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Abstract—Images occupy a large amount of storage in data
centers. To cope with the explosive growth of the image storage
requirement, image compression techniques are devised to shrink
the size of every single image at first. Furthermore, image
deduplication methods are proposed to reduce the storage cost
as they could be used to eliminate redundancy among images.
However, state-of-the-art image deduplication methods either can
only eliminate file-level coarse-grained redundancy or cannot
guarantee lossless deduplication.

In this work, we propose a new lossless image deduplication
framework to eliminate fine-grained redundancy among images.
It first decodes images to expose similarity, then eliminates fine-
grained redundancy on the decoded data by delta compres-
sion, and finally re-compresses the remaining data by image
compression encoding. Based on this framework, we propose a
novel lossless similarity-based deduplication (SBD) scheme for
decoded image data (called imDedup). Specifically, imDedup uses
a novel and fast sampling method (called Feature Map) to detect
similar images in a two-dimensional way, which greatly reduces
computation overhead. Meanwhile, it uses a novel delta encoder
(called Idelta) which incorporates image compression encoding
characteristics into deduplication to guarantee the remaining
deduplicated image data to be friendly re-compressed via image
encoding, which significantly improves the compression ratio.

We implement a prototype of imDedup for JPEG images,
and demonstrate its superiority on four datasets: Compared
with exact image deduplication, imDedup achieves a 19%–38%
higher compression ratio by efficiently eliminating fine-grained
redundancy. Compared with the similarity detector and delta
encoder of state-of-the-art SBD schemes running on the decoded
image data, imDedup achieves a 1.8×–3.4× higher throughput
and a 1.3×–1.6× higher compression ratio, respectively.

I. INTRODUCTION

With the rapid growth of the Internet, images consume a
large amount of storage space in data centers. For example, the
largest Chinese instant messaging service provider Tencent QQ
reports that with a daily increase of 300 million new photos,
it has already curated a total of 300PB images in 2017 [1].
To reduce storage consumption, every single image has been
compressed (e.g., JPEG can provide a 10:1 compression ratio
with a slightly perceptible loss in image quality [2]). However,
existing image compression techniques do not consider the
redundancy among images, which could be reduced signifi-
cantly. Thus, data deduplication is considered to eliminate the
redundancy among different images in the data center.

Data deduplication [3]–[8] is a classical method to eliminate
the redundancy among large-scale data. Typically, existing
deduplication methods can be classified into two categories: (i)

exact methods and (ii) similarity-based methods. Specifically,
the exact deduplication methods [9]–[11] compute a crypto-
graphic fingerprint (e.g., SHA-1, MD5) for every deduplication
unit (e.g., a file or a data chunk). For deduplication units
with identical fingerprints, only one copy will be preserved.
Exact deduplication methods only provide a coarse-grained
redundancy elimination as they cannot eliminate redundancy
whose sizes are smaller than the deduplication unit.

Instead, Similarity-Based Deduplication (SBD) meth-
ods [12]–[14] eliminate fine-grained redundancy (e.g., byte-
level redundancy) and thus achieve a higher compression ratio.
More specifically, the main advancement in SBD is usually
using a fixed-size (e.g., 64 bytes) sliding window to walk
through each byte and generate a corresponding hash value
according to the content of the window. Then, SBD would
generate one or several features (e.g., the smallest hash values)
to quickly identify files/chunks similar in byte stream, which
will be further processed by byte-level delta compression (e.g.,
Xdelta [15]) to eliminate redundancy for saving space.

Several previous works employ file-level exact deduplica-
tion techniques [16]–[18] for image deduplication (called exact
image deduplication). However, they only eliminate identical
images, which ignores fine-grained redundancy among similar
(but not identical) images. Some other works [19]–[21] use
fuzzy hash (e.g., average perceptual hash [22]) to achieve file-
level image deduplication. They regard visual-similar images
as duplicates, and only store one of those similar ones.
However, they are lossy approaches, because visual-similar
images may not be identical in byte stream so that they cannot
restore images the same as that before deduplication. Another
notable scheme is PXDedup [23], which decodes JPEG images
back to pixels and eliminates the visual duplicate chunks.
Generally speaking, PXDedup tries to eliminate more fine-
grained redundancy in chunks (usually in KB-level) but could
not eliminate redundancy smaller than chunks. This is also a
lossy scheme since it does chunk-level visual deduplication.

While similarity-based deduplication (SBD) can provide
lossless and fine-grained deduplication, applying SBD on
images is challenging. The reasons are as follows. First,
compressed images (e.g., JPEG format, the most widely used
image compression standard in the world ) are not friendly for
deduplication. For example, because of image compression,
even a small image editing (e.g., watermarking) may change
the image binary data significantly. Second, if one tries to



decode all the compressed images to check redundancy, the
size of decoded data can be several times of the original data.
This casts a demanding requirement for compression technique
as deduplication needs to cure data swelling. Third, decoded
data increases the workload of running similarity detection
and compression, which, along with the extra cost of image
decoding, further reduces the whole deduplication throughput.

With the above challenges in mind, we propose a new image
deduplication framework in this paper. It first decodes images
in a lossless way to expose the data similarity among images,
then searches for similar images among the decoded images,
and uses a fine-grained compressor to eliminate redundant data
between similar image pairs, and finally re-compresses the
non-redundant data by the original image compression coding.

Based on this framework, we present a lossless SBD scheme
for decoded image data (called imDedup). To cure the data
swelling caused by decoding, imDedup uses a novel compres-
sor, Idelta, to eliminate fine-grained redundant data among
decoded images. Idelta is compatible with image compres-
sion coding so that non-redundant data can be directly re-
compressed by original image coding, and thus it achieves a
much higher compression ratio. Besides, imDedup has a novel
similarity detector, which detects similar image pairs for Idelta
to compress. This detector is based on a fast sampling method
called Feature Map (FM for short), which can fully utilize
the information distribution of image data to extract features
from a small amount of data, and thus significantly reduce the
computation overhead.

In this work, we implement a prototype of imDedup for
the most widely used image compression coding JPEG as an
example. Note that the deduplication framework of imDedup
is portable to other image formats. Extensive experiments
on four simulated and real-world datasets show that imD-
edup detects and eliminates fine-grained redundancy among
images successfully. In particular, it achieves a 19%–38%
higher compression ratio than exact image deduplication. The
evaluation also suggests that our proposed FM-based detector
and Idelta compressor are more effective than state-of-the-art
SBD schemes: The FM-based detector offers a 1.8×–3.4×
higher system throughput; Idelta achieves a 1.3×–1.6× higher
compression ratio and a 1.5×–2.6× faster compression speed.

To sum up, our work makes the following contributions:
1. We propose a new image deduplication framework, imD-

edup, which consists of three key steps: (i) decode images
to expose similarity, (ii) find out similar images, (iii)
eliminate fine-grained redundancy among those similar
images, and then re-compress the remaining data using
image encoding. And we implement a prototype of imD-
edup based on the most widely used JPEG. To the best of
our knowledge, imDedup is the first lossless similarity-
based deduplication scheme for images.

2. We introduce a novel similarity detection method using
a fast sampling method called Feature Map for the 2nd

step of imDedup framework. Feature Map fully utilizes
the information distribution of image data (i.e., the first
several elements of decoded JPEG blocks usually carry
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Fig. 1. The general encoding and decoding steps of DCT-based JPEG.

more information) to extract features from less data,
which significantly reduces computation overhead.

3. We introduce a novel delta compression method Idelta
for the 3rd step of imDedup framework. It eliminates
fine-grained redundancy between similar image pairs by
friendly incorporating image coding characteristics into
delta compression (i.e., treat decoded JPEG data as a
stream of two-dimensional blocks instead of bytes in
deduplication), which makes our compressor compatible
with image formats, and thus efficiently eliminates fine-
grained redundancy and compresses non-redundant data.

4. We evaluate imDedup on four simulated and real-world
datasets. Extensive experimental results confirm that
imDedup achieves a much higher compression ra-
tio than classic lossless image deduplication approaches
while maintaining a comparable high throughput. On the
decoded image data, imDedup also outperforms state-of-
the-art SBD schemes at the metrics of compression ratio
and system throughput.

The rest of this paper is organized as follows. Section II in-
troduces preliminaries and related work. Section III motivates
the design of imDedup. Section IV first describes the workflow
of imDedup, then introduces the details of Idelta and the FM-
based similarity detector, and lastly shows the implementation
details of imDedup. Section V evaluates imDedup by using
two simulated datasets and two real-world datasets. Finally,
we conclude this work in Section VI.

II. BACKGROUND AND RELATED WORK

A. JPEG based Image Compression

Image compression technology is widely used to reduce
storage or transmission cost, and JPEG standard [24] is the
most predominant one. The baseline method of JPEG standard
is a lossy method based on Discrete Cosine Transform (DCT).

Figure 1 shows the key processing steps of the DCT-based
JPEG standard (where FDCT refers to Forwarding DCT and
IDCT refers to Inverse DCT). This figure illustrates a spe-
cial case of single-component (grayscale) image compression.
Color image compression can be roughly regarded as com-
pression of multiple grayscale images [24]. In the encoding
process, the input image data is regarded as a stream of 8×8
pixel blocks. After the first two steps in Figure 1, every pixel
block is transformed into a quantified DCT coefficients block
(DCT block for short), which is usually a short signed integer
array of 8×8 elements (e.g., in the implementation of libjpeg-
turbo library [25]). Finally, it compresses these DCT blocks
by its entropy encoder further. Note that quantization is a lossy
step while entropy encoding is lossless.

We summarize key characteristics of JPEG as below:



(a) A pair of similar images in real-world datasets.

(b) A pair of similar images in simulated datasets.

Fig. 2. Two pairs of similar images.

1. JPEG divides images into blocks and treats image data
as a stream of blocks.

2. We can decode a JPEG file into quantified DCT blocks
losslessly and use these DCT blocks to reconstruct the
same original JPEG file.

3. With the same JPEG encoder, if two raw images have
some identical pixel blocks, their corresponding DCT
blocks will be also identical.

Now we can find that JPEG shrinks the sizes of JPEG
files by eliminating redundant information within single JPEG
files. There is still the potential to save more storage space by
eliminating redundancy among JPEG files.

B. Data Deduplication

Different from traditional compression methods [26]–[28],
data deduplication [3]–[8] is a technology that can detect and
then eliminate redundancy among files or chunks. It can be
used not only to save storage space [4], [9] by eliminat-
ing duplicate data but also to minimize the transmission of
redundant data in low-bandwidth network environments [3],
[29]. In general, a typical data deduplication system will
calculate a cryptographic hash (e.g., SHA-1, MD5) for every
deduplication unit (a file or a data chunk) to index and identify
duplicates. The deduplication system then removes duplicate
units and stores or transfers only one copy of them to save
storage space or network bandwidth.

Data deduplication works on general files. All data will be
seen as byte streams in deduplication systems. Such charac-
teristic makes it portable and popular in backup storage.

C. Image Deduplication

With the explosive growth of image data size in cloud
storage, many deduplication schemes focusing on image data
have been proposed. Existing image deduplication schemes
can be classified as exact deduplication [16]–[18], [30], [31]
and visual deduplication [19]–[21], [32]. The exact image

deduplicaiton scheme calculates a cryptographic hash (e.g.,
SHA-1, MD5) for every image file and seeks exactly identical
copies of this image file by its hash. It will then remove each
detected duplicate copy and use a pointer to represent it. Exact
image deduplication is a coarse-grained scheme, for it can not
eliminate redundancy smaller than the file size.

The visual deduplication scheme has a similar workflow
to the exact image deduplication scheme. The difference is
that visual deduplication calculates a fuzzy hash (e.g., average
perceptual hash [22]) for every image file and uses it to detect
visually similar images instead of exactly identical images. It
then eliminates those detected similar copies and uses pointers
to represent them. However, visual deduplication is a lossy
scheme, because visual-similar images may not be identical
in byte stream so that it may fail to restore images the same
as that before deduplication.

One notable scheme is PXDedup [23], which tries to
eliminate more fine-grained redundancy in chunk-level rather
than file-level. But it is still a coarse-grained scheme because
its chunk is still a relatively big unit for images (usually at the
KB-level). Note that PXDedup is also a lossy scheme since it
does visual deduplication.

To sum up, existing image deduplication schemes have at
least one of the following shortcomings: (i) only eliminate
coarse-grained redundancy; (ii) can not perform deduplication
losslessly. Therefore, existing image deduplication schemes
still have the potential to be improved by eliminating fine-
grained redundancy losslessly.

D. Similarity-Based Deduplication

Similarity-Based Deduplication (SBD) [12]–[14] is pro-
posed to eliminate fine-grained redundancy in byte-level loss-
lessly. SBD mainly includes two key techniques, namely,
similarity detection (to find similar candidates) and delta
compression (to compress similar candidates). In the following
content, we will firstly introduce delta compression before
similarity detection for the convenience of understanding.

Delta compression eliminates redundancy between the
detected similar candidate pairs. In delta compression, the
file or chunk to be compressed is called target. In similarity
detection, the detector will find a similar candidate for target,
which is called base. Delta compressor then compresses target
by only storing the differences between target and base. The
differences data stored here is called delta.

Delta compression is a special dictionary compression tech-
nique. The essence of delta compression is to treat the data as
a one-dimensional long string, trying to find redundant sub-
strings between target and base as much as possible. It uses
COPY instructions to record the redundant strings, and directly
stores the non-redundant strings by INSERT instructions. After
collecting all generated instructions, then we get the final delta,
which can be used to losslessly restore the original target.

For delta compression, many approaches are proposed,
include Xdelta [15], Zdelta [33], Ddelta [34] and Gdelta [35],
among which Xdelta is the most widely used by now.
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Fig. 3. The results of performing traditional SBD on decoded image data and compressed image data of four datasets.

Similarity detection finds similar candidates. A good detec-
tor can find candidates with higher similarity degrees, which
will lead to more space saving via delta compression.

Currently, many similarity detection approaches have been
proposed [12], [13], [36]–[43], among which the most com-
monly used one is N-Transform proposed by Broder [13], [44],
[45]. N-Transform is based on Broder’s Theorem [44], [46]:

Broder’s Theorem. Consider two sets A and B, with H(A)
and H(B) being the corresponding sets of the hashes of
the elements of A and B respectively, where H is chosen
uniformly and randomly from a min-wise independent family
of permutations. H maps an element in the set to an integer.
Let min(S) denote the minimum element of the set of integers
S. Then: Pr[min(H(A)) = min(H(B))] = |A∩B|

|A∪B| .

Broder’s Theorem states that the probability of the two sets
A and B having the same minimum hash element is the same as
their Jaccard similarity coefficient [47]. Based on this theorem,
Broder proposed a similarity detection method that extracts
several digital features from a file or a data chunk. The general
workflow of this N-Transform approach [44] include:

1. Compute rolling hashes. Given a chunk (length = L), N-
Transform uses a fixed length (e.g., 64 bytes) window to
slide the chunk byte by byte, and calculates the Rabin
fingerprint [48] of data contents in this window at every
position (the Rabin fingerprint computed at position j is
described as Rabinj).

2. Compute features by linear transformations. To compute
n features (denoted as featurei, i=1,2,...,n), N-Transform
needs n pairs of randomly pre-defined values (denoted as
ki and bi, i=1,2,...,n) to execute linear transformations n
times. Then we can get n features by selecting n minimum
values from the results of linear transformations. For
example, a 32 bits length feature can be calculated as

featurei = MinL
j=1{(ki ·Rabinj + bi)mod 232}. (1)

3. Match features to find similar candidates. Given two
chunks A and B, N-Transform compares the ith feature
of them respectively (e.g., compare feature1 of A with
feature1 of B, feature2 of A with feature2 of B and so on).
The more identical features they have, the more similar
they are regarded as.

According to Broder’s Theorem, the Jaccard Similarity of
two items in N-Transform can be estimated by

Similarity(Item1, Item2) =
k

n
, (2)

where n is the number of features and k is the number of
matched identical features. It means that the more identical
features the two candidates have, the more similar they are.

III. OBSERVATION AND MOTIVATION

Existing lossless image deduplication schemes are all
coarse-grained schemes working in the file unit. It can only
eliminate totally duplicate images, but can not find and elim-
inate fine-grained redundancy among similar images (e.g.,
images in Figure 2). SBD is an eligible lossless fine-grained
redundancy elimination scheme, but our evaluation results on
four JPEG image datasets suggest that SBD only achieves a
compression ratio of 1.03–1.14 on compressed images (see
Figure 3, the dataset characteristics will be detailed in Section
V-A). This is because image compression coding has destroyed
the original semantics of data, which causes the redundant
information between compressed images no longer to be
similar in binary data and makes finding and eliminating
redundancy among images difficult.

To expose data similarity, we decode those images back to
DCT blocks before deduplicating them. Then running SBD on
the decoded data achieves a much higher compression ratio of
7.87–12.69 as shown in Figure 3, which further suggests that:
fine-grained redundancy among images are widespread but
is corrupted by image encoding, and thus image decoding
is a necessary step for fine-grained image deduplication.

However, according to our observations, applying SBD on
the decoded images brings two new challenges:

(i) Decoded image data requires a more efficient com-
pressor. According to Figure 3, SBD achieves a high com-
pression ratio on decoded data, but finally stores more data
compared with directly re-encoding them by JPEG individu-
ally. This is derived from the data explosion caused by image
decoding. As shown in Figure 3, data size will be amplified
9.4×–15.28× times after decoding. Thus we need a more
efficient compressor with a high compression ratio to offset
the extra storage cost caused by image decoding.

(ii) The explosion of data size puts forward a higher
requirement to the deduplication system throughput. With



the explosion of data size caused by image decoding, our dedu-
plication approach has to detect and compress redundancy in
a much larger amount of data, which introduces performance
challenges to the whole system throughput.

The first challenge motivates us to propose a new dedupli-
cation framework for decoded images, which first elimi-
nates redundant data among detected similar images and
then uses image encoding to re-compress the remaining
non-redundant data. However, making the remaining non-
redundant data compatible with image encoding needs some
effort. For example, many lossy image encoding methods, like
JPEG [24] and WEBP [49], usually configure two-dimensional
blocks as the basic processing unit. However, traditional
delta compressors always regard data as one-dimensional
byte streams and eliminate redundancy at the byte-level.
The mismatching on granularity makes the remaining delta-
compressed data hard to be further re-compressed via image
encoding. Therefore, our proposed approach no longer regards
data as a byte stream but a block stream and eliminates
redundancy in the block unit to make the remaining data
compatible with image encoding, thus achieving a higher
compression ratio.

The second challenge motivates us to design an image
SBD scheme with much higher throughput, including fast
similarity detection and delta compression. Our proposed
method takes data as a two-dimensional block stream, which
reduces the computation overhead of feature generation and
delta compression by reducing the total number of units. It
partly offsets the negative impact of data explosion. Besides,
we analyze the most time-consuming part of deduplication
(i.e., feature generation) and propose a new sampling method
to detect similar images, significantly reducing computation
overheads and memory accesses.

In this work, since JPEG is the most widely used image
format, we take JPEG as an example to implement our image
SBD system (called imDedup).

IV. DESIGN AND IMPLEMENTATION

A. Overview

In this paper, we propose a novel SBD scheme designed for
JPEG files, imDedup. As mentioned in Section III, imDedup
works on the decoded JPEG images, and runs a fine-grained
SBD, which is different from all previous works. The overall
workflow of imDedup is shown in Figure 4, and it mainly
consists of the following three modules:

1) JPEG decoder decodes JPEG images into DCT blocks
to expose data similarity in a lossless way, because DCT
blocks can maintain the similarity between similar image
pairs and can be used to reconstruct the original JPEG
files losslessly (as described in Section II-A). It then
sends the decoded images to similarity detector.

2) Similarity detector extracts several digital features for
each input image (called target) and tries to find the most
similar image (called base) for the target according to its
features. It uses a novel sampling method, Feature Map,

final
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Fig. 4. The overall workflow of imDedup.

to reduce computation overhead and memory access
during feature generation, which significantly improves
the similarity detecting speed. It then sends base-target
pairs to the Idelta encoder.

3) Idelta encoder compresses the input target images with
their base images and output the final compressed data.
Idelta is a novel delta compressor that eliminates redun-
dancy in block units to make the remaining block data
friendly to be re-compressed via JPEG encoding, and
thus achieves a higher compression ratio and throughput.

For the convenience of understanding, we will first introduce
the Idelta encoder, then the similarity detector, and other im-
plementation details in the following subsections, respectively.

B. Idelta Encoder

Overall. In the imDedup framework, the Idelta encoder
compresses the input target image with the selected similar
base and works in the block unit. As shown in Figure 5, the
process of Idelta consists of three key steps: (1) computing the
hash digest index for blocks in base; (2) producing the delta of
target and base in block unit; (3) compressing the delta data.

In this way, Idelta first eliminates redundancy between sim-
ilar image pairs in block units and makes sure the remaining
data (i.e., delta) still keeps the block structure and is friendly
to JPEG format. Then it re-compresses remaining blocks by
JPEG encoding to further obtain space saving.

Details of Idelta can be seen in Algorithm 1.
In the first step, Idelta generates a block index to label

blocks in the base image. Specifically, Idelta calculates a hash
digest (e.g., Adler32) for each DCT block in the base image,
then records <block’s digest, block’s position> in the index.

Then, in the second step, Idelta detects redundant blocks in
the target image and generates delta data. In this process, Idelta
traverses the whole target image and uses the base image’s
block index to locate duplicate blocks between target and base.
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Algorithm 1: Idelta encoder.
Input: base & target image blocks, Base & Target; width

& height of base & target images in block unit,
wbase, hbase, wtar & htar respectively

Output: compressed target

Index = ComputeIndex(Base,wbase, hbase);
for row = 0; row < htar; row ++; do

col← 0;
while col < wtar do

maxLength← 0;
positions← 0;
FP ← Adler32(Target[row][col]);
Candidates← LookUp(Index, FP );
for block ∈ Candidates do

/* Number of identical blocks. */
length← Compare(block, Target[row][col]);
if length > maxLength then

maxLength← length;
positions← PositionsOf(block);

if maxLength > 0 then
WriteInstruction(Copy, positions,maxLength);
col← col +maxLength;

else
WriteInstruction(Insert, Target[row][col]);
col← col + 1;

part1 ← EntropyEncode(Copy and Insert);
part2 ← JPEGEncode(Inserted blocks);

return part1 + part2;

It uses “COPY {starting point, length}” instructions to replace
duplicate blocks and uses “INSERT {data}” instructions to
directly store non-duplicate blocks. For example, in Figure 5,
we first use two ”INSERT” instructions to directly store the
first two non-duplicate rows from the target image. Then we
use two “COPY {(4,1), 4}” instructions (i.e., copy 4 blocks
from the 4th row and 1st column of the base image) to store
the blue blocks in target. All generated instructions compose
the final delta data.

For more details of the second step, Idelta calculates a
digest Di for each block in target and queries base image’s
block index with the digest Di to find a base block with the
same digest. Then, Idelta will compare them to make sure
whether they are really identical. If they are, Idelta will keep
comparing the following adjacent blocks of them to find as
many duplicate blocks as possible until it meets a mismatch
or the end of this row. Idelta will record the first matched
block as starting point and the following successive matched
numbers as length to construct a new COPY instruction. We
call such an instruction a matched choice. Since there may
be many blocks having the same digest, one block in target
may have several matched choices. To record more duplicate
blocks in a single instruction, Idelta will compare all matched
choices and select the longest one to be the COPY instruction.
If a block in target cannot find a duplicate one from the base
index, it will be directly stored with an “INSERT” instruction.

Finally, in the third step, Idelta will compress the delta
data further. It divides the delta data into the instruction

Algorithm 2: Calculate the base index in Idelta.
Input: image blocks, Base; width & height of the image, w

& h
Output: the block index of Base, Index

Initialize(Index);
LastFP ← 0;
for row = 0; row < h; row ++; do

for col = 0; col < w; col ++; do
FP ← Adler32(Base[row][col]);
if FP ! = LastFP then

Insert(Index, FP,< row, col >);
LastFP ← FP ;

return Index;

part (i.e., meta data of COPY and INSERT instructions) and
inserted data part (i.e., non-duplicate blocks stored by INSERT
instructions). The instruction part will be compressed by an
entropy encoder (e.g., FSE [50] or Huffman [26]), while the
inserted data part will be re-compressed by JPEG encoding.

A Corner Case. Idelta’s throughput may suffer from too
many matched choices in the second step. For example, in
Figure 5, when processing the 3rd row’s 1st block of target,
we should first find all duplicate blocks in base (i.e., (3,1),
(3,2), (3,3), (4,1), (4,2), (4,3), (4,4)) according to the base
index. Then, we have to take all of them as starting points for
block matching to decide the longest matched choice, which
is very time-consuming. However, we can only perform block
matching from blocks (3,1) and (4,1) of the base, because the
blocks behind them have the same content and will never have
longer matched lengths than them.

Therefore, one way to optimize Idelta is that when generat-
ing the base index and encountering several adjacent identical
blocks in a row, Idelta only inserts the first block into the
index to reduce the number of starting points, as shown
in Algorithm 2. Consequently, Idelta greatly reduces block
matching operations and perform faster block matching. Such
optimization may slightly decline the compression ratio of
Idelta because of producing more “COPY” instructions, but
will greatly improve the overall compression speed in this case
(see our experiments in Section V-B).

Summary. What makes Idelta special is that it works in
block units. Idelta eliminates fine-grained redundancy among
images in block units to make sure the remaining delta data
still keeps block structure so that it can be re-compressed by
JPEG encoding, which brings significant storage saving.
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C. Similarity Detector
Overall. The similarity detector aims to find similar candi-

dates for the input images. The workflow of the similarity



Algorithm 3: Similarity detection in imDedup.
Input: decoded image data, target; number of features, N ;

feature indexes, Index[N ]
Output: the most similar image to target, base

Feature[0, ..., N − 1]← FeatureFunction(target);
maxMatch← 0;
base← NULL;
for i = 0; i < N ; i++; do

Candidates← LookUp(Index[i], F eature[i]);
for image ∈ Candidates do

match← 0;
for j = 0; j < N ; j ++; do

if Feature[j] == image.Feature[j] then
match← match+ 1;

if match > maxMatch then
maxMatch← match;
base← image;

Insert(Index[i], F eature[i], target);

return base;

detector is shown in Figure 6, and details are shown in
Algorithm 3. To find the most similar candidate, the detector
first extracts n digital features for every input decoded image.
Note that ‘feature’ is a digital integer extracted from the being
detected data to represent its source data, which is commonly
used to search for similar items (see ‘similarity detection’ part
of Section II-D). Then the detector will find out the similar
candidate who has the most number of identical features with
the input image as the base image. To achieve such feature
matching, the detector has to maintain a feature index for every
feature, namely, a hash table maintaining a feature-images
mapping relationship.

Feature Generation. The critical step in similarity detec-
tion is generating features for images. Ideally, we expect to
generate features that can adequately reflect the characteristics
of images as quickly as possible. Figure 7 shows a simple
method to calculate features. It uses a sliding window to
walk through the whole image and computes the hash (e.g.,
Rabin) of each window. Then it executes n different linear
transformations on the generated hashes, and results of each
linear transformation are collected in different sets. Finally, the
minimum one of each set is selected as a feature, and there
will be n features calculated for every image.

S={ fi | i=1,2, ,25}

  Fn=min { Sn }    F2=min { S2 }  F1=min { S1 }

...  

...  decoded image
blocks

f1= fp (W (1,1,4)) f2= fp (W (1,2,4)) f6= fp (W (2,1,4))

Sn={ kn· fi+bn }  S2={ k2· fi+b2 }S1={ k1· fi+b1 }

Linear Transformation

Select Features

Fig. 7. A two-dimensional way to generate features.
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Fig. 8. FM-based hash calculation for similarity detection.

Here we keep the two-dimensional structure of image
data and use a two-dimensional window to extract features
because simply treating image data as a byte-stream will lose
characteristics on the other dimension. By using a bigger
processing unit (i.e., using block units instead of byte units),
the calculation of linear transformations is greatly reduced
and thus the detector could be faster. Specifically, the DCT
block is usually an integer array with 128 bytes (e.g., in the
implementation of libjpeg-turbo [25]). Suppose there are a
total of m×m blocks in an image. Therefore, the window
would slide at most m×m times in block units but 128×m×m
times in byte units. So the number of hashes generated in byte
units will be 128 times that in block units, which brings more
computational overhead in linear transformations. At the same
time, the detector will not lose detection accuracy, because
redundancy and differences are also appearing in block units
according to JPEG’s characteristics (see Section II-A).

Hash Calculation. The way to calculate hashes for each
sliding window is also critical since these operations are also
related to heavy computations and have a great impact on the
efficiency of similarity detection. It is feasible to apply the tra-
ditional one-dimensional byte-wise hash methods to the two-
dimensional window, but it is inefficient. As shown in Table I,
the classic Rabin hash [48] used by N-Transform [44] has
a complicated calculation process, and it has two significant
shortcomings. (1) It has to read the whole block from memory
to complete the hash calculation of a block. (2) By sliding the
window, most blocks will be included into different windows
several times. Therefore, these blocks have to be read from
memory repeatedly, which is a heavy overhead.

Here we propose a calculation method based on a designed
data structure, Feature Map (FM for short), which works
more efficiently. Figure 8 provides an example of how FM-
based method works. In this example, the detector calculates
n features of 16 bits length for every image. First, the detec-
tor calculates Feature Map according to the decoded image
blocks. Feature Map is a two-dimensional array, and every
element in Feature Map is corresponding to a block in the
decoded input image (we call such an element the agent of
its corresponding block). Each agent is determined according
to its corresponding block. In Figure 8, we sample the Least
Significant Bit of each block’s first integer as an agent. After
generating Feature Map, the detector uses a sliding window
to walk through the Feature Map to acquire hashes according
to the content of the window. The agents in a window will be
flattened to generate a hash value. As the example in Figure 8,
the first window includes agents ‘0’, ‘0’, ‘0’, ‘1’, ‘0’, ‘1’, ‘0’,
‘0’, ‘1’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, and thus, the hash value



TABLE I
THE COMPARISON BETWEEN DIFFERENT HASH CALCULATION APPROACHES ON A BLOCK.a

Hash Method Pseudo-code Computation Overhead Memory Access

Rabin
for(i = 0; i < 128; i++)

tmp = hashold ∧ U(ai);
hashnew = (tmp� 8) | bi ∧ T (tmp� s1);

128 ORs, 256 XORs, 256 SHIFTs 256 ARRAY LOOKUPs, 128 READs

Feature Map
for(i = 0; i < s2; i++)

Map[r][c] = (Map[r][c]� 1) | (bi & 1);
hashnew = (hashold � s2) | Map[r][c];

(s2+1) ORs & SHIFTs, s2 ANDs 1 ARRAY LOOKUP, s2 READs

aHere a and b denote the sliding out and sliding in byte respectively; s1 and s2 are also pre-defined, s2 is equal to sampling length; U and T are
pre-defined arrays; r and c denote the processing row and column respectively; Map is the two-dimensional array of Feature Map.

of the first window is ‘0001010010000000’, which is 0x1480.
Note that this method is scalable as we can use different

sizes of window and sampling length for agents. For example,
in our real evaluation, we calculate 64 bits length features.
So we can choose a 8×8 window with 1 bit length agent,
or a 4×4 window with 4 bits length agent (by sampling the
LSBs of the first 4 integers of each block to get 4 bits length
agent) to generate 64 bits hashes. Algorithm 4 gives the details
of how FM-based feature method works with given sizes of
window and agent.

Algorithm 4: FM-based feature generation.
Input: image blocks, Block; image width & height in block

unit, w & h; sliding window size, m; sampling agent
length, s; pre-defined value pairs for linear
transformation, K[N ] & B[N ]

Output: N features of m×m×s bits length, Feature[N ]

Feature[0, ..., N − 1]← 0;
/* initialize Feature Map. */
for row = 0; row < h; row ++; do

for col = 0; col < w; col ++; do
tmp← 0;
for k = 0; k < s; k ++; do

tmp← (tmp� 1) | (Block[row][col][k] & 1);

Map[row][col]← tmp;

/* calculate features by FM. */
for row = 0; row <= h−m; row ++; do

Hash← 0;
/* calculate the first hash. */
for j = 0; j < m; j ++; do

for k = 0; k < m; k ++; do
Hash← (Hash� s) | Map[row + k][j];

/* calculate features. */
for col = 0; col <= w −m; col ++; do

for k = 0; k < N ; k ++; do
/* linear transformation. */
Transform[k]←
(K[k] ∗Hash+B[k]) mod 2m×m×s;
/* minimum selection. */
if Transform[K] < Feature[k] then

Feature[k]← Transform[k];

/* calculate the next hash. */
for k = 0; k < m; k ++; do

Hash← (Hash� s) |Map[row+k][col+m];

return Feature[N ];

Summary. FM-based detector has four main advantages:

(1) It generates features in block unit, which greatly reduces
computation overhead by reducing the number of needed
linear transformations. (2) FM-based hash calculation doesn’t
have to read the whole block data from memory. It only has
to read the first s (i.e., length of agents) elements of the
block when producing the Feature Map, which is memory
efficient. (3) FM-based hash could well reflect characteristics
because it fully utilizes the information distribution of DCT
blocks. In DCT blocks, the first several elements carry more
information, since the farther away an item is from the DC
term (i.e., the first value) in DCT block, the higher the fre-
quency its corresponding waveform will have and the smaller
its amplitude will be [51], and the quantization operation
in JPEG encoding will discard these high frequencies and
small amplitude coefficients [52]. Therefore sampling from
the first s elements will not decline the detection accuracy.
(4) In FM-based detector, the decoded image data will be
read from memory only once during the feature generation.
Specifically, the decoded image block data will be read only
when calculating Feature Map. When calculating features, the
window is sliding on Feature Map instead of original data so
it won’t access original data again.

D. Implementation Details
In this subsection, we will introduce more implementation

details for imDedup.
The JPEG decoder used in imDedup is based on libjpeg-

turbo [25], which uses SIMD (Single Instruction Multiple
Data) instructions to speed up the JPEG decoding and en-
coding process. imDedup decodes a JPEG file into two parts:
JPEG header and DCT blocks. JPEG header includes some
necessary information for decoding and encoding, whose size
is much smaller than DCT blocks.

The similarity detector of imDedup extracts 64 bits length
features. Note that we pay more attention to luminance com-
ponents just like how JPEG does and only extract features
from luminance data to reduce the computation overhead.

Idelta encoder actually not only compresses the DCT
blocks of targets but also uses traditional delta compression to
compress the JPEG header of target with that of base. Besides,
Idelta will package multiple compressed images before writing
them into external storage to avoid excessive I/O requests.

Pipeline concurrency is exploited to speed up deduplica-
tion. We use multi-threads for pipelining. Adjacent two pipes
maintain a queue together. The upper pipe acts as a producer
and the lower one acts as a customer.



TABLE II
THE WORKLOAD CHARACTERISTICS OF FOUR DATASETS.

Nmae Size Counts Type Average Size

EDT-V 13.4 GB 120,521 simulated 117 KB
EDT-I 31.3 GB 251,725 simulated 130 KB
Web-A 81.2 GB 376,154 real-world 226 KB
Web-B 50.6 GB 2,352,026 real-world 23 KB

V. EVALUATION AND DISCUSSION

In this section, we evaluate our system to select reasonable
parameters and explore the comprehensive performance.

A. Experimental Setup

Environment. The experiments are running on a Dell
PowerEdge R740 server with 2 Intel Xeon Gold 6130 2.1GHz
CPUs. The server is equipped with 128GB DDR4 memory and
4TB SSD and installed with Ubuntu 18.04.2 operating system.

Metrics. Evaluations focus on the following metrics:

• Compression Ratio reflects the effect of redundancy
elimination. It is defined as original data size

data size after deduplication .
A larger compression ratio on the same dataset indicates
a better redundancy elimination effect.

• Deduplication/Restore Throughput reflects the system
throughput and is defined as original data size

deduplication/restore time .
A larger deduplication throughput on the same dataset
indicates a higher efficiency of redundancy elimination.

• Success Rate is defined as size of detected images
original data size ×100%.

It reflects the percentage of detected similar images.
• Accuracy measures the similarity of the detected images.

We define it as the compression ratio of the detected im-
ages (i.e., size of detected images

size of compressed detected images ). The larger
the accuracy is, the more similar the detected images are.

Datasets. We use four datasets to evaluate imDedup, whose
characteristics are shown in Table II.

• EDT-V: This dataset is based on the PASCAL VOC2012
dataset [53]. For each original image in VOC2012, we
generate a random number of similar copies for it by
randomly adding some small patterns. Collect all the
generated edited copies (excluding the original image)
then we get the EDT-V dataset. A pair of similar images
in EDT-V are shown in Figure 2(b).

• EDT-I: The generation way of EDT-I is the same as
that of EDT-V, except that its original images come from
ImageNet 2012 dataset [54]. Note that we only sampled
50,000 images from ImageNet 2012 to generate EDT-I.

• Web-A: This dataset is a real-world dataset whose images
are downloaded from an e-commerce platform website,
which is one of the biggest online shopping platforms
around the world. These images are mainly product
images, some of them have the same logos on different
products or have the different product information such
as prices on the same products (e.g., Figure 2(a)).

• Web-B: It is also a real-world dataset whose images are
downloaded from another e-commerce platform website.
It has the similar characteristic with Web-A.

B. Study of Idelta Encoder

In this section, we evaluate performance of Idelta Encoder,
and choose the most widely used delta encoding approach,
Xdelta [15], as the baseline. Note that Xdelta+FSE refers
to use Xdelta to produce delta data and then use FSE [50]
to further compress the delta data; and simple Idelta refers
to Idelta without the corner case optimization (introduced in
Section IV-B). All these four approaches are working on the
same similar pairs of decoded JPEG images generated by
the similarity detector. Figure 9 shows the comparison among
these four different delta encoders.

Compression Ratio. According to Figure 9(a), Xdelta has
the lowest compression ratios on all datasets, since it does not
further compress the non-redundant data. Xdelta+FSE applies
FSE, which is an individual compression, on deduplicated
data to improve the compression ratio, but results show that
it brings an insignificant improvement. Xdelta+FSE achieves
a low compression ratio (less than 1), which means the
benefits from deduplication and further individual compression
in this approach is smaller than that from directly using JPEG
encoding, and makes deduplication meaningless.

In contrast, Idelta-based encoders achieve 1.3×–1.6× higher
compression ratios, and their compression ratios are all higher
than 1.0, which makes an actual improvement on storage
reduction. It is because Idelta is more friendly and effective
to JPEG data. Besides, Figure 9(a) also demonstrates simple
Idelta has the same compression ratios as Idelta, and the corner
case optimization does not decline the compression effect.

Compression Speed. Figure 9(b) shows the delta compres-
sion speeds of the four approaches. Xdelta-based ones have
lower compression speeds, since their smaller processing unit
increases the computation overhead when searching for redun-
dancy. By comparison, simple Idelta uses block as processing
unit and achieves 1.1×–2.4× higher speed. Further, Idelta
achieves 1.5×–2.6× higher speed by reducing useless block
comparisons in the corner case. Especially on Web-A and
Web-B datasets, there is a speed gap between simple Idelta
and Idelta, and it is because there are many “adjacent identical
blocks” (mentioned in Section IV-B) on these datasets.

Summary. Results demonstrate the efficiency of Idelta.
Compared with Xdelta, Idelta achieves 1.3×–1.6× higher
compression ratios and 1.5×–2.6× higher compression speeds
due to using block as processing unit.

C. Study of Similarity Detector

In this subsection, we will evaluate performance of the simi-
larity detector. Configuration of some critical parameters in our
FM-based similarity detector will be explored to make a better
balance between compression ratio and system throughput. We
will also introduce some other approaches as baselines, all of
which use Idelta as the delta encoder.

Parameter Configuration: Window Size for FM-based
detector. We evaluate four different window sizes in imDedup,
which are 1×1, 2×2, 4×4, and 8×8 agents. Figures 10(a)
and 10(b) show the the success rate and accuracy on 1×1,
2×2, 4×4, and 8×8 window sizes. On all four datasets,



(a) Compression Ratio (b) Compression Speed

Fig. 9. Comparison among different delta encoders for eliminating fine-grained redundancy between images.

(a) Success rate (b) Accuracy

Fig. 10. Impact of window size on success rate and accuracy.

the success rates decrease with the increase of window size,
but accuracy increases accordingly. This is because a smaller
window covers less data, and it is easier to find a similar
match, which leads to a higher success rate. Besides, though
a bigger window size will bring more difficulties on finding
similar candidates, it also filters matches with low similarity
degree and thus achieves a higher accuracy. If we use a large
window size, which is equal to the image size, our approach
will degenerate into file-level exact deduplication.

Figure 12 shows window sizes’ impacts on the whole
imDedup system. With the increase of windows size, the whole
system throughput is also increasing since there will be lower
success rates and fewer similar candidates are detected & com-
pressed. When window size is bigger than 2×2, compression
ratio declines with the increase of window size, because using
a bigger window size may not detect and eliminate redundancy
with lower similarity degree in imDedup. For example, in
Figure 15(a), if detector generates features using the depicted
window, this pair of images will not be regarded as similar
ones when using a big window size, and redundancy between
them will not be eliminated.

At the same time, results show using 1×1 window produces
an inferior compression ratio than using 2×2 window. That is
because using a too-small window size brings too many similar
candidates, leading to misjudgments sometimes. For example,
in Figure 15(b), the first two images are misjudged as the most
similar ones when using smaller windows.

Finally, we learn that using a bigger window size in FM-
based detector always leads to a higher system throughput,
and a 2×2 window always has a higher compression ratio.

Parameter Configuration: Feature Number for FM-
based detector. Here we explore how many features generated
for each image is reasonable, and configure a 2×2 window size
according to the above studies on window size. Figures 11(a)

(a) Success rate (b) Accuracy

Fig. 11. Impact of feature number on success rate and accuracy.

and 11(b) show the success rate and accuracy of imDedup
using different feature numbers for similarity detection. With
the growth of feature number, success rate is also increasing.
This is because using more features per image makes the
detector easier to find a feature match. Therefore, using more
features can detect more image pairs with lower similarity
degrees, and also leads to worse accuracy.

Figure 13 shows the compression ratios and system through-
puts of imDedup using different feature numbers. With the
increase of feature number, imDedup’s compression ratio is
also increasing due to that imDedup detects more matches
and thus can eliminate more redundancy. However, using more
features bring more computation overhead, since similarity de-
tector needs to generate more features and delta encoder needs
to process more similar pairs. Therefore, with the increase of
feature number, the system throughput is decreasing.

Finally, we learn that a bigger feature number leads to a
higher compression ratio, but a lower deduplication through-
put, as shown in Figure 13. In imDedup we set feature number
to 10, since the changes of compression ratio tend to be flat
when feature number is bigger than 10.

Comparison with Other Approaches. Here we compare
FM-based approach with byte-wise and 2-d Rabin. Note
that byte-wise refers to using traditional byte-wise detection
scheme with 64 bytes length one-dimensional window calcu-
lating Rabin hash [48] to generate features; 2-d Rabin refers
to using a two-dimensional window calculating Rabin hash in
block unit (i.e., similar to Figure 7) to generate features.

Figure 14 illustrates the experimental results. Figure 14(a)
suggests that all these approaches achieve a very close com-
pression ratio on datasets, which demonstrates that they have
similar efficiency on finding similar candidates. On the other
hand, Figure 14(b) shows that 2-d Rabin achieves a 1.4×–1.5×
higher throughput, since it has a bigger processing unit and



(a) EDT-V (b) EDT-I (c) Web-A (d) Web-B

Fig. 12. imDedup performances with different size of windows (Deduplication Throughput and Compression Ratio).

(a) EDT-V (b) EDT-I (c) Web-A (d) Web-B

Fig. 13. imDedup performances with different number of features (Deduplication Throughput and Compression Ratio).

(a) Compression Ratio (b) Deduplication Throughput

Fig. 14. The comparison among different feature generation methods.

reduces computation overhead on generating features. Further,
FM-based detector achieves a 1.8×–3.4× higher throughput,
since it has a more efficient hash calculation approach and
thus reduces computation overheads and memory accesses.

Summary. Experiments prove the efficiency of FM-based
detector. It achieves 1.8×–3.4× higher throughputs and com-
parably high compression ratios.

(a) The bigger window may miss images with low similarity degrees.

Hello, world！ Hello, world！ Hello, world！

Hello, world！ Hello, world！ Hello, world！

@imDedup

@imDedup

(b) The smaller window may lead to detection misjudgment.

Fig. 15. Examples of how window size impacts on detecting similar images.

D. Comprehensive Experiment

In this subsection, we evaluate the concurrency of imDedup
and compare imDedup with exact image deduplication.

Concurrency. To speed up imDedup further, we apply
concurrent pipelines to process a series of images at the
same time. As shown in Figure 16, both when deduplicating
and restoring (i.e., decompressing), throughput almost linearly
increases with the growth of pipeline number before it meets
the throughput peak, which suggests imDedup is salable in
throughput. The bottleneck of imDedup’s concurrency is I/O
speed. The throughput no longer increases when it reaches
the speed of reading raw/compressed images when dedupli-
cating/restoring. Note that all pipelines’ similarity detectors
share a global feature index to maximize the compression ratio
when deduplicating. And when restoring, the system doesn’t
write restored images into external storage since in most cases
restored images will be used only in memory.

When deduplicating, image size has a significant impact on
the I/O speed, and a smaller file size always leads to a worse
I/O performance. Thus, datasets with smaller average sizes
will meet the throughput peak sooner. The average image size
of each dataset can be seen in Table II, and imDedup achieves
the lowest deduplication throughput on Web-B since it has
the smallest average image size. When restoring, the success
rate of similarity detection has a significant impact on restore



(a) Deduplicate images (b) Restore compressed images

Fig. 16. The concurrency of imDedup.

throughput. A larger success rate means more images will be
compressed, and then imDedup has more work to do in restore,
which leads to a lower restore throughput. As shown in Figures
10(a) and 11(a), Web-A always has the largest success rate and
therefore has the lowest restore throughput.

Figure 16(a) shows that during deduplication, imDedup
achieves up to a 140 MB/s throughput and only takes 1.58 ms
for a single image on average. Figure 16(b) shows that when
restoring, imDedup achieves up to a 335 MB/s throughput and
only takes 0.34 ms on average to restore a single image.

Comparison with Exact Deduplication. To comprehen-
sively reveal the efficiency of our proposed imDedup, we
implement a prototype of exact deduplication [16] for com-
parison. We choose exact deduplication as the representation
of existing image deduplication instead of visual deduplication
since we target compressing images in a lossless way.

The results in Figure 17 suggest that imDedup achieves
a 19%–38% improvement in compression ratio with only a
14%–26% reduction in throughput. On the two simulated
datasets, exact deduplication achieves a compression ratio
of 1.0, which means there are no totally duplicate images.
However, imDedup achieves compression ratios higher than
1.0 on them, which demonstrates imDedup successfully finds
and eliminates fine-grained redundancy among images. The
results that imDedup achieves higher compression ratios on
two real-world datasets also demonstrate that there does be
fine-grained redundancy among real-world images.

Summary. Experiments demonstrate that imDedup success-
fully detects and eliminates fine-grained redundancy between
similar images while introducing more computation overheads
for the system throughput. But the extra computation doesn’t
bother because imDedup is scalable in system throughput.

E. Discussion

In this subsection, we discuss the usage scenarios of imD-
edup according to its design and the above evaluation results.

Usage scenarios and limitations. On the one hand, the
proposed imDedup is designed for image datasets containing
lots of fine-grained redundancy, which can achieve a much
higher compression ratio than classic schemes and thus save
more storage space. On the other hand, the main limitation of
imDedup is that it will take up excessive I/O and computation
resources during deduplicating. Therefore, imDedup is more
suitable for cold data in cloud storage to reduce the heavy
storage cost of images.

(a) Compression ratio (b) Deduplication Throughput

Fig. 17. Comparison between exact image deduplication and imDedup.

Scalability in large-scale workload. For a large-scale
image workload, a much higher deduplication throughput is
required. So we can separate the whole workload into several
parts and process them in a parallel way. For example, a large-
scale cluster may have many nodes, and we can let each
node run imDedup separately. This kind of implementation
requires the separation of the workload promising most similar
images are always allocated to the same parts or the same node
(e.g., according to users or keywords). As another solution, we
can introduce a distributed feature index for matching similar
images and dispatch similar images to the same nodes (some
related works on the distributed index include [55], [56]).
This kind of implementation no longer requires separation of
the workload but produces more heavy network traffic in the
cluster to transmit images to the node of their similar ones.

VI. CONCLUSION AND FUTURE WORK

imDedup is a lossless fine-grained SBD scheme for images.
It detects and eliminates redundancy among images in a
fine-grained and lossless way. imDedup fully utilizes image
data’s characteristics and is friendly to the original image
format, which achieves both higher compression ratio and
deduplication throughput. Experiments suggest that (i) there
does be fine-grained redundancy among real-world images,
which can not be eliminated by existing lossless image dedu-
plication schemes, but imDedup can detect and eliminate
fine-grained redundancy among images, bringing 19%–38%
improvements in compression ratio; (ii) imDedup is more
efficient in deduplicating image data than state-of-the-art SBD
schemes, achieving 1.3×–1.6× higher compression ratios and
1.8×–3.4× higher throughputs, which suggests our proposed
Idelta encoder and FM-based detector are more efficient.

In the future, we will verify the efficiency of the imDedup
framework on other image formats (e.g., WebP, PNG, etc.).
We also plan to explore the practicability of eliminating fine-
grained redundancy among images in a lossy way.
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