Xianzhi Wang

Xianzhi Wang
  • Doctor of Philosophy
  • University of Technology Sydney

About

232
Publications
63,204
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,797
Citations
Current institution
University of Technology Sydney

Publications

Publications (232)
Article
Full-text available
Time series data, such as sound waves, bio-signals, and user trajectories, are prevalent in social application scenarios. While single-modal time series data often proves inadequate for addressing challenges in complicated environments, it necessitates integrating multiple modalities to understand real-world phenomena. Utilizing multimodal data imp...
Preprint
Large Language Models (LLMs) have been extensively applied in time series analysis. Yet, their utility in the few-shot classification (i.e., a crucial training scenario due to the limited training data available in industrial applications) concerning multivariate time series data remains underexplored. We aim to leverage the extensive pre-trained k...
Article
Unsupervised domain adaptation (UDA) methods have recently been explored for their use in Skeleton recognition tasks. Much work along this line has been focusing on the “close-set” problems, which often deviate from reality as human actions vary in application scenarios. Thus, there remains a need to thoroughly study the “open-set” problems with UD...
Article
Trajectory prediction is fundamental to various intelligent technologies, such as autonomous driving and robotics. The motion prediction of pedestrians and vehicles helps emergency braking, reduces collisions, and improves traffic safety. Current trajectory prediction research faces problems of complex social interactions, high dynamics and multi-m...
Preprint
Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level prefere...
Preprint
Sequential recommendation aims to predict the next item which interests users via modeling their interest in items over time. Most of the existing works on sequential recommendation model users' dynamic interest in specific items while overlooking users' static interest revealed by some static attribute information of items, e.g., category, or bran...
Article
Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users’ short-term preferences and aims to provide a more dynamic and timely recommendation based on ongoing interactions. This survey presents...
Preprint
Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In t...
Conference Paper
Large language models (LLMs) encounter challenges such as hallucination and factual errors in knowledge-intensive tasks. One the one hand, LLMs sometimes struggle to generate reliable answers based on the black-box parametric knowledge, due to the lack of responsible knowledge. Moreover, fragmented knowledge facts extracted by knowledge retrievers...
Article
Full-text available
Truth discovery is the fundamental technique for resolving the conflicts between the information provided by different data sources by detecting the true values. Traditional methods assume that each data item has only one true value and therefore cannot deal with the circumstances where one data item has multiple true values (i.e., multi-value trut...
Article
Full-text available
As a significant application of machine learning in financial scenarios, loan default risk prediction aims to evaluate the client’s default probability. However, most existing deep learning solutions treat each application as an independent individual, neglecting the explicit connections among different application records. Besides, these attempts...
Article
Purpose This paper explores the potential for family businesses (FBs) to play a pivotal role in advancing the United Nations (UN) Sustainable Development Goals (SDGs). It seeks to elucidate how FBs' inherent strengths and values can be harnessed to integrate sustainable practices within their operational paradigms. Design/methodology/approach The...
Article
Full-text available
With the introduction of more recent deep learning models such as encoder‐decoder, text generation frameworks have gained a lot of popularity. In Natural Language Generation (NLG), controlling the information and style of the output produced is a crucial and challenging task. The purpose of this paper is to develop informative and controllable text...
Article
In recent times, visual analytics systems (VAS) have been used to solve various complex issues in diverse application domains. Nonetheless, an inherent drawback arises from the insufficient evaluation of VAS, resulting in occasional inaccuracies when it comes to analytical reasoning, information synthesis, and deriving insights from vast, ever-chan...
Conference Paper
Improving users’ long-term experience in recommender systems (RS) has become a growing concern for recommendation platforms. Reinforcement learning (RL) is an attractive approach because it can plan and optimize long-term returns sequentially. However, directly applying RL as an online learning method in the RS setting can significantly compromise u...
Article
Mashups are web applications that expedite software development by reusing existing resources through integrating multiple application programming interfaces (APIs). Recommending the appropriate APIs plays a critical role in assisting developers in building such web applications easily and efficiently. The proliferation of publicly available APIs o...
Chapter
Spatiotemporal data analysis is crucial for various fields of applications, such as transportation, healthcare, and meteorology. Spatiotemporal data collected in the real world often contain missing values due to sensor failures or transmission loss. Therefore, spatiotemporal imputation aims to fill in the missing values by leveraging the underlyin...
Chapter
Multivariate time series classification is crucial for various applications such as activity recognition, disease diagnosis, and brain-computer interfaces. Deep learning methods have recently achieved promising performance thanks to their powerful representation learning capacity. However, existing deep learning-based classifiers rely solely on tem...
Chapter
Positional embedding is an effective means of injecting position information into sequential data to make the vanilla Transformer position-sensitive. Current Transformer-based models routinely use positional embedding for their position-sensitive modules while no efforts are paid to evaluating its effectiveness in specific problems. In this paper,...
Article
Full-text available
Skin cancer, primarily resulting from the abnormal growth of skin cells, is among the most common cancer types. In recent decades, the incidence of skin cancer cases worldwide has risen significantly (one in every three newly diagnosed cancer cases is a skin cancer). Such an increase can be attributed to changes in our social and lifestyle habits c...
Chapter
Multivariate time series inherently involve missing values for various reasons, such as incomplete data entry, equipment malfunctions, and package loss in data transmission. Filling missing values is important for ensuring the performance of subsequent analysis tasks. Most existing methods for missing value imputation neglect inter-variable relatio...
Preprint
Full-text available
Loan default risk prediction is a major application of machine learning for financial institutions to evaluate the client's default probability. Existing deep learning models rarely consider the connection among application records for loan default detection. We believe similar records, as auxiliary information, are also significant for loan defaul...
Article
Dynamic link prediction has become a trending research subject because of its wide applications in web, sociology, transportation, and bioinformatics. Currently, the prevailing approach for dynamic link prediction is based on graph neural networks, in which graph representation learning is the key to perform dynamic link prediction tasks. However,...
Article
Contrastive learning has been widely embraced for its notable success along with two augmentation methods—normal and strong augmentations—in skeleton action recognition. Existing methods gain performance largely by customizing normal augmentations while bypassing strong augmentations that riches in motion patterns. To make up for the blank, we prop...
Chapter
We propose a graph neural network with self-attention and multi-task learning (SaM-GNN) to leverage the advantages of deep learning for credit default risk prediction. Our approach incorporates two parallel tasks based on shared intermediate vectors for input vector reconstruction and credit default risk prediction, respectively. To better leverage...
Chapter
Text classification enables higher efficiency on text data queries in information retrieval. However, unintended demographic bias can impair text toxicity classification. Thus, we propose a novel debiasing framework utilizing Adversarial Learning on word embeddings of multi-class sensitive demographic words to alleviate this bias. Slight adjustment...
Article
The ability to evaluate uncertainties in evolving data streams has become equally, if not more, crucial than building a static predictor. For instance, during the pandemic, a model should consider possible uncertainties such as governmental policies, meteorological features, and vaccination schedules. Neural process families (NPFs) have recently sh...
Article
The Internet of Things (IoT) enables the connection of a broad range of artifacts with advanced sensory technologies and produces massive amounts of data to support ambient intelligence. While the potential of IoT systems is widely recognized, little work has demonstrated a system with the ability to execute autonomously in the real world. Inspired...
Article
Zero-Shot Learning (ZSL) aims to transfer learned knowledge from observed classes to unseen classes via semantic correlations. A promising strategy is to learn a global-local representation that incorporates global information with extra localities (i.e., small parts/regions of inputs). However, existing methods discover localities based on explici...
Article
Full-text available
Multivariate time series classification is a critical problem in data mining with broad applications. It requires harnessing the inter-relationship of multiple variables and various ranges of temporal dependencies to assign the correct classification label of the time series. Multivariate time series may come from a wide range of sources and be use...
Article
Full-text available
Personalized decision-making can be implemented in a Federated learning (FL) framework that can collaboratively train a decision model by extracting knowledge across intelligent clients, e.g. smartphones or enterprises. FL can mitigate the data privacy risk of collaborative training since it merely collects local gradients from users without access...
Article
Full-text available
The increasingly developed online platform generates a large amount of online reviews every moment, e.g., Yelp and Amazon. Consumers gradually develop the habit of reading previous reviews before making a decision of buying or choosing various products. Online reviews play an vital part in determining consumers’ purchase choices in e-commerce, yet...
Article
Full-text available
Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks challenging to detect at an early stage. Recent advance in cau...
Article
A significant remaining challenge for existing recommender systems is that users may not trust recommender systems for either inaccurate recommendation or lack of explanation. Thus, it becomes critical to embrace a trustworthy recommender system. This survey provides a systematic summary of three categories of trust issues in recommender systems: s...
Article
In interactive remote medical diagnosis, medical diagnosis support system plays an important role in the pre-screening stage. Deep learning methods are widely used in such system especially medical imaging area to provide an initial diagnosis to support medical professional. However, the shortage of annotated medical images is one of the biggest ch...
Chapter
Recommender Systems for the IoT (RSIoT) aim for interactive item recommendations. Most existing methods focus on user feedback and have limitations in dealing with dynamic environments. Deep Reinforcement Learning (DRL) can deal with dynamic environments and conduct updates without waiting for user feedback. In this study, we design a Reminder Care...
Chapter
Deep neural networks currently achieve state-of-the-art performance in many multivariate time series classification (MTSC) tasks, which are crucial for various real-world applications. However, the black-box characteristic of deep learning models impedes humans from obtaining insights into the internal regulation and decisions made by classifiers....
Article
Full-text available
The ability to explain why the model produced results in such a way is an important problem, especially in the medical domain. Model explainability is important for building trust by providing insight into the model prediction. However, most existing machine learning methods provide no explainability, which is worrying. For instance, in the task of...
Article
Full-text available
Claims analysis and risk management is key to avoiding fraud and managing risk in the life insurance industry. Though visualization plays a fundamental role in supporting analysis tasks in the business domain, exploring user behaviour remains a challenging task. The prevalence of natural language interactions enhanced with data visualization has be...
Article
Product reviews on e-commerce platforms play a critical role in shaping users’ purchasing decisions. Unfortunately, online reviews sometimes can be intentionally misleading to manipulate the ecosystem. To date, existing methods to automatically detect “spam reviews” either focus on sophisticated feature engineering with traditional classification m...
Article
Recent advances in reinforcement learning have inspired increasing interest in learning user modeling adaptively through dynamic interactions, e.g., in reinforcement learning based recommender systems. In most reinforcement learning applications, reward functions provide the critical guideline for optimization. However, current reinforcement learni...
Article
Quality-of-service (QoS)-aware service composition aims to aggregate multiple existing services to meet users' complex functional and nonfunctional requirements that cannot be met by simple services. The accumulation of user tasks and service composition solutions makes it possible to mine empirical rules from those historical compositions to reduc...
Preprint
Full-text available
The ability to evaluate uncertainties in evolving data streams has become equally, if not more, crucial than building a static predictor. For instance, during the pandemic, a forecast model should always estimate its uncertainty around dynamic factors such as governmental policies, meteorological features and vaccination schedules. Targeting this,...
Article
Full-text available
Tree-based models and deep neural networks are two schools of effective classification methods in machine learning. While tree-based models are robust irrespective of data domain, deep neural networks have advantages in handling high-dimensional data. Adding a differentiable neural decision forest to the neural network can generally help exploit th...
Preprint
Full-text available
Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks difficult to detect at an early stage. Recent advance in causa...
Article
Full-text available
Recommendation systems are crucial in the provision of services to the elderly with Alzheimer’s disease in IoT-based smart home environments. In this work, a Reminder Care System (RCS) is presented to help Alzheimer patients live in and operate their homes safely and independently. A contextual bandit approach is utilized in the formulation of the...
Preprint
Full-text available
Zero-Shot Learning (ZSL) aims to transfer learned knowledge from observed classes to unseen classes via semantic correlations. A promising strategy is to learn a global-local representation that incorporates global information with extra localities (i.e., small parts/regions of inputs). However, existing methods discover localities based on explici...
Article
Predicting consumers’ purchasing behaviors is critical for targeted advertisement and sales promotion in e-commerce. Human faces are an invaluable source of information for gaining insights into consumer personality and behavioral traits. However, consumer’s faces are largely unexplored in previous research, and the existing face-related studies fo...
Preprint
Online recommendation requires handling rapidly changing user preferences. Deep reinforcement learning (DRL) is gaining interest as an effective means of capturing users' dynamic interest during interactions with recommender systems. However, it is challenging to train a DRL agent, due to large state space (e.g., user-item rating matrix and user pr...
Preprint
Full-text available
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems....
Preprint
Full-text available
The ability to deal with uncertainty in machine learning models has become equally, if not more, crucial to their predictive ability itself. For instance, during the pandemic, governmental policies and personal decisions are constantly made around uncertainties. Targeting this, Neural Process Families (NPFs) have recently shone a light on predictio...
Preprint
Federated learning (FL) can protect data privacy in distributed learning since it merely collects local gradients from users without access to their data. However, FL is fragile in the presence of heterogeneity that is commonly encountered in practical settings, e.g., non-IID data over different users. Existing FL approaches usually update a single...
Article
Full-text available
Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts’ cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient mode...
Article
Recommendation is a critical tool for developing and promoting the benefits of the Internet of Things (IoT). In recent years, recommender systems have attracted considerable attention in many IoT-related fields such as smart health, smart home, smart tourism and smart marketing. However, traditional recommender system approaches fail to exploit eve...
Article
Zero-shot learning (ZSL) refers to the problem of learning to classify instances from novel classes (unseen) that are absent in the training set (seen). Most ZSL methods infer the correlation between visual features and attributes to train the classifier for unseen classes. They may have a strong bias towards seen classes during training. Meta-lear...
Preprint
Full-text available
Recent advances in reinforcement learning have inspired increasing interest in learning user modeling adaptively through dynamic interactions, e.g., in reinforcement learning based recommender systems. Reward function is crucial for most of reinforcement learning applications as it can provide the guideline about the optimization. However, current...
Preprint
Full-text available
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to semantically related unseen classes, which are absent during training. The promising strategies for ZSL are to synthesize visual features of unseen classes conditioned on semantic side information and to incorporate meta-learning to eliminate the model's inherent bias towards...
Article
Full-text available
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first pre...
Preprint
Full-text available
Zero-shot learning (ZSL) refers to the problem of learning to classify instances from the novel classes (unseen) that are absent in the training set (seen). Most ZSL methods infer the correlation between visual features and attributes to train the classifier for unseen classes. However, such models may have a strong bias towards seen classes during...
Article
Supply–demand imbalance poses significant challenges to transportation systems such as taxis and shared vehicles (cars and bikes) and leads to excessive delays, income loss, and energy consumption. Accurate prediction of passenger demands is an essential step towards rescheduling resources to resolve the above challenges. However, existing work can...
Chapter
Recommendation systems are crucial for providing services to the elderly with Alzheimer’s disease in IoT-based smart home environments. Therefore, we present a Reminder Care System to help Alzheimer patients live safely and independently in their homes. The proposed recommendation system is formulated based on a contextual bandit approach to tackle...

Network

Cited By