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Abstract— Configurable systems that let users customize 
system behaviors are becoming increasingly prevalent. Testing 
a configurable system with all possible configurations is very 
expensive and often impractical. For a single version of a 
configurable system, sampling approaches exist that select a 
subset of configurations from the full configuration space for 
testing. However, when a configurable system changes and 
evolves, existing approaches for regression testing select all 
configurations that are used to test  the old versions for testing 
the new version. As demonstrated in our experiments, this 
retest-all approach for regression testing configurable systems 
turns out to be highly redundant. To address this redundancy, 
we propose a configuration selection approach for regression 
testing. Formally, given two versions of a configurable system, 
S (old) and S' (new), and given a set of configurations CS for 
testing S, our approach selects a subset CS' of CS for regression 
testing S'. Our study results on two open source systems and a 
large industrial system show that, compared to the retest-all 
approach, our approach discards 15% to 60% of 
configurations as redundant. Our approach also saves 20% to 
55% of the regression testing time, while retaining the same 
fault detection capability and code coverage of the retest-all 
approach. 

Keywords- Configurable System Testing; Configuration 
Selection; Regression Testing;  Static Program Slicing;  Change 
Impact Analysis. 

I.  INTRODUCTION  
Just as software has become essential in our daily 

activities, so has the ability to configure or customize it. 
Users configure the software by setting their own application 
preferences ranging from features that are cosmetic to 
features that modify the system behavior. 

It is well known that testing a configurable system under 
different configurations exposes different faults [11][18][25]. 
Hence, it is desirable to test a configurable system 
exhaustively with all possible configurations.  But exhaustive 
testing of configurations is usually infeasible [10]. Recent 
work has shown that approaches such as Combinatorial 
Interaction Testing (CIT) can improve the cost-effectiveness 
of testing a single version of a configurable system by 
sampling the full configuration space [11][15][18][25]. Let S 
be a version of a configurable system with a test suite T and 
let CS be a sampled set of configurations for testing S, which 
is generated by the CIT approach. Our previous work [17] 
shows that running the full test suite T under each 
configuration in CS for testing S is highly redundant. To 
address this redundancy, our previous work introduced a test 

case selection approach – given an existing test suite T used 
for testing S under a configuration C∈CS, our previous 
approach [17] selects a subset T’⊆T for testing S under a 
different configuration C’∈CS.  

However, the challenges of testing a configurable system 
also persists in later stages of the software lifecycle, where 
new release of the system (denoted as S’) must be regression 
tested. Let CS’ be the set of configurations that will be used 
for regression testing S’. Existing configuration selection 
approaches for regression testing select all configurations 
that are used to test the old versions for testing the new 
version, i.e., CS’ = CS. Such retest-all configuration selection 
approach for regression testing, however, can be expensive, 
in spite of using the CIT sampling approach to select a subset 
of configurations from the full configuration space. For 
example, as demonstrated in our previous work [18], when 
the CIT sample CS was used for regression testing a target 
system, each configuration required eight hours to regression 
test, and regression testing of all 60 configurations in the CIT 
sample CS required almost three weeks.  

To address this problem, our previous work [18] 
introduced a configuration prioritization approach to reorder 
the configurations to be regression tested. The prioritization 
approach improves the rate of fault detection, but it neither 
discards redundant configurations nor detects all the faults 
detected by the retest-all approach. In this paper, we 
introduce a configuration selection approach that selects a 
small set of configurations from CS while still retaining the 
fault detection capability (measured by the number of 
detected faults) of the retest-all approach. Formally, given 
two versions of a configurable system, S (old) and S' (new), 
and given a set of configurations CS for testing S, our 
approach selects a subset CS' ⊆CS of configurations for 
regression testing S'. Our configuration selection approach 
uses slicing-based code change impact analysis [4] to assist 
configuration selection. As demonstrated in our study 
(Section IV.C), our approach can largely reduce the 
redundancy of the retest-all approach without sacrificing the 
fault detection capability. 

The state of the art in configurable system testing is 
summarized in TABLE I. “NA” in the table indicates that the 
prioritization approaches are not applicable for single version 
systems. As shown in this table, regression testing has been 
extensively researched at the test case level [21][22][23], 
whereas the problem of regression testing at the 
configuration level has received very less attention. Our 
previous work [20] and the approach proposed in this paper 
(highlighted in the table) addresses this lack.  
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TABLE I.  THE STATE OF THE ART IN CONFIGURABLE SYSTEM TESTING 

Problems Single Version 
Testing 

Regression 
Testing 

Configuration 
Level 

Selection [11][15][18][25] Focus of 
this paper 

Prioritization NA [18] 

Test Case 
Level 

Selection [17]  [22][23]a 

Prioritization NA [21] a 

a. Regression testing techniques at the test case 
level are applied on a per-configuration basis for 
configurable software system. 

Overall, our paper makes the following contributions: 

· We introduce the first configuration selection approach 
for regression testing configurable systems. 

· We evaluate our approach on two open source systems 
and a large industrial software system. Our study results 
show that, compared to the retest-all approach, our 
approach discards 15% to 60% configurations as 
redundant, and can save 20% to 55% of the testing 
time, while retaining the same fault detection capability 
and code coverage of the retest-all approach. 

The rest of the paper is organized as follows. Section II 
presents the background required for understanding our 
approach. Section III describes our configuration selection 
approach using an illustrative example.  The study design 
and the results are presented in Section IV. Finally, Section 
V discusses the related literature and Section VI concludes 
our paper with pointers to future work. 

II. BACKGROUND AND NOTATIONS 
In this section, we provide the basic background on 

configurable systems (Section II.A) and configurable system 
testing (Section II.B). Particularly, configuration generation 
using the Combinatorial Interaction Testing (CIT) sampling 
approach [9][11][15] is described (Section II.B.1)). We also 
introduce static program slicing (Section II.C), which is used 
by our approach for analyzing the impact of code changes. 
The notations introduced in this section will be used 
throughout the rest of the paper. 

A. Configurable Systems and Configurations 
A configurable system has various configurable options 

that control the system’s execution. The specific execution 
of the system depends on the actual values supplied for 
these options. For example, Internet Explorer (IE), a 
popular web browser, is a configurable system. In IE, users 
can select different values (or settings) for the configurable 
option, privacy, from allow all cookies to block all cookies. 

Given a configurable system S (we use S to denote both 
the configurable system S and its source code), let us denote 
the set of m configurable options by P={P1, P2, P3, …, Pm}. 
A particular assignment of values to each configurable 
option forms a configuration instance, denoted as C. In this 
paper, we use the term configuration and configuration 

instance interchangeably. For each Pi, let |Pi| be the number 
of values that the users can choose for this option. 
Accordingly, each possible value of option Pi is denoted as 
pij, where j ∈ [1,  |Pi|]. For each configurable option Pi, let 
௜஼݌ , chosen from {pij, j ∈ [1,  |Pi|]}, represent the value 
assigned to Pi in configuration C. Hence, the configuration 
instance C can be represented by the set {݌ଵ஼ ଶ஼݌ , ௠஼݌ … , }. A 
collection of |CS|=k such configuration instances, {C1, C2, C3 
… Ck}, used for testing S, is denoted as CS. 

B. Configurable System Testing 
Effectively testing a configurable system requires that the 

system is tested with its test suite under different 
configurations [11][18][25]. Hence, approaches for testing 
configurable systems consider both configurations and test 
cases. With hundreds or even thousands of configurable 
options in practice, it is not possible to exhaustively test a 
system with all possible configuration instances. To address 
this problem, testing approaches use configuration 
generation to sample a subset of configuration instances 
from the set of all possible configurations for testing. 

Combinatorial Interaction Testing (CIT) [9] is a 
systematic and an automated approach for the configuration 
generation process. CIT has been shown to be superior to 
both random and exhaustive configuration generation 
approaches [18][19]. Empirical studies [11][15] on real 
configurable systems have shown that CIT is effective in 
generating configurations for testing, measured by the fault 
detection capability. Yilmaz et al. [25] have shown that 
configurations generated by the CIT approach can detect 
configuration-dependent failures and characterize faults 
more efficiently, compared to the exhaustive generation 
approaches.  CIT is also a widely used technique in the 
industry [20]. 

1) The CIT Approach 
For a given configurable system, the CIT approach 

models its configurable options and their associated values, 
and combines them systematically so that all combinations 
of values for each t-way (t > 1) combination of options are 
tested together [9]. Here, t is called the strength of testing, 
and the case when t=2 is called pair-wise testing. 

TABLE II shows a partial set of configurable options and 
their values for the text editor vim, a configurable system. 
There are four configurable options P={P1, P2, P3, P4}. P1, 
P2, and P3 are binary options (with two possible values), i.e., 
| P1|=| P2|=| P3|=2. P4 has three possible values (i.e., |P4|=3), 
with p41=0, p42=2, and p43=78. A total of |P1|×|P2|×|P3|×|P4|= 
2×2×2×3= 24 configuration instances are possible. 
Exhaustively testing all possible configuration instances is 
infeasible for systems in practice, a problem that is 
addressed by the CIT approach.  

TABLE  III  shows  the  set  CS={C1, C2, …, C6} of 
configurations generated by the pair-wise CIT approach, 
which requires that all possible value combinations of each 
pair of options (totally 4C2=6 pairs of options) should appear 
in at least one of the configurations.  



For example, there are |P1|×|P2|= 4 value combinations for 
the pair (P1=background, P2=autoread), which are (dark, 
ar),  (dark, noar),  (light, ar),  and  (light, noar). In TABLE 
III, the shaded boxes denote these four value combinations. 
Each  of  these  value  combinations  should  be  covered  by  at  
least one configuration. The value pair of (dark, ar) is 
covered in C1, (light, noar) is covered in C2, (dark, noar) is 
covered in C3,  and  (light, ar) is covered in C4.  It  is  easy  to  
verify from TABLE III that for the other 5 pairs, 
(background, tabstop),  (background, textwidth),  (autoread, 
tabstop),  (autoread, textwidth),  and (tabstop, textwidth), all 
value combinations are covered in at least one of the six 
configurations. But as shown in our previous work [18], 
even if the number of configurations generated by the pair-
wise CIT approach is much smaller than the number of all 
possible configurations, it is still very expensive (and 
redundant, as our experiments demonstrate in Section IV.C) 
to rerun all configurations generated by the CIT approach, 
especially in a regression testing environment with time and 
resource constraints.   

TABLE II.  CONFIGURABLE OPTIONS AND VALUES OF VIM 

Options 
P1 P2 P3 P4 

background autoread tabstop textwidth 

Values of 
Options 

dark ar 8 0 

light noar 1 2 

 78 

TABLE III.  CONFIGURATIONS GENERATED BY PAIR-WISE CIT FOR VIM 

 
P1 P2 P3 P4 

background autoread tabstop textwidth 

C1 dark ar
 
 8

 
 78

 
 

C2 light noar
 
 1

 
 78

 
 

C3 dark noar  1 2
 
 

C4 light ar  1 0 
C5 light ar  8 2 
C6 dark noar  8 0

 
 

C. Static Program Slicing 
Static program slicing, first introduced by Weiser [24], 

refers to the computation of program points that effect or 
are affected by a given program point. The forward slice of 
a program point includes all the program points in the 
forward control flow affected by the computation or 
conditional test at the program point. Program points are the 
most basic fragments of the source code. A program may 
contain multiple files, a file may contain multiple functions, 
a function may contain multiple lines, and a line may 
contain multiple program points. A change or a change 
block can be considered as a set of program points. 

Let S be  a  configurable  system  and  suppose  that  the  
configurable system evolves from S to a new version, S’. 
The source code of S’ is shown in Figure 1. Let us assume 
that only Line 7 has changed between versions S and S’. Let 
∆(S, S’) denote the changes in the code between S and S’. In 
Figure 1, ∆(S, S’)={7}.  Let imp(∆(S, S’)) represent the code 
that is statically impacted by the change, ∆(S, S’). In S’, the 
forward slice of Line 7 includes lines 7, 10, and 13 
(highlighted in the figure), i.e., imp(∆( S, S’))={7, 10, 13}. 
Since the impact of the changed code trivially includes the 
changed code itself, ∆(S, S’)⊆ imp(∆( S,  S’)). For our 
example code in Figure 1, we measure the change and its 
impact  at  the  line  granularity.  In  this  paper,  however,  we  
measure the change and its impact at the function 
granularity.  

 
Figure 1.  The forward slice of sum=0. 

III. OUR APPROACH 
In this section, we describe our approach of selecting 

configurations for regression testing configurable systems. 
In Section III.A, we describe the problem of configuration 
selection using a simple example, which will also be used to 
illustrate our approach. In Section III.B, we describe the 
various steps in our approach. In Section III.C, we provide 
the implementation details of our approach. 

A. Example and Problem Description 
Suppose S is  a  simple  configurable  system  as  shown  in  

Figure 2. S contains eight functions f1 to f8. S has three 
configurable options, i.e., P={P1, P2, P3}. As shown in 
TABLE IV, each configurable option is binary and may be 
either True or False,  i.e.,  |P1|=|P2|=|P3|=2, p11=p21=p31=True 
and p12= p22= p32=False. A given configurable option of 
system S, Pi, can be mapped to its corresponding 
configuration variables (usually used to receive the values of 
the options from the user) in the source code of S. In our 
example, each of the configurable options P1, P2, and P3 are 
mapped to one configuration variable of the same name 
(unsigned global integers P1, P2, and P3 in lines 26 to 28) in 
the source code. These configuration variables, and hence 
their corresponding configuration options, control the 
different executions of S. Let imp(Pi) represent the code in S 
that is statically impacted by the configuration variables 
corresponding to Pi. As we measure the impact at the 
function granularity, imp(Pi) is a set of function calls along 
the static paths in S that are impacted by Pi. 

The Control Flow Graph (CFG) of S is shown in Figure 
3.  In the CFG, a dashed arrow indicates a function call. For 



example, functions f2 and f6 call the function f1. The 
configurable options (variables), highlighted by shaded 
diamonds in the CFG, determine which static paths are taken 
in the source code. Depending on the values supplied for the 
three configurable options, seven static paths (e1 to e7) are 
possible in our example code. In our example, static paths e1, 
e2, e5, e6 and e7 are impacted by the configurable option 
(variable) P1, e6 and e7 by P2, and e3 and e4 by P3. 

 

 
Figure 2.  The source code of our example configurable system S. 

TABLE IV.  CONFIGURABLE OPTIONS AND VALUES OF S 

Options P1 P2 P3 

Values of Options 
True True True 

False False False 

For S, a total of |P1|×|P2|×|P3|=8 configuration instances 
are possible. We applied pair-wise CIT [11][15] to generate a 
subset of four configurations for testing the initial version of 
the system S. The configuration set generated by pair-wise 
CIT, CS={C1, C2, C3, C4}, is shown in TABLE V. Though 
CIT is used in this example and our experiments in this 
paper, our selection approach does not require that the 
original set of configurations be generated by CIT. 

Let us assume that a new version of our example system, 
S’, has been released. Let us also assume that only the source 
code of the function f1 has been modified between S and S’, 
i.e., ∆(S, S’)={f1}. The problem we seek to solve in this 
paper is to select a set of configurations CS’ from CS={C1, C2, 
C3, C4} for testing S’.  A  naïve  approach  is  the  retest-all 
approach, which is to regression test S’ with all four 
configurations, i.e., CS’ = CS. The primary advantage of the 
retest-all approach is that CS’ achieves the best possible code 
coverage and fault detection capability. 

However, there are several disadvantages with the retest-
all approach. Though the retest-all approach may scale for 
small systems such as the one in our illustrative example, the 
retest-all approach is impractical for large industrial systems 
with hundreds or even thousands of configurations. As 

shown in our previous work [18], it is still very expensive to 
retest all the configurations, even if it is a relatively small set, 
generated by the pair-wise CIT approach, especially in a 
regression testing environment with time and resource 
constraints. Furthermore, some configurations involve heavy 
setup overhead, which will add substantial additional testing 
cost. Finally, as demonstrated by our experimental results 
presented in Section IV.C, the retest-all approach turns out to 
be highly redundant – in most cases it is possible to achieve 
the same fault detection capability of the retest-all approach 
with a small subset of CS.  Therefore, given two versions of a 
configurable system, S and S’, and given a set of 
configurations CS to test the old version S, the problem 
addressed by this paper is to select a small subset CS’ of 
configurations in CS that retains the code coverage and 
regression fault detection capability of the retest-all 
approach. 

 

Figure 3.  The CFG of our example configurable system S. 

TABLE V.  CS GENERATED BY PAIR-WISE CIT FOR TESTING S 

P1 P2 P3 

C1 True True True 

C2 True False False 

C3 False True False 

C4 False False True 

 
Random-selection is another naïve approach to select a 

subset of CS. However, as we demonstrate in Section IV.C, 
the subset of configurations selected by the random-selection 
approach may not retain the regression fault detection 

1. int f1(int x){  
2.     return ++x;  
3. }  
4.  
5. int f2(int x){ 
6.     int s = -f1(x); 
7.     return s; 
8. } 
9.  
10. int f6(int x){ 
11.     int s = f1(x)%4; 
12.     return s; 
13. } 
14.  
15. void f3(){ printf("f3"); } 
16.  
17. void f4(){ printf("f4"); } 
18.  
19. void f5(){ printf("f5"); } 
20.  
21. void f7(){ printf("f7"); } 
22.  
23. void f8(){ printf("f8"); } 
24.  
25. //configurable options 
26. unsigned int P1;  
27. unsigned int P2;  
28. unsigned int P3;  

 
  

29. void main(){ 
30.   int x; 
31.   if (x == 0) { 
32.     if(P1) 
33.       f1(1); 
34.     else 
35.   f2(2); 
36.    } // end x==0 
37.  
38.    else {  // x != 0 
39.      f3(); 
40.  if(x < 0){ 
41.      f5(); 
42.      if(P3) 
43.         f4(); 
44.   }   // end x < 0  
45.  
46.   else{   //x > 0 
47.      if(P1){ 
48.         if(P2) 
49.                f8(); 
50.         else  
51.                f7(); 
52.       } 
53.       else 
54.          f6(6); 
55.        }   // end x > 0 
56.  
57.     }   // end x != 0 
58. }   

   



capability of the retest-all approach. In the next section, we 
introduce our slicing-based configuration selection approach. 

B. Description of Our Approach 
In this paper, we assume that P’, the set of configurable 

options for S’, is same as P, the set of configurable options 
for S, i.e., P’=P. Configuration-aware regression testing in 
cases where P’ is  a  superset  or  subset  of  P involves 
configuration augmentation or reduction besides selection. 
Configuration augmentation and reduction techniques are 
outside the scope of this paper and we plan to explore them 
as a part of our future work. 

The goal of regression testing is to retest all the changes 
in the code (i.e., ∆(S,S’)) and the code impacted by these 
changes (i.e., imp(∆(S,S’))), to ensure that the code changes 
do not introduce new faults (regression faults). Let R denote 
the code to retest, i.e., R=∆(S,S’)∪imp(∆(S,S’)=imp(∆(S,S’), 
since ∆(S,S’)⊆imp(∆(S,S’)). Consequently, the goal of our 
configuration selection approach for regression testing is to 
select only those configurable options (and hence, 
configurations) that impact the static paths in R. 

The high-level overview of our approach is shown in 
Figure 4. Our approach has two main steps, selecting 
configurable options and selecting configuration instances, 
as shown by the dotted boxes in the figure. First,  among all 
the configurable options in P’ of S’, our approach selects a 
subset of configurable options P’sel⊆P’, that impacts the 
static paths in R. Only the configurable options in P’sel need 
to be retested for S’. Second, our approach selects a subset 
CS’ of configurations from CS that will cover the pair-wise 
interactions between the selected configurable options in 
P’sel. We use pair-wise interaction as the criteria for CIT 
because it is the most prevalent CIT criteria for configuration 
generation. The final set of configurations selected by our 
approach, CS’, is used for regression testing the new version 
S’. In following sections, we illustrate each step in our 
approach using the example introduced in the previous 
section. 

1) Selecting Configurable Options 
First, our approach identifies the impact of the changed 

code, i.e., R=imp(∆(S,S’). Next, our approach selects a set of 
configurable options that impacts the static paths in R. A 
configurable option is selected if its impact intersects with 
the impact of the changed code, R. Formally, a configurable 
option Pi ∈ P’ is selected by our approach if  

)݌݉݅ ௜ܲ) ∩ ܴ ≠ ∅ --- (1) 
In this paper, we measure the impact at the function 

granularity. Recall that the impact of a configurable option 
of S is the set of function calls along the static paths in S that 
are impacted by the configurable option. For example, as 
shown in Figures 2 and 3, P1 impacts the static paths e1, e2, 
e5, e6 and e7. Since functions f1, f2, f6, f7 and f8 are called 
along these paths, we regard these functions as the functions 
impacted by P1. In our illustrative example, the impacted 
functions of each configurable option are: )݌݉݅ ଵܲ) =
{ ଵ݂, ଶ݂ , ଺݂, ଻݂ , ଼݂ )݌݉݅ ,{	 ଶܲ) = { ଻݂, ଼݂ 	}, and ݅݉݌( ଷܲ) = { ସ݂	}. 

 

Figure 4.  The high-level overview of our approach. 

As  introduced  in  Section  A,  in  our  example,  we  have  
assumed that ∆(S, S’)={f1}. It is easy to manually verify that 
the functions f1,  f2 and f6 are statically impacted by the code 
changes in f1, i.e., R=imp(∆(S, S’))={f1,  f2, f6}, which is the 
impact of the code that has changed between S and S’. 
Based on (1), our approach selects only P1 (highlighted in 
the first column of TABLE IV) for regression testing (i.e., 
P’sel =  {P1}), because only the impact of P1 intersects with 
the impact of the code changes.  As a result, only functions 
f1, f2 and f6, called along static paths e1, e2 and e5  are to be 
retested in S’, satisfying the goal of regression testing. 

2) Selecting Configuration Instances 
In this section, we describe how our approach selects 

configuration instances from CS to construct CS’ after 
selecting the configurable options P’sel in the first step.  

Pair-wise CIT is the most prevalent technique to select 
configurations from the full configuration space. As 
introduced in Section II.B.1, the pair-wise criterion requires 
that all value combinations of each pair of configurable 
options should be covered at least once in the selected 
configurations to be tested. For our regression selection 
purpose, only the interactions between the selected options 
in P’sel are important. Accordingly, all value combinations 
of each pair of selected configurable options (P’sel) should 
be covered at least once in the selected configurations to be 
retested. All other options not in P’sel (i.e., P’- P’sel) may use 
any of its values randomly.   

Our algorithm for selecting configuration instances is 
shown in Figure 5. First,  as shown in Line 1, the algorithm 
constructs the value pair set A that consists of all the value 
combinations of all pairs of options selected in P’sel. 
Suppose P’sel ={P1,P2},  there  will  be  four  value  pairs  as  A 
={(p11, p21),  (p11, p22),  (p12, p21),  (p12, p22)}. In our illustrative 
example, P’sel only contains one option, P1, and hence, only 
two value pairs should be covered in the selected 
configurations, i.e., A={(p11),  (p12)} where p11= True and 
p12=False.  In  other  words,  there  must  exist  at  least  one  
configuration where the value of P1 is True and at least one 
configuration where the value of P1 is False.  



Next, the algorithm starts selecting configurations until 
one of the two stopping criteria is met: (1) all value pairs in 
A are covered, i.e., the set of remaining pairs, Z, is empty 
(the while loop) OR (2) no remaining configurations in CS 
can cover any of the remaining value pairs in Z (lines 7 and 
8). The second stopping criteria is satisfied if the original set 
of configurations CS is not created by the CIT approach, 
which indicates that some important value pairs are missing 
in CS. In this case, we can augment CS’ using the regular 
CIT approach, which will be addressed in our future work.   

Another key point of this algorithm is, in each turn of 
selection (the while loop), the algorithm always selects a 
configuration that would cover the most value pairs that 
have not been covered yet, i.e., value pairs that are still in Z: 
(1) In Line 5, our algorithm counts the number of uncovered 
value pairs in each Ci∈CS, denoted as Ni (i = 1 to | CS |); (2) 
In Line 6, our algorithm finds the largest Ni;  (3)  In  Line  9,  
our algorithm selects the configuration whose N value is the 
largest. When there is a tie for selection among 
configurations, the algorithm randomly selects one of them. 
For the configurable options that are not selected in the first 
step (Section B.1), instead of picking a random value, our 
approach reuses the same value used for testing the previous 
version of the program (as instantiated in selected 
configurations). Moreover, the chance of a tie and the 
number of configurations for random selection in the event 
of a tie decreases with the number of iterations of the while 
loop.  

In our example, during the first loop, N1=N2=N3=N4=1. 
Suppose C2 is randomly selected from the four candidate 
configurations, Z is updated to Z={(p12)}. During the second 
loop, N1=0 and N3=N4=1. Suppose C3 is selected from the 
two candidate configurations, Z becomes Ø. As a result, our 
approach selects CS’ = {C2, C3}, which saves us 50% of the 
regression testing time, compared to the retest-all approach. 

 
Figure 5.  Algorithm for selecting configuration instances in our approach. 

C. Implementation of Our Approach 
Our approach employs a static analysis tool called 

CodeSurfer [27] for computing the configurable option 
impact and the code change impact. CodeSurfer uses 

forward program slicing to compute ݅݉݌( ௜ܲ)  and 
,ܵ)∆൫݌݉݅ ܵ′)൯. Forward slicing, required for computing the 
impact sets, depends on several static analysis parameters 
such as pointer analysis, context/flow sensitivity, non-local 
analysis, and slicing dependency analysis. In our 
experiments, we conservatively use the most expensive 
CodeSurfer option available for them (for example, for 
pointer analysis, we use the Andersen’s algorithm [2]). The 
most expensive parameter setting of CodeSurfer is denoted 
as H (shown in TABLE VI). 

As shown in our study (Section IV.B), there is one static 
analysis parameter, non-local analysis, which may impact 
the preciseness of our approach. The non-locals of a 
function include all the global variables and indirectly 
accessed variables used or modified by a function. With 
CodeSurfer, the non-local analysis is configurable and can 
be shut off. The H setting of CodeSurfer with non-local 
analysis turned off is denoted as the setting L.  

TABLE VI.  THE H PARAMETER SETTINGS FOR CODESURFER 

Static Analysis Parameter Settings 
Non-local analysis Yes 

Dependences Inter/intra Control and Data 
Pointer analysis Andersen’s algorithm [2] 
Summary edges Yes 

 
The other components of our approach, including the 

algorithm shown in Figure 5, are implemented as C/C++ 
programs. 

IV. EVALUATION OF OUR APPROACH 
In this section, we present our results of evaluating our 

approach based on three criteria. First,  we study the quality 
of the configurations selected by our approach for 
regression testing in terms of the fault detection capability 
(measured by the number of faults detected) and the code 
coverage. Second, we study what percentage of 
configurations is discarded as redundant by our approach for 
regression testing. Finally, we study the overall regression 
testing time-savings possible with our approach. The 
research questions for our evaluation are as follows: 
· RQ1: Can the set of configurations selected by our 

approach achieve the same fault detection capability 
and code coverage as the retest-all approach? How does 
it work compared to the random-selection?   

· RQ2: What percentage of configurations is discarded as 
redundant by our approach for regression testing? 

· RQ3: How much regression testing time can our 
approach save? 

In Section IV.A, we describe the subjects that are used 
for our evaluation. In Sections IV.B-IV.D, we provide the 
details from a series of experiments we conducted to 
evaluate our research questions. 

1. set A = all the value combinations of all |P’sel |C2 pairs of 
options in P’sel 

2. set Z = A 
3. CS’ = Ø 
4. while  Z ≠ Ø  do: 
5.             Ni = the number of value pairs that are covered by                                  

            configurations Ci ∈CS  and are also in Z (i = 1 to |CS|) 
6.             Nmax = the largest value of Ni 
7.             if Nmax = 0   
8.                     break 
9.             Select a configuration Ck∈CS  if Nk = Nmax  
10.             CS’ = CS’ ∪ Ck 
11.             CS = CS – Ck 
12.             Z = Z – (value pairs in Ck) 



A. Study Subjects 
We first evaluate our approach on grep and make, two 

open source packages written in C.  grep is a command-line 
utility for searching plain-text data sets for lines matching a 
regular expression. make is a widely popular and general 
purpose tool used to compile programs. The source code of 
grep and make are available at the GNU website [29][30]. 
We analyzed two versions of grep, grep-1.0 as the original 
and old version and grep-2.0 as the changed and new 
version. grep contains about 8,000 uncommented lines of 
code. We analyzed two versions of make, make-3.77 as the 
original and old version and make-3.78.1 as the changed and 
new version. make contains about 15,000 uncommented 
lines of code. We demonstrate our approach for selecting a 
set of configurations for regression testing the new versions 
of grep and make. 

We also apply our approach to a core component (called 
ABB1 hereafter) of a large real-time embedded software 
system developed at ABB. ABB1 consists of about 1.18 
MLOC written in C/C++. It contains 20,432 functions across 
58 modules. Each module defines a subsystem that 
implements different functionalities of the system. 

B. Study 1: Fault Detection Capability and Code Coverage 
1) Study Design 
make-3.78.1 is a subsequent version of make-3.77, 

released 14 months after make-3.77. 26 out of 28 source files 
changed from make-3.77 to make-3.78.1. Spread across the 
26 changed files, there are 869 changed blocks of code. The 
code change blocks were computed by WinMerge [31], an 
open source code differencing and merging tool for 
Windows. We assume that a system testing involving 
configurations was conducted every month. We also assume 
that the 869 changes made through the 14 months were 
evenly distributed in each month. Hence, we randomly 
selected 60 (869/14 ≈ 60) changes to form an intermediate 
version of make, make-3.77.b, between make-3.77 and make-
3.78.1. By assuming that 25% of the changes may introduce 
regression faults, we randomly seeded 15 faults in the 60 
selected changed blocks of make-3.78.1. The seeded faults 
include the hand-seeded faults obtained from the Software 
Infrastructure Repository (SIR) [12] and the mutations 
generated by the mutgen tool [3]. 

grep-2.0 contains  eight  source  files.  Since  there  is  no  
version before grep-2.0 that is publicly available (we had 
problems building the later versions of grep with 
CodeSurfer), we randomly selected 15 blocks in grep-2.0 as 
changes from a “virtual” previous version grep-1.0. We used 
mutgen to generate more than 10000 mutants spread across 
all the files. We then randomly selected a compilable mutant 
for each selected changed block. Hence, in total, there were 
15 faults seeded in grep-2.0. 

We selected 11 configurable options for make and 14 
options for grep.  All these options are binary options. Then, 
for each subject, we created the initial set of configurations 
(i.e., CS) from these options using the CIT approach [10][11]. 
The numbers of configuration instances in CS for testing the 
old version were 14 and 7 for make and grep respectively. 

The test suites for make and grep were both obtained from 
the SIR [12]. 

2) Indepednet and Dependent Variables 
The independent variable for RQ1 is the set of 
configurations (i.e., CS’) selected for regression testing 
make-3.78.1 and grep-2.0. We compare our approach to the 
retest-all and the random-selection approaches. Hence, the 
values of the independent variable are: 
· The set of configurations selected by the retest-all 

approach, which is the full set of configurations from 
the original version (CS) 

· The set of configurations selected by our approach  
· The set of configurations selected by the random-

selection approach 
As introduced before, an important factor in examining 

the quality of a regression selection approach is the fault 
detection capability (FD, measured by the number of faults 
detected) of the selected configurations. We select it as our 
first dependent variable. Besides this, we also examine the 
code coverage capability of the selected configurations, 
particularly the coverage of the code to retest (i.e. 
R=imp(Δ(S,S’))). We call it changed function coverage 
(CFC), our second dependent variable. We used gcov [28] to 
collect the code coverage data. 

3) Results 
First, we discuss the results of applying our approach on 

grep. When we used the most expensive setting H of 
CodeSurfer (described in Section III.C), the impact of all 14 
configurable options intersects with the impact of changes 
between grep-1.0 and grep-2.0. This indicates that we have 
to select all configurable options, which leads to selecting 
all configurations from CS. We looked into the actual impact 
of each configurable option. We found that the impact of 
each option is the same, which almost covered all the 
functions in the system. This problem is called impact 
explosion [1][7], mainly caused due to large central global 
data structures. In grep, all options are defined as global 
variables and organized in a central structure.  

Because of this problem, impact computed with the H 
setting of CodeSurfer is very imprecise, and hence, not 
suitable for selecting the configurable options. Therefore, 
we use a less expensive setting L of CodeSufer by turning 
off the non-local analysis and examine if it will affect the 
precision of our approach. 

The results from analyzing the grep package show that, 
with the L setting, among the 14 configurable options, the 
impact of 4 options does not intersect with any impact of 
code changes. Hence, 10 out of 14 options are selected for 
regression testing grep-2.0. By applying our configuration 
selection algorithm (Figure 5) on these selected options, six 
out of seven configurations are selected, as shown in the 
shaded box of TABLE VII (the fourth column, containing 
the shaded box, shows the number of configurations 
selected by different approaches, i.e., the size of CS’). 



The fault detection capability (FD) of the sets selected by 
three different approaches for grep, are shown in the second 
column of TABLE VII. 6 out of 15 faults were detected by 
the full set of all 7 configurations. The set of configurations 
selected by our approach detects the same number of faults 
as the retest-all approach. In contrast, the set of 
configurations selected by the random-selection approach 
misses one fault. 

By investigating  the  faults  closely,  we found that  among 
the  six  faults  that  are  detected  by  the  full  set  of  
configurations, four faults are configuration dependent. 
Particularly, in the four faults, two faults are related to 
certain single options and two faults are related to certain 
pair-wise option combinations/interactions. All these 
important (fault-revealing) options are selected by our 
approach. As a result, the fault detection capability of the 
configurations selected by our approach can be considered 
to be the same as that of the retest-all approach. 

From our results of changed function coverage (CFC), 
shown in the third column of TABLE VII, it appears that the 
changed function coverage is same for all three approaches 
– 52 functions are covered out of 72 changed functions. 
However, the coverage differences between the three 
approaches are revealed at the statement granularity, which 
explains the different fault detection capabilities. 

TABLE VII.  RESULTS FROM GREP 

 FD CFC Size of CS’ Reduction Rate 

Retest-all 6/15 52/72 7 - 

Random- selection 5/15 52/72 6 - 
Our approach 6/15 52/72 6 1/7 = 14% 

 
Next, we discuss the results of applying our approach on 

make. Among the 11 configurable options, only 5 out of 11 
options are selected for regression testing make-3.78.1. By 
applying the selection algorithm, 6 out of 14 configurations 
are selected, as shown in the shaded box in TABLE VIII.  

The FD and CFC results of the sets selected by three 
different approaches for make are  shown in  the  second and 
third  columns  of  TABLE  VIII.   8  out  of  15  faults  were  
detected by the 14 configurations selected by the retest-all 
approach and 109 out of 192 changed functions were 
covered by these selected configurations. The set of 
configurations selected by our approach achieves the same 
fault detection capability and changed code coverage as the 
retest-all approach. In contrast, the set of configurations 
selected by the random-selection approach misses 5 faults 
and 26 functions. 

TABLE VIII.  RESULTS FROM MAKE 

 FD CFC Size of CS’ Reduction Rate 

Retest-all 8/15 109/192 14 - 

Random-selection 3/15 83/192 6 - 
Our approach 8/15 109/192 6 8/14 = 57% 

In conclusion, the set of configurations selected by our 
approach can detect the same number of regression faults 
that are detected by the retest-all approach, and hence, 
outperforms the random-selection approach. 

C. Study 2: Effectivness  
1) Study Design 
In our study on ABB1, we analyzed a development 

version (called v0) as the original version and a release 
version (called v1) as the changed version. 70 source files 
and 203 blocks had changed between versions v0 and v1. 
Among the 203 changes, we randomly selected three sets of 
30 changes for analysis. 

There are totally 545 configurable options with ABB1. 
The possible values of these options range from 2 to 9. 
About 90% of the options are binary options. We used pair-
wise CIT [10][11] to generate the initial set of 
configurations for v0, with one hour time limit for the 
generation. There were 159 configurations generated. 

ABB1 defines the configurable options differently from 
make and grep. Instead of defining global variables for 
configurable options, ABB1 stores  the  values  of  its  
configurable options in a database. Each time the option is 
used, a function retrieves the value from the database. 
Hence, unlike grep and make, there is no impact explosion 
problem [1] for ABB1 and we could use the highest setting 
H (described in Section III.C) of CodeSurfer for computing 
the impact analysis without any loss of precision. 

2) Results 
First, we discuss the effectiveness of our approach on 

grep and make.  As  shown  in  the  fourth  column  of  Tables  
VII and VIII, our approach selects six configurations 
(discards one) for testing grep-2.0 and selects six (discards 
eight) for testing make-3.78.1. As a result, our approach 
discards 14% and 57% (shown in bold in the last column) 
configurations for regression testing them respectively. 

TABLE IX.  NUMBER OF CONFIGURABLE OPTIONS SELECTED FOR V1 

 Change Set 1 Change Set 2 Change Set 3 Average 
Retest-all 545 
Selected 167 161 161 163 

Reduction 69% 70% 70% 70% 

TABLE X.  NUMBER OF CONFIGURATIONS SELECTED FOR 
REGRESSION TESTING V1 

 Change Set 1 Change Set 2 Change Set 3 Average 
Retest-all 159 
Selected 120 120 120 120 

Reduction 25% 25% 25% 25% 

Next, we discuss the results of ABB1.  TABLE IX shows 
the number of configurable options that are selected for 
retesting v1. Among all 545 configurable options, 167 
options were selected for regression testing given the first 
code change set. 161 options were selected given the second 
and third sets of code changes. The average reduction in 
configurations is about 70% (shaded box). By using pair-
wise CIT with the one-hour time limit, 120 configurations 



were selected from the full set of configurations, regardless 
of  which  set  of  code  change  is  addressed,  as  shown  in  
TABLE X. As a result, our approach discards about 25% 
configurations to be retested.  

D. Study 3: Regression Testing Time Savings 
In this section, we calculate the regression testing time 

that is saved by our approach compared to the retest-all 
approach. The results are shown in TABLE XI (h, m, and s 
represent hours, minutes, and seconds, respectively). 

1) Overheads of Our Approach 
The time overhead incurred by our approach (shaded in 

TABLE XI) has three main components: the build time for 
building the configurable system with CodeSurfer, the 
slicing time to compute the impact of code changes and 
configurable options, and the selection time for executing 
the selection algorithm (Figure 5).  

CodeSurfer performs several static program analyses on 
the source code by transparently integrating with the 
compile and link stages of the software build. Build time is 
the time required for this build stage. Slicing time is the time 
required to compute the impact set as the forward slice, 
using the information computed during the build stage. The 
build times, usually in the order of hours or days, are much 
longer  than  slice  times,  which  are  usually  in  the  order  of  a  
few seconds. Hence, in this paper, we ignore the slice times 
and only consider build time overheads incurred by change 
impact analysis. Our experiments were run on a 2GHz quad-
core Windows Server 2008 machine with 24GB RAM. 

2) Testing Time Savings 
The first five rows in TABLE XI show the actual testing 

time with the selected configurations (i.e., CS’) by the retest-
all approach and our approach. Particularly, TestTimePerC 
represents the time for testing one single configuration, 
including the time of setting up the configuration. |CS’| 
denotes the size of CS’, i.e., the number of selected 
configurations. The time taken by different approaches is 
the product of these two factors, highlighted in the table in 
bold. As a result, the testing time saved (Tsaved) by our 
selection approach is 5 minutes (50%), 387 minutes (55%), 
and 167 hours (21%) for grep, make, and ABB1, 
respectively, as shown in the last two rows in TABLE XI.  

TABLE XI.  REGRESSION TESTING TIME SAVINGS WITH OUR APPROACH 

  grep make ABB1 

Testing Time with CS’ 
selected by different 

Approaches 

TestTimePerC 10 m 50 m 5 h 
|CS’| by Retest-all 7 14 159 
Time taken by 
retest-all (Tall) 70 m 700 m 795 h 
|CS’| by our approach 6 6 120 
Time taken by our 
approach (Tselect) 60 m 300 m 600 h 

Overhead 
Build time 14 s 3 m 20 h 
Selection time 5 m 10 m 8 h 
Overhead 5.2 m 13 m 28 h 

Testing Time Saving 
Tsaved = (Tall –Tselect)  
          - Overhead 5 m 387 m 167 h 

Tsaved / Tall 50% 55% 21% 

V. RELATED WORK 

A. Configurable System Regression Testing 
Approaches   for   regression   testing   of   configurable 

systems   [13][25][26] study  the   issue   of   improving   the 
effectiveness  of  configuration  sampling  for  testing  a  
new version  of  system. Our previous work [18] studied the 
impact of configurations across multiple versions of a 
system as it evolves. Our previous approach prioritizes the 
full set of configurations for regression testing the new 
version of the system, in order to improve the early fault 
detection rate. However, it suffers from some limitations. 
First, it requires information from prior versions, which is 
not always available. Second, it requires that the set of 
configurations to be prioritized is generated by the CIT 
approach, which is not always the case. Finally, 
prioritization approaches do not address the redundancy 
problem.  

Recently, Nanda et al. [16] proposed an approach to 
support regression testing of systems that exhibit frequent 
changes in non-code parts of the system. Their approach 
focuses on changes to databases and simple configuration 
files but does not consider the code changes between two 
versions of a system. 

B. Regression Test Selection 
In traditional regression testing, given an initial version 

of a system S and a test suite T, a subset of tests T’ has to be 
selected from T to test a new version S’ of S. Ad-hoc 
selection approaches [14] are not safe because they may 
miss some test cases that reveal faults in the modified 
program. Instead, safe test case selection approaches [22] 
select all test cases in the original test suite, which can 
reveal faults in the modified program. Rothermel et al. 
present a safe regression test selection approach [23] based 
on analyzing the Control Flow Graphs (CFG) of S and S’. 

However, traditional regression testing approaches do not 
consider configurations in testing. In configurable system 
testing, configuration selection is as important as test case 
selection. Our approach is a configuration selection approach 
and is complementary to traditional regression test selection 
approaches. 

There has been some work [5][8] on using program 
slicing for regression test selection. Slicing-based regression 
testing approaches can be categorized into two groups [6] – 
approaches that use static slicing and approaches that use 
dynamic slicing. There techniques use program slicing on 
both old and new programs to identify affected statements. 
Again, these approaches are applicable to regression testing 
traditional systems wherein the focus is on test case 
selection. In contrast, our approach applies static slicing for 
regression testing configurable systems wherein the focus is 
on configuration selection. 

VI. CONCLUSION 
In this paper, we introduce the first configuration 

selection approach for regression testing configurable 



systems. Our study results show that, compared to the 
retest-all approach, our approach discards 15% to 60% of 
configurations as redundant. Our approach also saves 20% 
to 55% of the regression testing time, while retaining the 
fault detection capability and code coverage of the retest-all 
approach. 

In our approach, we assume that the set of configurable 
options is the same for old and new versions. But some 
changes between versions may add or remove options. In 
such situations, in addition to configuration selection, 
configuration augmentation or reduction techniques are also 
required. We will address these problems in future work. 

In this paper, we introduce an approach for configuration 
selection. In our previous research we introduced an 
approach for configuration prioritization [18]. We expect 
that a combination of these approaches may further improve 
the testing effectiveness and efficiency, compared to either 
approach alone. Finally, in the subjects we studied, the 
problem of impact explosion [1][7] does not show any 
impact on the effectiveness of our approach.  However, we 
will investigate the effect of impact explosion in depth as a 
part of our future work. 
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