT
because it is the most prevalent CIT criteria for configuration
generation. The final set of configurations selected by our
approach, CS’, is used for regression testing the new version
S’. In following sections, we illustrate each step in our
approach using the example introduced in the previous
section.

1) Selecting Configurable Options
First, our approach identifies the impact of the changed

code, i.e., R=imp(∆(S,S’). Next, our approach selects a set of
configurable options that impacts the static paths in R. A
configurable option is selected if its impact intersects with
the impact of the changed code, R. Formally, a configurable
option Pi ∈ P’ is selected by our approach if

)݌݉݅ ௜ܲ) ∩ ܴ ≠ ∅ --- (1)
In this paper, we measure the impact at the function

granularity. Recall that the impact of a configurable option
of S is the set of function calls along the static paths in S that
are impacted by the configurable option. For example, as
shown in Figures 2 and 3, P1 impacts the static paths e1, e2,
e5, e6 and e7. Since functions f1, f2, f6, f7 and f8 are called
along these paths, we regard these functions as the functions
impacted by P1. In our illustrative example, the impacted
functions of each configurable option are:)݌݉݅ ଵܲ) =
{ ଵ݂, ଶ݂ , ଺݂, ଻݂ , ଼݂)݌݉݅ ,{	 ଶܲ) = { ଻݂, ଼݂ 	}, and ݅݉݌(ଷܲ) = { ସ݂	}.

Figure 4. The high-level overview of our approach.

As introduced in Section A, in our example, we have
assumed that ∆(S, S’)={f1}. It is easy to manually verify that
the functions f1, f2 and f6 are statically impacted by the code
changes in f1, i.e., R=imp(∆(S, S’))={f1, f2, f6}, which is the
impact of the code that has changed between S and S’.
Based on (1), our approach selects only P1 (highlighted in
the first column of TABLE IV) for regression testing (i.e.,
P’sel = {P1}), because only the impact of P1 intersects with
the impact of the code changes. As a result, only functions
f1, f2 and f6, called along static paths e1, e2 and e5 are to be
retested in S’, satisfying the goal of regression testing.

2) Selecting Configuration Instances
In this section, we describe how our approach selects

configuration instances from CS to construct CS’ after
selecting the configurable options P’sel in the first step.

Pair-wise CIT is the most prevalent technique to select
configurations from the full configuration space. As
introduced in Section II.B.1, the pair-wise criterion requires
that all value combinations of each pair of configurable
options should be covered at least once in the selected
configurations to be tested. For our regression selection
purpose, only the interactions between the selected options
in P’sel are important. Accordingly, all value combinations
of each pair of selected configurable options (P’sel) should
be covered at least once in the selected configurations to be
retested. All other options not in P’sel (i.e., P’- P’sel) may use
any of its values randomly.

Our algorithm for selecting configuration instances is
shown in Figure 5. First, as shown in Line 1, the algorithm
constructs the value pair set A that consists of all the value
combinations of all pairs of options selected in P’sel.
Suppose P’sel ={P1,P2}, there will be four value pairs as A
={(p11, p21), (p11, p22), (p12, p21), (p12, p22)}. In our illustrative
example, P’sel only contains one option, P1, and hence, only
two value pairs should be covered in the selected
configurations, i.e., A={(p11), (p12)} where p11= True and
p12=False. In other words, there must exist at least one
configuration where the value of P1 is True and at least one
configuration where the value of P1 is False.

Next, the algorithm starts selecting configurations until
one of the two stopping criteria is met: (1) all value pairs in
A are covered, i.e., the set of remaining pairs, Z, is empty
(the while loop) OR (2) no remaining configurations in CS
can cover any of the remaining value pairs in Z (lines 7 and
8). The second stopping criteria is satisfied if the original set
of configurations CS is not created by the CIT approach,
which indicates that some important value pairs are missing
in CS. In this case, we can augment CS’ using the regular
CIT approach, which will be addressed in our future work.

Another key point of this algorithm is, in each turn of
selection (the while loop), the algorithm always selects a
configuration that would cover the most value pairs that
have not been covered yet, i.e., value pairs that are still in Z:
(1) In Line 5, our algorithm counts the number of uncovered
value pairs in each Ci∈CS, denoted as Ni (i = 1 to | CS |); (2)
In Line 6, our algorithm finds the largest Ni; (3) In Line 9,
our algorithm selects the configuration whose N value is the
largest. When there is a tie for selection among
configurations, the algorithm randomly selects one of them.
For the configurable options that are not selected in the first
step (Section B.1), instead of picking a random value, our
approach reuses the same value used for testing the previous
version of the program (as instantiated in selected
configurations). Moreover, the chance of a tie and the
number of configurations for random selection in the event
of a tie decreases with the number of iterations of the while
loop.

In our example, during the first loop, N1=N2=N3=N4=1.
Suppose C2 is randomly selected from the four candidate
configurations, Z is updated to Z={(p12)}. During the second
loop, N1=0 and N3=N4=1. Suppose C3 is selected from the
two candidate configurations, Z becomes Ø. As a result, our
approach selects CS’ = {C2, C3}, which saves us 50% of the
regression testing time, compared to the retest-all approach.

Figure 5. Algorithm for selecting configuration instances in our approach.

C. Implementation of Our Approach
Our approach employs a static analysis tool called

CodeSurfer [27] for computing the configurable option
impact and the code change impact. CodeSurfer uses

forward program slicing to compute ݅݉݌(௜ܲ) and
,ܵ)∆൫݌݉݅ ܵ′)൯. Forward slicing, required for computing the
impact sets, depends on several static analysis parameters
such as pointer analysis, context/flow sensitivity, non-local
analysis, and slicing dependency analysis. In our
experiments, we conservatively use the most expensive
CodeSurfer option available for them (for example, for
pointer analysis, we use the Andersen’s algorithm [2]). The
most expensive parameter setting of CodeSurfer is denoted
as H (shown in TABLE VI).

As shown in our study (Section IV.B), there is one static
analysis parameter, non-local analysis, which may impact
the preciseness of our approach. The non-locals of a
function include all the global variables and indirectly
accessed variables used or modified by a function. With
CodeSurfer, the non-local analysis is configurable and can
be shut off. The H setting of CodeSurfer with non-local
analysis turned off is denoted as the setting L.

TABLE VI. THE H PARAMETER SETTINGS FOR CODESURFER

Static Analysis Parameter Settings
Non-local analysis Yes

Dependences Inter/intra Control and Data
Pointer analysis Andersen’s algorithm [2]
Summary edges Yes

The other components of our approach, including the

algorithm shown in Figure 5, are implemented as C/C++
programs.

IV. EVALUATION OF OUR APPROACH
In this section, we present our results of evaluating our

approach based on three criteria. First, we study the quality
of the configurations selected by our approach for
regression testing in terms of the fault detection capability
(measured by the number of faults detected) and the code
coverage. Second, we study what percentage of
configurations is discarded as redundant by our approach for
regression testing. Finally, we study the overall regression
testing time-savings possible with our approach. The
research questions for our evaluation are as follows:
· RQ1: Can the set of configurations selected by our

approach achieve the same fault detection capability
and code coverage as the retest-all approach? How does
it work compared to the random-selection?

· RQ2: What percentage of configurations is discarded as
redundant by our approach for regression testing?

· RQ3: How much regression testing time can our
approach save?

In Section IV.A, we describe the subjects that are used
for our evaluation. In Sections IV.B-IV.D, we provide the
details from a series of experiments we conducted to
evaluate our research questions.

1. set A = all the value combinations of all |P’sel |C2 pairs of
options in P’sel

2. set Z = A
3. CS’ = Ø
4. while Z ≠ Ø do:
5. Ni = the number of value pairs that are covered by

 configurations Ci ∈CS and are also in Z (i = 1 to |CS|)
6. Nmax = the largest value of Ni
7. if Nmax = 0
8. break
9. Select a configuration Ck∈CS if Nk = Nmax
10. CS’ = CS’ ∪ Ck
11. CS = CS – Ck
12. Z = Z – (value pairs in Ck)

A. Study Subjects
We first evaluate our approach on grep and make, two

open source packages written in C. grep is a command-line
utility for searching plain-text data sets for lines matching a
regular expression. make is a widely popular and general
purpose tool used to compile programs. The source code of
grep and make are available at the GNU website [29][30].
We analyzed two versions of grep, grep-1.0 as the original
and old version and grep-2.0 as the changed and new
version. grep contains about 8,000 uncommented lines of
code. We analyzed two versions of make, make-3.77 as the
original and old version and make-3.78.1 as the changed and
new version. make contains about 15,000 uncommented
lines of code. We demonstrate our approach for selecting a
set of configurations for regression testing the new versions
of grep and make.

We also apply our approach to a core component (called
ABB1 hereafter) of a large real-time embedded software
system developed at ABB. ABB1 consists of about 1.18
MLOC written in C/C++. It contains 20,432 functions across
58 modules. Each module defines a subsystem that
implements different functionalities of the system.

B. Study 1: Fault Detection Capability and Code Coverage
1) Study Design
make-3.78.1 is a subsequent version of make-3.77,

released 14 months after make-3.77. 26 out of 28 source files
changed from make-3.77 to make-3.78.1. Spread across the
26 changed files, there are 869 changed blocks of code. The
code change blocks were computed by WinMerge [31], an
open source code differencing and merging tool for
Windows. We assume that a system testing involving
configurations was conducted every month. We also assume
that the 869 changes made through the 14 months were
evenly distributed in each month. Hence, we randomly
selected 60 (869/14 ≈ 60) changes to form an intermediate
version of make, make-3.77.b, between make-3.77 and make-
3.78.1. By assuming that 25% of the changes may introduce
regression faults, we randomly seeded 15 faults in the 60
selected changed blocks of make-3.78.1. The seeded faults
include the hand-seeded faults obtained from the Software
Infrastructure Repository (SIR) [12] and the mutations
generated by the mutgen tool [3].

grep-2.0 contains eight source files. Since there is no
version before grep-2.0 that is publicly available (we had
problems building the later versions of grep with
CodeSurfer), we randomly selected 15 blocks in grep-2.0 as
changes from a “virtual” previous version grep-1.0. We used
mutgen to generate more than 10000 mutants spread across
all the files. We then randomly selected a compilable mutant
for each selected changed block. Hence, in total, there were
15 faults seeded in grep-2.0.

We selected 11 configurable options for make and 14
options for grep. All these options are binary options. Then,
for each subject, we created the initial set of configurations
(i.e., CS) from these options using the CIT approach [10][11].
The numbers of configuration instances in CS for testing the
old version were 14 and 7 for make and grep respectively.

The test suites for make and grep were both obtained from
the SIR [12].

2) Indepednet and Dependent Variables
The independent variable for RQ1 is the set of
configurations (i.e., CS’) selected for regression testing
make-3.78.1 and grep-2.0. We compare our approach to the
retest-all and the random-selection approaches. Hence, the
values of the independent variable are:
· The set of configurations selected by the retest-all

approach, which is the full set of configurations from
the original version (CS)

· The set of configurations selected by our approach
· The set of configurations selected by the random-

selection approach
As introduced before, an important factor in examining

the quality of a regression selection approach is the fault
detection capability (FD, measured by the number of faults
detected) of the selected configurations. We select it as our
first dependent variable. Besides this, we also examine the
code coverage capability of the selected configurations,
particularly the coverage of the code to retest (i.e.
R=imp(Δ(S,S’))). We call it changed function coverage
(CFC), our second dependent variable. We used gcov [28] to
collect the code coverage data.

3) Results
First, we discuss the results of applying our approach on

grep. When we used the most expensive setting H of
CodeSurfer (described in Section III.C), the impact of all 14
configurable options intersects with the impact of changes
between grep-1.0 and grep-2.0. This indicates that we have
to select all configurable options, which leads to selecting
all configurations from CS. We looked into the actual impact
of each configurable option. We found that the impact of
each option is the same, which almost covered all the
functions in the system. This problem is called impact
explosion [1][7], mainly caused due to large central global
data structures. In grep, all options are defined as global
variables and organized in a central structure.

Because of this problem, impact computed with the H
setting of CodeSurfer is very imprecise, and hence, not
suitable for selecting the configurable options. Therefore,
we use a less expensive setting L of CodeSufer by turning
off the non-local analysis and examine if it will affect the
precision of our approach.

The results from analyzing the grep package show that,
with the L setting, among the 14 configurable options, the
impact of 4 options does not intersect with any impact of
code changes. Hence, 10 out of 14 options are selected for
regression testing grep-2.0. By applying our configuration
selection algorithm (Figure 5) on these selected options, six
out of seven configurations are selected, as shown in the
shaded box of TABLE VII (the fourth column, containing
the shaded box, shows the number of configurations
selected by different approaches, i.e., the size of CS’).

The fault detection capability (FD) of the sets selected by
three different approaches for grep, are shown in the second
column of TABLE VII. 6 out of 15 faults were detected by
the full set of all 7 configurations. The set of configurations
selected by our approach detects the same number of faults
as the retest-all approach. In contrast, the set of
configurations selected by the random-selection approach
misses one fault.

By investigating the faults closely, we found that among
the six faults that are detected by the full set of
configurations, four faults are configuration dependent.
Particularly, in the four faults, two faults are related to
certain single options and two faults are related to certain
pair-wise option combinations/interactions. All these
important (fault-revealing) options are selected by our
approach. As a result, the fault detection capability of the
configurations selected by our approach can be considered
to be the same as that of the retest-all approach.

From our results of changed function coverage (CFC),
shown in the third column of TABLE VII, it appears that the
changed function coverage is same for all three approaches
– 52 functions are covered out of 72 changed functions.
However, the coverage differences between the three
approaches are revealed at the statement granularity, which
explains the different fault detection capabilities.

TABLE VII. RESULTS FROM GREP

 FD CFC Size of CS’ Reduction Rate

Retest-all 6/15 52/72 7 -

Random- selection 5/15 52/72 6 -
Our approach 6/15 52/72 6 1/7 = 14%

Next, we discuss the results of applying our approach on

make. Among the 11 configurable options, only 5 out of 11
options are selected for regression testing make-3.78.1. By
applying the selection algorithm, 6 out of 14 configurations
are selected, as shown in the shaded box in TABLE VIII.

The FD and CFC results of the sets selected by three
different approaches for make are shown in the second and
third columns of TABLE VIII. 8 out of 15 faults were
detected by the 14 configurations selected by the retest-all
approach and 109 out of 192 changed functions were
covered by these selected configurations. The set of
configurations selected by our approach achieves the same
fault detection capability and changed code coverage as the
retest-all approach. In contrast, the set of configurations
selected by the random-selection approach misses 5 faults
and 26 functions.

TABLE VIII. RESULTS FROM MAKE

 FD CFC Size of CS’ Reduction Rate

Retest-all 8/15 109/192 14 -

Random-selection 3/15 83/192 6 -
Our approach 8/15 109/192 6 8/14 = 57%

In conclusion, the set of configurations selected by our
approach can detect the same number of regression faults
that are detected by the retest-all approach, and hence,
outperforms the random-selection approach.

C. Study 2: Effectivness
1) Study Design
In our study on ABB1, we analyzed a development

version (called v0) as the original version and a release
version (called v1) as the changed version. 70 source files
and 203 blocks had changed between versions v0 and v1.
Among the 203 changes, we randomly selected three sets of
30 changes for analysis.

There are totally 545 configurable options with ABB1.
The possible values of these options range from 2 to 9.
About 90% of the options are binary options. We used pair-
wise CIT [10][11] to generate the initial set of
configurations for v0, with one hour time limit for the
generation. There were 159 configurations generated.

ABB1 defines the configurable options differently from
make and grep. Instead of defining global variables for
configurable options, ABB1 stores the values of its
configurable options in a database. Each time the option is
used, a function retrieves the value from the database.
Hence, unlike grep and make, there is no impact explosion
problem [1] for ABB1 and we could use the highest setting
H (described in Section III.C) of CodeSurfer for computing
the impact analysis without any loss of precision.

2) Results
First, we discuss the effectiveness of our approach on

grep and make. As shown in the fourth column of Tables
VII and VIII, our approach selects six configurations
(discards one) for testing grep-2.0 and selects six (discards
eight) for testing make-3.78.1. As a result, our approach
discards 14% and 57% (shown in bold in the last column)
configurations for regression testing them respectively.

TABLE IX. NUMBER OF CONFIGURABLE OPTIONS SELECTED FOR V1

 Change Set 1 Change Set 2 Change Set 3 Average
Retest-all 545
Selected 167 161 161 163

Reduction 69% 70% 70% 70%

TABLE X. NUMBER OF CONFIGURATIONS SELECTED FOR
REGRESSION TESTING V1

 Change Set 1 Change Set 2 Change Set 3 Average
Retest-all 159
Selected 120 120 120 120

Reduction 25% 25% 25% 25%

Next, we discuss the results of ABB1. TABLE IX shows
the number of configurable options that are selected for
retesting v1. Among all 545 configurable options, 167
options were selected for regression testing given the first
code change set. 161 options were selected given the second
and third sets of code changes. The average reduction in
configurations is about 70% (shaded box). By using pair-
wise CIT with the one-hour time limit, 120 configurations

were selected from the full set of configurations, regardless
of which set of code change is addressed, as shown in
TABLE X. As a result, our approach discards about 25%
configurations to be retested.

D. Study 3: Regression Testing Time Savings
In this section, we calculate the regression testing time

that is saved by our approach compared to the retest-all
approach. The results are shown in TABLE XI (h, m, and s
represent hours, minutes, and seconds, respectively).

1) Overheads of Our Approach
The time overhead incurred by our approach (shaded in

TABLE XI) has three main components: the build time for
building the configurable system with CodeSurfer, the
slicing time to compute the impact of code changes and
configurable options, and the selection time for executing
the selection algorithm (Figure 5).

CodeSurfer performs several static program analyses on
the source code by transparently integrating with the
compile and link stages of the software build. Build time is
the time required for this build stage. Slicing time is the time
required to compute the impact set as the forward slice,
using the information computed during the build stage. The
build times, usually in the order of hours or days, are much
longer than slice times, which are usually in the order of a
few seconds. Hence, in this paper, we ignore the slice times
and only consider build time overheads incurred by change
impact analysis. Our experiments were run on a 2GHz quad-
core Windows Server 2008 machine with 24GB RAM.

2) Testing Time Savings
The first five rows in TABLE XI show the actual testing

time with the selected configurations (i.e., CS’) by the retest-
all approach and our approach. Particularly, TestTimePerC
represents the time for testing one single configuration,
including the time of setting up the configuration. |CS’|
denotes the size of CS’, i.e., the number of selected
configurations. The time taken by different approaches is
the product of these two factors, highlighted in the table in
bold. As a result, the testing time saved (Tsaved) by our
selection approach is 5 minutes (50%), 387 minutes (55%),
and 167 hours (21%) for grep, make, and ABB1,
respectively, as shown in the last two rows in TABLE XI.

TABLE XI. REGRESSION TESTING TIME SAVINGS WITH OUR APPROACH

 grep make ABB1

Testing Time with CS’
selected by different

Approaches

TestTimePerC 10 m 50 m 5 h
|CS’| by Retest-all 7 14 159
Time taken by
retest-all (Tall) 70 m 700 m 795 h
|CS’| by our approach 6 6 120
Time taken by our
approach (Tselect) 60 m 300 m 600 h

Overhead
Build time 14 s 3 m 20 h
Selection time 5 m 10 m 8 h
Overhead 5.2 m 13 m 28 h

Testing Time Saving
Tsaved = (Tall –Tselect)
 - Overhead 5 m 387 m 167 h

Tsaved / Tall 50% 55% 21%

V. RELATED WORK

A. Configurable System Regression Testing
Approaches for regression testing of configurable

systems [13][25][26] study the issue of improving the
effectiveness of configuration sampling for testing a
new version of system. Our previous work [18] studied the
impact of configurations across multiple versions of a
system as it evolves. Our previous approach prioritizes the
full set of configurations for regression testing the new
version of the system, in order to improve the early fault
detection rate. However, it suffers from some limitations.
First, it requires information from prior versions, which is
not always available. Second, it requires that the set of
configurations to be prioritized is generated by the CIT
approach, which is not always the case. Finally,
prioritization approaches do not address the redundancy
problem.

Recently, Nanda et al. [16] proposed an approach to
support regression testing of systems that exhibit frequent
changes in non-code parts of the system. Their approach
focuses on changes to databases and simple configuration
files but does not consider the code changes between two
versions of a system.

B. Regression Test Selection
In traditional regression testing, given an initial version

of a system S and a test suite T, a subset of tests T’ has to be
selected from T to test a new version S’ of S. Ad-hoc
selection approaches [14] are not safe because they may
miss some test cases that reveal faults in the modified
program. Instead, safe test case selection approaches [22]
select all test cases in the original test suite, which can
reveal faults in the modified program. Rothermel et al.
present a safe regression test selection approach [23] based
on analyzing the Control Flow Graphs (CFG) of S and S’.

However, traditional regression testing approaches do not
consider configurations in testing. In configurable system
testing, configuration selection is as important as test case
selection. Our approach is a configuration selection approach
and is complementary to traditional regression test selection
approaches.

There has been some work [5][8] on using program
slicing for regression test selection. Slicing-based regression
testing approaches can be categorized into two groups [6] –
approaches that use static slicing and approaches that use
dynamic slicing. There techniques use program slicing on
both old and new programs to identify affected statements.
Again, these approaches are applicable to regression testing
traditional systems wherein the focus is on test case
selection. In contrast, our approach applies static slicing for
regression testing configurable systems wherein the focus is
on configuration selection.

VI. CONCLUSION
In this paper, we introduce the first configuration

selection approach for regression testing configurable

systems. Our study results show that, compared to the
retest-all approach, our approach discards 15% to 60% of
configurations as redundant. Our approach also saves 20%
to 55% of the regression testing time, while retaining the
fault detection capability and code coverage of the retest-all
approach.

In our approach, we assume that the set of configurable
options is the same for old and new versions. But some
changes between versions may add or remove options. In
such situations, in addition to configuration selection,
configuration augmentation or reduction techniques are also
required. We will address these problems in future work.

In this paper, we introduce an approach for configuration
selection. In our previous research we introduced an
approach for configuration prioritization [18]. We expect
that a combination of these approaches may further improve
the testing effectiveness and efficiency, compared to either
approach alone. Finally, in the subjects we studied, the
problem of impact explosion [1][7] does not show any
impact on the effectiveness of our approach. However, we
will investigate the effect of impact explosion in depth as a
part of our future work.

ACKNOWLEDGMENT
We thank GrammaTech Inc. for providing technical

support for CodeSurfer, the static analysis tool used in this
paper.

REFERENCES
[1] M. Acharya and B. Robinson. Practical change impact analysis based

on static program slicing for industrial software systems.
International Conference on Software Engineering (ICSE), 2011, pp.
746-755.

[2] L. O. Andersen. Program analysis and specialization for the C
programming language. PhD thesis. DIKU University of
Copenhagen, 1994.

[3] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
mutation analysis for assessing and comparing testing coverage
criteria. IEEE Transactions on Software Engineering, 32(8), 2006,
pp. 608–624.

[4] R. S. Arnold. Software Change Impact Analysis. IEEE Computer
Society Press, 1996.

[5] D. Binkley. Semantics guided regression test cost reduction. IEEE
Transactions on Software Engineering (TSE), 23(8), 1997, pp. 498–
516.

[6] D. Binkley. The Application of Program Slicing to Regression
Testing. Information and Software Technology Special Issue on
Program Slicing, 1999, pp. 583–594.

[7] D. Binkley, N. Gold, and M. Harman. An empirical study of static
program slice size. ACM Transactions on Software Engineering and
Methodology (TOSEM), 16(2), 2007, pp. 2:1-2:32.

[8] S. Bates and S. Horwitz. Incremental program testing usingprogram
dependence graphs. ACM SIGPLAN-SIGACT symposium on
Principles of programming languages(POPL), 1993, pp. 384–396.

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The
AETG system: An approach to testing based on combinatorial design.
IEEE Transactions on Software Engineering (TSE), 23(7), 1997, pp.
437–444.

[10] M. B. Cohen, M.B. Dwyer, and J. Shi. Constructing interaction test
suites for highly-configurable systems in the presence of constraints:

A greedy approach. IEEE Transactions on Software Engineering
(TSE), 34(5), 2008, pp. 633-650.

[11] M. B. Cohen, J. Snyder, and G. Rothermel. Testing across
configurations: Implications for combinatorial testing. ACM
SIGSOFT Software Engineering Notes, 2006, pp. 1-9.

[12] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. International Journal on Empirical Software
Engineering, 10(4), 2005, pp. 405–435.

[13] S. Fouché, M.B. Cohen, and A. Porter. Incremental covering array
failure characterization in large configuration spaces. International
Symposium on Software Testing and Analysis (ISSTA), 2009, pp. 177-
187.

[14] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel.
An empirical study of regression test selection techniques. IEEE
Transactions on Software Engineering (TSE), 10(2), 2001, pp. 184–
208.

[15] D. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions
and implications for software testing. IEEE Transactions on Software
Engineering (TSE), 30(6), 2004, pp. 418–421.

[16] A. Nanda, S. Mani, S. Sinha, M.J. Harrold, and A. Orso. Regression
testing in the presence of non-code changes. International Conference
on Software Testing (ICST), 2011, pp. 21-30.

[17] X. Qu, M. Acharya, and B. Robinson. Impact analysis of
configuration changes for test case selection. International
Symposium on Software Reliability Engineering (ISSRE), 2011, pp.
140-149.

[18] X. Qu, M.B. Cohen, and G. Rothermel. Configuration-aware
regression testing: An empirical study of sampling and prioritization.
International Symposium on Software Testing and Analysis (ISSTA),
2008, pp. 75-85.

[19] E. Reisner, C. Song, K-K. Ma, J. S. Foster, and A. Porter. Using
symbolic evaluation to understand behavior in configurable software
systems. International Conference on Software Engineering (ICSE),
2010, pp. 445-454.

[20] B. Robinson and L. White. Testing of user-configurable software
systems using firewalls. International Symposium on Software
Reliability Engineering (ISSRE), 2008, pp. 177–186,

[21] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on Software
Engineering (TSE), 27(10), 2001, pp. 929–948.

[22] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering (TSE),
22(8), 1996, pp. 529–551.

[23] G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique. IEEE Transactions on Software
Engineering (TSE), 24(6), 1998, pp. 401–419.

[24] M. Weiser. Program slicing. International Conference on Software
Engineering (ICSE), 1981, pp. 439-449.

[25] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. IEEE
Transactions on Software Engineering (TSE), 31(1), 2006, pp. 20–34.

[26] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter. Effective and
scalable software compatibility testing. International symposium on
Software Testing and Analysis (ISSTA), 2008, pp. 63–74.

[27] CodeSurfer. GrammaTech Inc.
http://www.grammatech.com/products/codesurfer

[28] Free Software Foundation. gcov.
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html, 2007.

[29] GNU make. http://www.gnu.org/software/make/.
[30] GNU grep. http://www.gnu.org/software/grep/
[31] WinMerge. http://winmerge.org/

