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Abstract Watershed management and planning is a

complex decision-making process, which not only involves

deliberation using one or more watershed models, but also

requires collaboration among multiple stakeholder groups

with different ideologies, interests, and demographics.

Web-based decision support tools have great potentials to

enhance the transparency and participation of such decision

making processes. Although physically based surface water

quality models are well suited for offline water quality

analyses, they are often too computationally demanding to

be deployed in a web-based environment. In this work,

three metamodels are developed to support decision-mak-

ing activities related to surface water quality management

at Arroyo Colorado Watershed, a coastal watershed located

in Texas, US. All three metamodels are trained using an

existing Soil and Water Assessment Tool (SWAT) model

developed for the watershed. The main objectives of the

metamodels are to support web-based decision support,

including near-term nutrient load forecasting, online sen-

sitivity study, and long-term load reduction planning. All

metamodels either replicate or extend the capabilities of

the original SWAT model and, thus, provide proxies for

regulators and stakeholders to examine and discuss model

results interactively. The novel, multi-metamodel meth-

odology taken here is not only useful for supporting mul-

tigroup decision making and public education, but also

provides a more effective way to leverage existing

investment on watershed models.

Keywords Metamodeling � RBFN � PCM �
Visual analytics � Collaborative decision making �
Environmental decision support systems � SWAT model

Introduction

The nature of environmental decision making calls for a

participatory approach, in which regulators, stakeholders,

and researchers jointly examine management options

through an iterative process and on a common platform.

Web-based environmental decision-support systems

(EDSS) have flourished since mid-1990s, in part to facili-

tate and sustain such multiparty decision-making pro-

cesses. By definition, an EDSS consists of environmental

models, databases, and assessment tools that are integrated

under a common graphical user interface and realized by

using spatial-data-management functionalities (Matthies

et al. 2007). Thus, web-based EDSS are distinguished by

their visual analytical capabilities, separating them from

general geographic information systems that are mainly

suitable for data display.

Implementation of analytical capabilities in EDSS is

highly case dependent. While displaying static content

(e.g., model outputs) may be sufficient in some cases, a

growing number of projects now require web-based ana-

lytical tools that can assist end users to experiment with

different scenarios and perform online simulation, fore-

casting, or even uncertainty analysis. Computational power
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has significantly grown in the last decade or so, but so has

the computational demand of physically based, distributed

watershed models (Castelletti et al. 2012a). As a result,

serial execution of physically based models may still take

minutes or even hours to finish, which make these models

unsuitable for online use. Until distributed computing

becomes more accessible, adapting computationally

intensive models for online decision support will remain a

practical challenge. The main objective of this paper is to

demonstrate the application of model-reduction techniques

in a web-based EDSS through a case study.

Model reduction refers broadly to techniques for devel-

oping and utilizing cheaper-to-run ‘‘surrogates’’ of a com-

puter simulation model. The idea behind model reduction is

not new. Indeed, a vast number of potential techniques exist

in the literature and are often referred to as reduced-order

modeling, surrogate modeling, response surface methods,

metamodeling, or model emulation. For consistency, the term

‘‘metamodel’’ will be used throughout this paper. The origi-

nal concept of metamodeling dates back to R. W. Blanning,

who in the 1970s proposed to approximate a computer sim-

ulation model for expediting the solution of optimization

problems (Blanning 1975). Since then, the subject has

become an active research area in computer experiment

design, uncertainty quantification, and risk assessment, as

summarized in a number of monographs and literature sur-

veys (Santner et al. 2003; Fang et al. 2006; Helton et al. 2006;

Kleijnen 2008; Eldred 2009; Matott et al. 2009; Storlie et al.

2009; Young and Ratto 2009; Shan and Wang 2010; Cas-

telletti et al. 2012a; Razavi et al. 2012).

Metamodeling mainly capitalizes on the idea that not all

processes encapsulated by a process-level model are

equally important and relevant to the main objectives of

planning and management (Castelletti et al. 2012b). In

other words, to be suitable for metamodeling, a problem

needs to have both simulation space and decision space,

with the latter being a subset of the former. Whilst the

simulation space contains all information on relevant

physical processes necessary to ensure model accuracy, the

decision space only includes dominant system features that

matter most to the specific objectives of decision making.

Identification of an appropriate decision space is particu-

larly important for web-based metamodel implementation.

Several classification schemes exist for metamodeling

techniques. Depending on their parameterization processes,

metamodeling techniques may be classified as either para-

metric or nonparametric. Parametric techniques attempt to

replace the complex structure of a distributed model using

simplified model/parameter structures, whereas nonpara-

metric techniques train a ‘‘black-box’’ model to mimic the

observed or simulated input-response relationships. The

primary difference between the two is that coefficients from

the latter usually do not have physical meanings. Some

authors refer to the former techniques as ‘‘low-fidelity mod-

els’’ while reserving the term ‘‘metamodels’’ mainly for the

latter techniques (e.g., Razavi et al. 2012). Some of the best-

known nonparametric methods are spline-smoothing

regression models (Friedman 1991), artificial neural net-

works (ANN) (Haykin 1999), and support vector machines

(Vapnik 1998). In recent years, stochastic response surface

methods have also received broad attention in reliability

analyses and porous media modeling (Isukapalli et al. 1998;

Eldred 2009; Xiu 2010). As in the spline-smoothing-based

approaches, stochastic response surface methods seek to

construct a response surface using results from a set of full-

model runs for different parameter combinations; however, it

does so in the stochastic space by treating uncertain model

parameters as random variables. Of particular interest here is

a stochastic collocation method called the probabilistic col-

location method (PCM) (Li and Zhang 2007; Zheng et al.

2011; Sun et al. 2013). A major advantage of the PCM is that

it does not require modification of an existing model (i.e.,

non-intrusive). Once constructed, the PCM metamodel can

be used to generate results of a model run at virtually no

additional cost. A disadvantage of the PCM is that it assumes

the probability distributions of random variables are acces-

sible, which may not always be the case. Recently, Zheng

et al. (2011) applied PCM to approximate the Watershed

Analysis Risk Management Framework (WARMF) model

that is documented in Chen et al. (2005).

Depending on the modeling paradigm followed, meta-

modeling techniques can also be classified as either data-

driven or objective-driven. Data-driven metamodels, such as

ANN, are appropriate for predicting nonlinear input–output

relationships without requiring knowledge of underlying

physical processes. The success of such methods largely

hinges on whether the training dataset sufficiently captures all

expected system variation patterns. Extending data-driven

models beyond the range of training data can lead to unpre-

dictable results. On the other hand, objective-driven models

often replace an existing complex model structure with a

reduced-order model structure, which runs faster but still

retains major features of the original model. Objective-driven

metamodels may use a hybrid of parametric and nonpara-

metric techniques; the modeling objectives are used not only

to guide simplification of the original process-level model,

but also to make appropriate performance metrics for gauging

the level of model reduction. The development of objective-

driven models is thus more problem specific, requiring sig-

nificant domain knowledge to develop a simplified model

structure (i.e., model abstraction) and then estimate the cor-

responding reduced set of model parameters.

In a recent study, we developed a web-based EDSS, the

Collaborative Geospatial Decision Support System

(CGDSS), to support watershed management and decision

making for the Arroyo Colorado Watershed (ACW), a
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Texas coastal watershed located near the US–Mexico

border. The main objective of the CGDSS project was to

experiment with a co-management platform to support

decision making and public outreach activities during the

WPP implementation-tracking period. Previously, a SWAT

model had been built for the ACW to support implemen-

tation of a Watershed Protection Plan (WPP) (Arroyo

Colorado WPP 2007; Kannan et al. 2011, 2014). The

Arroyo Colorado WPP is a ‘‘comprehensive watershed-

based strategy’’ aimed to improve water quality and aquatic

and riparian habitats in the watershed; it was designed to

address impairments and concerns identified in the Texas

Water Quality Inventory (Arroyo Colorado WPP 2007).

The implementation period for Phase I of the Arroyo

Colorado WPP is 2006–2015.

SWAT is a widely used, semi-distributed, watershed

model for simulating the quality and quantity of surface

and groundwater, and predicting the environmental impact

of land use and land management practices (Gassman et al.

2007). A serial run of the Arroyo Colorado SWAT model

takes more than 10 min to finish (see Sect. 4). In order to

incorporate different aspects and use cases of the SWAT

model in the CGDSS framework, the team developed three

interactive metamodels:

• The first metamodel is a type of ANN model trained

using the inputs/outputs of the SWAT model and is

mainly used to predict pollutant loadings under user-

specified forcing conditions.

• The second metamodel is developed using PCM and is

used to examine sensitivity of loadings to different

parameter values; it can also be used for uncertainty

quantification.

• The third metamodel is a simple loading estimation

model (i.e., PLOAD) used to examine the effect of land

use changes on long-term pollutant loading behaviors.

The three metamodels are complementary and are

designed to enhance public outreach and stakeholder

engagement for a range of user levels. Although only total

nitrogen (TN) loading is demonstrated in this work,

metamodels for other parameters of interest can be

implemented in a similar manner.

A note to keep in mind is that in the current study the

SWAT model has already been adopted by regulators and

local stakeholders. Thus, the main focus of metamodeling

is to honor the original model behaviors as much as pos-

sible in the web-based decision space, rather than to

improve the model quality in the simulation space. In other

words, we deal with a sub-problem of the more compli-

cated watershed quality management problem. Neverthe-

less, this sub-problem plays an important role in bridging

the gap between scientific research and community-cen-

tered watershed management. To the best of our

knowledge, few previous studies have attempted to

implement multiple metamodels in a single web-based

EDSS. Thus, experiences gained from this project will help

to illuminate the technical challenges and issues associated

with web-based implementation of metamodeling. The rest

of paper is organized as follows. Section 2 provides

detailed descriptions of the study area and background of

study. Section 3 briefly introduces technical background

for each type of metamodeling used. Section 4 demon-

strates the three metamodels for TN loading and, finally,

Sect. 5 discusses lessons learned.

Study area

The ACW covers an area of about 1,828 km2 (Fig. 1) on the

Gulf of Mexico coast. It is bounded on the west and south by

the drainage divide to the Rio Grande, on the north by the

drainage divide to the North Floodway, and on the east by

the Lower Laguna Madre lagoon (Arroyo Colorado WPP

2007). The Arroyo Colorado River serves as the main

drainage stream for this area of Texas. The lower third of

the stream provides an inland waterway for commercial

barge traffic and for recreational boating and fishing. Near

the Gulf Coast, the Arroyo Colorado also serves as an

important nursery and foraging area for numerous species

of marine fish, shrimp, and crab (Arroyo Colorado WPP

2007). The Arroyo Colorado has two segments, the tidally

influenced segment (Segment 2201) and the above-tidal

segment (Segment 2202) (Fig. 1). Land within the ACW is

intensively cultivated and irrigated. Dominant land-cover

categories in the watershed are agriculture (54 %), range

(18.5 %), urban (12.5 %), sugarcane (4 %), and other

(Kannan et al. 2011) (see Fig. 2). Decades of human use

have degraded habitat and water quality in the ACW and

strained its ability to assimilate pollutants (Raines and

Miranda 2002). Both Segments 2201 and 2202 are now

listed as impaired due to high levels of bacteria. Segment

2201 is also listed as impaired due to low levels of dissolved

oxygen. Nutrient concentrations (nitrogen and phosphorus

compounds) are high in both segments (Arroyo Colorado

WPP 2007). In the Arroyo Colorado WPP, Year 2000 was

chosen as the starting benchmark for load calculations

because many of the wastewater infrastructure improve-

ment projects were completed in late 1990s. The 10-year

load-reduction target for TN is 11 % below its Year 2000

level of 2,034 tons/year (Arroyo Colorado WPP 2007).

The ACW Partnership, which grew out of smaller

groups of local stakeholders involved in the WPP devel-

opment process, is now the leading stewardship organiza-

tion in the watershed. The Partnership had been actively

involved behind the development of the SWAT model. The

ACW SWAT model was calibrated and validated for flow,
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sediment, nitrogen, phosphorous using seven years

(2000–2006) of data. Data from 1999 was used for spin-up

run. Most of the water quality data used for model cali-

bration and testing came from the gauge near Harlingen

(see Fig. 1). Figure 3 shows a comparison of observed and

predicted daily streamflow and TN loading values at the

Harlingen gauge. The daily TN loading was estimated by

using daily streamflow and observed TN concentrations.

Note that no TN observations were collected in December

2002 when the high-flow period occurred (Fig. 3a). Over-

all, the fit is deemed satisfactory. A detailed documentation

of SWAT calibration and validation methodologies is

given in a recent report by Kannan (2012). In the follow-

ing, the technical background of the three metamodels will

be described for completeness.

Methodologies

The ANN metamodel

ANNs have been extensively used in streamflow forecast-

ing and water resources management (e.g., Hsu et al. 1995;

ASCE 2000a, b; Moradkhani et al. 2004; Chang and Chang

Fig. 1 ACW is located near US and Mexico border and has two impaired segments (Segment 2201 and 2202). Long-term hydrometeorological

data are available at Harlingen, Mercedes, and McAllen gauges

Subbasin

Landuse

Agricultural

Other

Range

Sugarcane

Urban

Fig. 2 Land use/land cover map of the ACW. Dominant land use/land cover categories in the watershed are agriculture (54 %), range (18.5 %),

urban (12.5 %), other (open waters) (6 %), and sugarcane (4 %). The watershed is divided into 17 subbasins as shown by the thin solid lines
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2006; Maier et al. 2010). A major strength of neural networks

lies in their universal approximation property—an ANN with

a single hidden layer can be trained to approximate the causal

relationship of any nonlinear dynamic system without a priori

assumptions about the underlying physical system (Haykin

1999). In this work, the radial basis function network

(RBFN), a type of feedforward neural network, is used to

learn the nonlinear input–output dynamics simulated by the

SWAT model. As mentioned before, the main focus of

metamodeling is replicating model responses in the decision

space; thus, the model outputs instead of actual observations

are used for training.

Mathematically, radial basis functions represent a fam-

ily of basis functions expressed as

/i ¼ / x� cik kð Þ; ð1Þ

where �k k is typically the Euclidean norm and is used as a

measure of distance between any input data sample x and data

center ci. The data centers play the role of connection weights

between the input and hidden layers. One of the most com-

monly used radial basis functions is the Gaussian kernel,

/i x� cik kð Þ ¼ exp � x� cik k2

r2
i

 !
; ð2Þ

which is completely specified by two parameters, the data

center ci, and spread ri. In practice, a global spread

parameter r is often used and is sufficient for most pur-

poses (Park and Sandberg 1991; Demuth et al. 2008).

Training of RBFNs typically proceeds in two steps. In the

first step, the basis functions connecting the input and

hidden layers are built. To avoid overfitting, the hidden

neurons and, thus, data centers, are added adaptively until

either a predefined training error is reached on the training

set or the maximum number of neurons is exceeded. In the

second step, weights connecting the hidden and output

layers are determined by solving a linear system of equa-

tions. The hyperparameters of the RBFN model are the

global spread and training error, both are adjusted as part of

the training process. We used the Neural Network Toolbox

from MATLAB R2010 to build and train the RBFN model

offline (Demuth et al. 2008). The hyperparameters were

optimized by using the genetic algorithm, a global opti-

mization program that is also available in MATLAB.

Inputs to the RBFN consist of monthly total precipitation

(P), minimum (Tmin) and maximum (Tmax) temperatures,

and average streamflow (Q), which were aggregated/aver-

aged based on daily records collected from the Harlingen,

McAllen, and Mercedes gauges (Fig. 1) from 2000 to 2006.

Of the entire dataset, 70 % of the data was used for training

and the rest for testing. All forcing data have been used in

calibrating and validating the original SWAT model. A

1-month-head RBFN was trained for TN loading (i.e., the

target variable) using SWAT outputs. In addition to

Fig. 3 Predicted and observed

a streamflow and b TN loading

during calibration (2000–2003)

and validation (2004–2006)

periods at Harlingen gauge
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aforementioned hydrometeorological variables, the SWAT-

predicted TN loading values from the antecedent months

were also used for one-month-ahead training (see Sect. 4.1).

ANN is a deterministic method and may be combined with

an ensemble method to improve its performance while

providing estimates of predictive uncertainty (Sun 2013b).

However, the number of required ANNs can be large as the

number of uncertain parameters increases. Therefore, the

more efficient PCM is used instead for sensitivity studies.

The PCM metamodel

Sensitivity analysis and uncertainty quantification are

critical components in all watershed decision-making

activities. In a co-learning and co-management environ-

ment, in which syntheses are performed jointly and

stakeholders participate directly in the decision-making

process (Berkes 2009), hands-on experience with the

watershed model can be extremely valuable. PCM was

developed to support such analytical capability in CGDSS.

As mentioned in the Introduction, PCM is a type of

stochastic response surface methods that represent para-

metric uncertainties as an expansion of orthogonal poly-

nomials of independent random variables. The starting

point of PCM is to represent the model output of interest, y,

in terms of input variables, such as X ¼ fXign
i¼1, using

polynomial chaos expansion (Ghanem and Spanos 1991;

Isukapalli et al. 1998). The input variables are transformed

into standard random variables, n ¼ fnigk
i¼1. The general-

ized polynomial chaos expansion is then given in the fol-

lowing summation form (Xiu 2010)

y ¼
X1
i¼0

aiWiðnÞ; ð3Þ

in which ai are deterministic coefficients and WiðnÞ are

products of one-dimensional basis polynomials. A one-to-

one mapping exists between polynomial families and many

commonly used continuous and discrete probability dis-

tributions (Xiu 2010). For example, for Gaussian random

variables, the optimal family of orthogonal basis polyno-

mials is Hermite polynomial, for which the one-dimen-

sional form is given by

HpðnÞ ¼ ð�1Þpen2=2 dp

dnp e�n2

; ð4Þ

where p is the degree of Hermite polynomial. For uni-

formly distributed random variables, the optimal family of

orthogonal basis polynomials is Legendre, for which the

one-dimensional form is

LpðnÞ ¼
1

2pp!

dp

dnp n2 � 1
� �p
h i

: ð5Þ

The significance of Eq. (3) is that it provides a way to

approximate complex functions having uncertain inputs. In

practice, the infinite series in Eq. (3) is truncated at finite

terms

y �
XNp

i¼0

aiWiðnÞ; ð6Þ

in which Np is given by

Np ¼
ðnþ pÞ!

n!p!
; ð7Þ

where p is the order of polynomial expansion and n is the

number of random inputs. To determine ai, two method-

ologies can be used, the least-squares approach and the

PCM. Both methods are non-intrusive and use an existing

forward model to generate collocation points [i.e., the left-

hand side of Eq. (6)]. The least squares approach (Le

Maıtre et al. 2002; Eldred 2009) generally performs strat-

ified sampling in the parameter space to form an over-

determined system of equations and the recommended

number of model runs is at least two times of Np. In con-

trast, the PCM (Tatang et al. 1997; Li and Zhang 2007)

uses a selected subset of polynomial roots to generate

exactly Np collocation points. The points are selected so

that those having higher probabilities on the corresponding

distributions are selected first (Li and Zhang 2007). Once

the deterministic coefficients are obtained, the resulting

coefficient matrix can be used to estimate the first moments

of model output, interpolate model output for any param-

eter combination in the defined parametric ranges, or to

quickly conduct sensitivity analysis (Zheng et al. 2011). If

the dimension of parameter space is low (\15), PCM offers

a more efficient alternative to Monte Carlo simulation

using the original model.

Extensive studies have been performed to evaluate the

effect of parametric uncertainty on SWAT output (van

Griensven et al. 2006; Rouholahnejad et al. 2012). In

general, hydrologic parameters are dominant in controlling

water-quality predictions (van Griensven et al. 2006).

Kannan et al. (2011) considered the sensitivity of simulated

streamflow in the ACW to 15 hydrologic parameters and

concluded that the five most influential SWAT parameters

are: available water capacity (AWC), soil evaporation

compensation factor (ESCO), plant evaporation compen-

sation factor (EPCO), groundwater re-evaporation coeffi-

cient (GW_REVAP), and surface runoff lag factor

(SURLAG). They found that streamflow is not sensitive to

the runoff curve number (CN2), probably due to the short

duration of the monsoon/rainy season in the ACW. Table 1

gives the list of five parameters and their ranges used for

demonstration of PCM. In accordance with van Griensven
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et al. (2006), we assumed that all parameters vary uni-

formly in their ranges and thus the optimal orthogonal

polynomial family is Legendre. The order of polynomials

was set to four on the basis of our previous experience (Sun

et al. 2013). The total number of SWAT models runs

required for training the PCM with n ¼ 5 and p ¼ 4 is 126,

as indicated by Eq. (7).

Both PCM and RBFN are metamodels that aim to honor

the SWAT model outputs as much as possible. However,

the downside is that their ‘‘parameters’’ offer little physical

interpretation. When it comes to long-term load reduction

planning, practitioners may prefer to use models that are

physically-based and yet simple to manage. This leads to

the PLOAD model, which falls in the category of ‘‘low-

fidelity models’’ mentioned in the Introduction.

The PLOAD metamodel

PLOAD, one of the models in US EPA’s BASINS suite (http://

water.epa.gov/scitech/datait/models/basins/index.cfm), offers

a simple, first-order analytical tool for calculating nonpoint-

source pollutant loadings (EPA 2001). In our study, PLOAD

was selected as a reduced-order model to approximate the

SWAT process-level model because of its simplicity, rational

nature, and familiarity to most regulators. The key concept in

PLOAD is export coefficients that relate long-term (typically

annual) pollutant loading rates to land use types

Li ¼
XN

j¼1

RijAj; ð8Þ

where Li is loadings due to the ith pollutant (i.e., TN in the

current case), N is the total number of land use types in a

watershed, and Rij and Aj are the pollutant export coeffi-

cient and the total area of the j-th land use type, respec-

tively. The latter information was derived from the land use

land cover map used by the ACW SWAT model, which

divides the watershed into 17 subbasins (Fig. 2). Export

coefficients are typically determined by monitoring pollu-

tant loadings from small catchments with a predominant

land use or by using field plots to isolate individual land

uses; however, the resulting export coefficients may not be

applicable to the entire watershed because they do not

necessarily represent average land conditions and land use

practices over the watershed. Because of the lack of con-

tinuous water quality gauges at most subbasins, the SWAT

model outputs were used to ‘‘train’’ export coefficients

using a linear regression method (Shrestha et al. 2008). In

this case, the semi-distributed SWAT model is essentially

used as a spatiotemporal interpolator to generate loadings

at ungauged subbasin outlets.

Using the SWAT-simulated, average annual loadings at

the outlet of the subbasin (i.e., Li) and the areas of different

land uses within that subbasin (i.e., Aj), we obtain 17

equations using Eq. (8), one per subbasin. This leads to a

linear system, from which the unknown export coefficients

can be estimated using least squares. Recall that ACW has

five land use types, including range, urban and industrials,

sugarcane, agricultural, and other. We excluded the cate-

gory other because it mostly represents open waters; thus

four unknowns were solved from an over-determined sys-

tem. We emphasize that the linear regression procedure

described here is mainly for extracting information from

the Arroyo Colorado SWAT model as initial guesses. End

users can easily alter export coefficients from the web user

interface, as described in details in the next section.

Results and discussion

RBFN

The RBFN was trained offline using SWAT inputs and

outputs. As part of the RBFN model’s development, a

stepwise selection procedure was used to choose inputs (or

predictors). Starting with a complex input structure that

includes two antecedent lags (i.e., t � 1 and t � 2) for all

variables, we removed the input variables one at time to see

their relative contribution to the reduction (or increase) of

root-mean square errors (RMSE). The selected set of input

variables for the one-month-ahead prediction consists of

Phaðt � 1Þ;Pmdðt � 2Þ;
Tmin;haðt � 1Þ; Tmax;haðt � 1Þ; Tmin;mcðt � 1Þ; Tmax;mcðt � 1Þ;
Qhaðt � 1Þ;Qhaðt � 2Þ;
_Mðt � 1Þ; _Mðt � 2Þ ð9Þ

where the subscripts ha, md, and mc denote the Harlingen,

Mercedes, and McAllen gauges, respectively (see Fig. 1);
_M represents monthly TN loading from the watershed, and

Table 1 List of parameters used in PCM sensitivity study

Name Definition Process Min Max

ALPHA-BF Baseflow alpha factor

(day)

Groundwater 0.001 1

EPCO Plant evaporation

compensation factor

Evaporation 0.001 1

ESCO Soil evaporation

compensation factor

Evaporation 0.001 1

SOIL_AWCa Available water

capacity of the soil

layer (mm/mm soil)

Soil 0 1

GW_REVAP Groundwater revap

coefficient

Groundwater 0.02 0.2

a These parameters are varied from -50 to 50 % to maintain the

spatial relationship (van Griensven et al. 2006)
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all other symbols are defined under Sect. 3.1. Note that the

precipitation input for the upstream Mercedes gauge is

lagged behind the Harlingen gauge by 1 month.

The final RBFN for TN prediction consists of 30 hidden

neurons. Figure 4 plots the TN loadings simulated by the

RBFN in both the training and testing periods. The training

period includes a sufficient number of variation patterns,

including a high loading peak near the end of 2002.

Although the trained RBFN does not fully capture the high

peak in 2003, overall it gives satisfactory performance. The

Nash–Sutcliffe Efficiency (NSE) calculated over the test-

ing period is 0.78, which is acceptable at the monthly scale.

PCM

The PCM coefficients ai in Eq. (6) are calculated offline.

As mentioned in Sect. 3.2, results from a total of 126

simulation runs were used to formulate a linear system of

equations for determining the PCM coefficients. Each

SWAT run takes about 13.8 min to complete on a Dell

Precision T3500 Workstation equipped with an Intel�

Xeon processor, in addition to 3.5 min of pre-processing

time required to generate SWAT input files. The compu-

tational demand required by the sensitivity or uncertainty

analysis highlights the need for metamodels. Using PCM,

we performed Monte Carlo simulation of TN loading from

the entire watershed with 2000 realizations, and the total

running time was under 2 s, making the technology well

suited for online deployment. Figure 5 shows the confi-

dence bounds derived from the Monte Carlo simulation

using PCM metamodel.

PLOAD

PLOAD export coefficients were estimated by using linear

regression, as described in Sect. 3.3. The results for TN are

3.3, 1.5, 5.6, 3.2 (in kg/ha/year) for range, urban, sugar-

cane, and agricultural land use types, respectively. We

compared the results to published values for TN (e.g.,

Beaulac and Reckhow 1982; EPA 2001; Shrestha et al.

2008) and found they are generally within the range of

published values. The average monthly TN loading from

the entire watershed was estimated to be 3.9 9 104 kg/

month (or 4.7 9 105 kg/year) using the export coefficients.

As an independent check, we turned to the online version

of the US Geological Survey’s SPARROW (SPAtially

Referenced Regression on Watershed attributes) model

(http://cida.usgs.gov/sparrow/map.jsp?model=35), which is

another popular long-term pollutant loading model. The

ACW long-term TN loading estimated by the SPARROW

model is 2.7 9 105 kg/year. The particular SPARROW

results cited here were based on water quality measure-

ments around 2002. The PLOAD estimate is more con-

servative than the average TN loading simulated by SWAT

(see Fig. 4) and SPARROW. Given its simple model

structure, the PLOAD model is still valuable. Moreover,

we emphasize that the export coefficients reported here

only provide a starting point for multiple groups of people

to perform high-level planning and scenario analysis.

During the watershed management and decision making

process, both export coefficients and land use types can be

modified in a collaborative manner to reflect more up-to-

date information.

Fig. 4 Training and testing of RBFN metamodel for TN output using

SWAT results (circles). Training and testing periods separated by

vertical line

Fig. 5 Confidence bounds (95 %) obtained by running 2,000 Monte

Carlo simulations using the PCM metamodel
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Web implementation

This subsection summarizes implementation of the web-

based metamodels. In this work, an open-source content

management system Django (https://www.djangoproject.

com) is adopted. Django provides a number of tools for

quick implementation and deployment of web applications.

Additional server-side (Python) and client-side (Java)

scripts were used to enable web-GIS functionalities and to

implement the metamodels (Sun 2013a).

For the RBFN metamodel, the connection weights

between input and hidden layers (i.e., centers of radial

basis functions) and between hidden and output layers are

stored on the web server. CGDSS provides a web form for

the user to specify antecedent forcing variable information.

On submission of the form, the backend Python scripts

calculate the total loadings using the saved RBFN param-

eters. The web interface for RBFN is shown in Fig. 6.

The implementation of the PCM model is similar to that

of the RBFN model—the PCM coefficient matrix is stored

on the server. A Python script is used to calculate basis

function values based on user inputs and the PCM output is

obtained through a matrix–vector multiplication; both tasks

can be executed in real time. Figure 7 shows the web

Fig. 6 Screenshot of the web

interface for 1-month-ahead TN

loading prediction using RBFN

Fig. 7 Screenshot of the web interface used for performing sensitivity study with PCM
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interface designed for performing sensitivity analysis using

the PCM. A user may change any of the five uncertain

parameters to examine the sensitivity of loadings. The

RBFN and PCM web interfaces are mainly used for rapid

prototyping in this work. In the future, more user friendly

features will be added to improve usability. Although not

done here, both RBFN and PCM can be configured to

generate outputs at the subbasin level.

Implementation of the PLOAD metamodel is more

involved because of the extra geospatial processing. A

script was developed for the user to upload a land use/land

cover shapefile and subsequently store in an object-ori-

ented spatial database. However, this only needs to be done

once for each land use/land cover map. The user can then

create different loading scenarios using the web interface,

and the land use types in each scenario may be assigned

using different export coefficient values. The input fields

are initially populated using values obtained through the

linear regression procedure as discussed in Sect. 4.3. As

part of the joint decision-making process, users can choose

to set the export coefficients to different values to see the

impact on load reduction. A full documentation of the

PLOAD web interface implementation is provided in Sun

(2013a). Figure 8 shows a screen capture of the PLOAD

metamodel interface that displays TN outputs by subbasins.

Summary and conclusions

Metamodeling represents a fast expanding field of research

in system modeling, uncertainty quantification, and risk

analysis. Metamodeling can be especially suitable to sup-

port visual analytics and such aspect has not been exten-

sively explored for web-based EDSS. In this study, we

developed three metamodels to support analytical func-

tionalities of a web-based EDSS. Like many other envi-

ronmental decision-making processes, the watershed

management and decision-making process is often rife with

controversies and challenges. Our web application aims to

mitigate some of these challenges by making the watershed

decision making process more collaborative, transparent,

and educational.

The nature of watershed decision making process makes

it difficult to develop a one-size-fit-all metamodel. Our

experience through this project indicates that it is more

fruitful to develop a set of metamodels to fulfill different

decision-making needs than to develop a single model for

all use cases. If a process-level model is already adopted by

regulators and stakeholders, then metamodeling provides a

decision space in which end users can experiment with

different scenarios and observe the consequences. If the

process-level model development is still ongoing, all

metamodels can be easily re-trained after a new version of

process-level model becomes available. Thus, it is crucial

for a metamodel to replicate the process-level model as

much as possible. On the other hand, modelers and

developers should not lose sight of the overarching

objective of the decision-making activity and the practical

needs of end users in the process of fulfilling scientific

research needs. Arguably the more technical details

embedded in a model the more difficult it is for laypeople

to grasp. Therefore, the watershed modeling is hierarchical:

Fig. 8 Screenshot of the PLOAD module, which shows TN loadings by subbasins
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at the top-level, abstraction models are used for long-term

planning (e.g., PLOAD); at the middle level, more spe-

cialized metamodels are used for near-term, data-driven

forecasting (e.g., ANN); finally, at the lowest level, pro-

cess-level models (e.g., SWAT) are used to support all

higher-level models. The level of users can be classified

similarly when they register with the EDSS. As a result,

different metamodels may be exposed to different end user

groups, depending on their role and interests in the decision

making process.
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