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ABSTRACT

This paper shows that simply prescribing “none of the above” labels to unlabeled
data has a beneficial regularization effect to supervised learning. We call it uni-
versum prescription by the fact that the prescribed labels cannot be one of the
supervised labels. In spite of its simplicity, universum prescription obtained com-
petitive results in training deep convolutional networks for CIFAR-10, CIFAR-
100 and STL-10 datasets. A qualitative justification of these approaches using
Rademacher complexity is presented. The effect of a regularization parameter –
probability of sampling from unlabeled data – is also studied empirically.

1 INTRODUCTION

The idea of exploiting the wide abundance of unlabeled data to improve the accuracy of supervised
learning tasks is a very natural one. In this paper, we study what is perhaps the simplest way to
exploit unlabeled data in the context of deep learning. We assume that the unlabeled samples do not
belong to any of the categories of the supervised task, and we force the classifier to produce a “none
of the above” output for these samples. This is by no means a new idea, but we show empirically and
theoretically that doing so has a beneficial regularization effect on supervised task and reduces the
generalization gap, the expected difference between the test error and the training error. We study
three different ways to prescribe “none of the above” outputs, dubbed uniform prescription, dustbin
class, and background class and show that they improve the test error of convolutional networks
trained on CIFAR-10, CIFIAR-100 (Krizhevsky (2009)), and STL-10 (Coates et al. (2011)). The
method is justified theoretically using Radamacher complexity (Bartlett & Mendelson (2003)).

Our work is a direct extension to learning in the presence of universum (Weston et al. (2006)),
originated from Vapnik (1998) and Vapnik (2006). The definition of universum is a set of unlabeled
data that are known not to belong to any of the classes but in the same domain of the training data.
We extended the idea of using universum from support vector machines to deep learning.

Using unlabeled data to facilitate supervised learning is sometimes called semi-supervised learning
as surveyed by Chapelle et al. (2006b) and Zhu & Goldberg (2009). The most related ones are
information regularization (Corduneanu & Jaakkola (2006)) and transduction learning (Chapelle
et al. (2006a)) (Gammerman et al. (1998)). In these approaches, prescribing supervised labels to
unlabeled data is part of the overall algorithm. They are the opposite case of universum prescription.

Representation or feature learning (reviewed by Bengio et al. (2013) and Bengio & LeCun (2007))
and transfer learning (Thrun & Pratt (1998)) are also related to our work. They include the idea
of pretraining (Erhan et al. (2010) Hinton et al. (2006) Ranzato et al. (2006)), which transfers the
features learnt from unlabeled data to some supervised task. Universum prescription incoporates un-
labeled data as part of the supervised training process, imposing neither sparsity nor reconstruction.

The methods in this article could be thought of as a simple form of multi-task learning (Baxter
(2000)) (Caruana (1993)), where an auxiliary task is to control overfitting under the universum
assumption (see section 2). It can also be thought of as using hints (Abu-Mostafa (1990)) (Suddarth
& Holden (1991)) for training where the hint is functional regularity from unlabeled data.

Universum prescription is also related to the idea of dark knowledge (Bucilu et al. (2006)) (Hinton
et al. (2015)). The idea is to prescribe “soft” targets from an ensemble of models to a single model,
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and improvement on classification accuracy is observed. Our methods prescribe “soft” targets to
unlabeled data as well, except that the targets are agnostic to the classification problem.

Regularization – techniques for the control of overfitting or generalization gap – has been studied
extensively. Most of the practical approaches implement a secondary optimization objective, such
as L1 or L2 norm. Some other methods such as dropout (Srivastava et al. (2014)) and dropconnect
(Wan et al. (2013)) cheaply simulate model averaging to control the model variance.

As part of the general statistical learning theory (Vapnik (1995), Vapnik (1998)), the justification for
regularization is well-developed. There are many formulations, such as probably approximately cor-
rect (PAC) learning (Valiant (1984)), the trade-off between bias and variance (Geman et al. (1992)),
and the prescription of Baysian a priori (Mozer & Smolensky (1989)). We qualitatively justify the
methods using Radamacher complexity (Bartlett & Mendelson (2003)), similar to Wan et al. (2013).

2 UNIVERSUM PRESCRIPTION

In this section we attempt to formalize the the trick of prescribing “none of the above” labels. We call
it universum prescription because these labels could not belong to any supervised class. Consider
the problem of exclusive k-way classification. In inference we can find the most probable class
y ∈ {1, 2, . . . , k} given input x. In learning we hope to find a hypothesis function h ∈ H mapping
to Rk so that the label is determined by y = argmini hi(x). The following assumptions are made.

1. (Loss assumption) The loss used as the optimization objective is negative log-likelihood:

L(h, x, y) = hy(x) + log

[
k∑
i=1

exp(−hi(x))

]
. (1)

2. (Universum assumption) The proportion of samples belonging to one of the k classes in the
unlabeled data is negligible.

The loss assumption assumes that the probability of class y given an input x can be thought of as

Pr[Y = y|x, h] = exp(−hy(x))∑k
i=1 exp(−hi(x))

, (2)

where (X,Y ) ∼ D and D is the distribution where labeled data are sampled. We use lowercase
letters for values, uppercase letters for random variables and bold uppercase letters for distribution.
The loss assumption is simply a necessary detail rather than a limitation.

The universum assumption implicates that labeled classes are a negligible subset. In many practical
cases we only care about a small number of classes, either by problem design or due to high cost in
the labeling process. At the same time, a very large amount of unlabeled data is easily obtained. Put
in mathematics, assuming we draw unlabeled data from distribution U, the assumption states that

Pr
(X,Y )∼U

[X,Y ∈ {1, 2, . . . , k}] ≈ 0. (3)

This is opposite to the assumptions of information regularization (Corduneanu & Jaakkola (2006))
and transduction learning (Chapelle et al. (2006a)) (Gammerman et al. (1998)). All the methods
discussed below prescribe agnostic targets to the unlabeled data. During learning, we randomly
present an unlabeled sample to the optimization procedure with probability p.

2.1 UNIFORM PRESCRIPTION

It is known that negative log-likelihood is simply a reduced form of cross-entropy

L(h, x, y) = −
k∑
i=1

Q[Y = i|x] log Pr[Y = i|x, h] (4)

in which the target probabilityQ[Y = y|x] = 1 andQ[Y = i|x] = 0 for i 6= y. Under the universum
assumption, if we are presented with an unlabeled sample x, we would hope to prescribe some Q so
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that every class has some equally minimal probability. Q also has to satisfy
∑k
i=1Q[Y = i|x] = 1

by the probability axioms. The only possible choice for Q is then Q[Y |x] = 1/k. The learning
algorithm then uses the cross-entropy loss instead of negative log-likelihood.

It is worth noting that uniform output has the maximum entropy among all possible choices. In the
case that the hypothesis h is parameterized as a deep neural network, uniform output is achieved
when these parameters are constantly 0. Therefore, uniform prescription may have the effect of
reducing the magnitude of parameters, similar to norm-based regularization.

2.2 DUSTBIN CLASS

Another way of prescribing agnostic target is to append a “dustbin” class to the supervised task.
This requires some changes to the hypothesis function h such that it outputs k + 1 targets. For
deep learning models one can simply extend the last parameterized layer. All unlabeled data are
prescribed to this extra “dustbin” class. The learning algorithm remains unchanged.

The effect of dustbin class is clearly seen in the loss function of an unlabeled sample (x, k + 1)

L(h, x, k + 1) = hk+1(x) + log

[
k+1∑
i=1

exp(−hi(x))

]
. (5)

The second term is a “soft” maximum for all dimensions of −h. When an unlabeled sample is
present, the algorithm attempts to introduce smoothness by minimizing probability spikes.

2.3 BACKGROUND CLASS

We could further simplify dustbin class by removing parameters for class k + 1. For some given
threshold constant τ , we could change the probability of a labeled sample to

Pr[Y = y|x, h] = exp(−hy(x))
exp(−τ) +

∑k
i=1 exp(−hi(x))

, (6)

and an unlabeled sample

Pr[Y = k + 1|x, h] = exp(−τ)
exp(−τ) +

∑k
i=1 exp(−hi(x))

. (7)

This will result in changes to the loss function of a labeled sample (x, y) as

L(h, x, y) = hy(x) + log

[
exp(−τ) +

k∑
i=1

exp(−hi(x))

]
, (8)

and an unlabeled sample

L(h, x, k + 1) = τ + log

[
exp(−τ) +

k∑
i=1

exp(−hi(x))

]
. (9)

We call this method background class and τ background constant. Similar to dustbin class, the
algorithm attempts to minimize the spikes of outputs, but limited to a certain extent by the inclusion
of exp(−τ) in the partition function. In our experiments τ is always set to 0.

3 THEORETICAL JUSTIFICATION

In this part, we derive a qualitative justification for universum prescription using probably approxi-
mately correct (PAC) learning (Valiant (1984)). By a “qualitative” theory, we are comparing with nu-
merical or combinatorial bounds such as growth function (Massart (2000), Vapnik (1998)), Vapnik-
Chervonenkis dimension (Vapnik & Chervonenkis (1971)), covering numbers (Dudley (1967)) and
others. Our theory is based on Rademacher complexity (Bartlett & Mendelson (2003)), similar to
the work by Wan et al. (2013) in which both dropout (Srivastava et al. (2014)) and dropconnect (Wan
et al. (2013)) are justified. Rademacher complexity is usually a lower-bound of other numerical or
combinatorial complexity measurement, therefore our qualitative intuition is more accurate using it.
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Definition 1 (Empirical Rademacher complexity). Let F be a family of functions mapping from U
to R, and S = (x1, x2, . . . , xm) a fixed sample of size m with elements in X . Then, the empirical
Rademacher complexity of F with respect to the sample S is defined as:

R̂S(F) = E
η

[
sup
f∈F

1

m

m∑
i=1

ηif(xi)

]
(10)

where η = (η1, . . . , ηm)T , with ηi’s independent random variables taking values from a discrete
uniform distribution on {−1, 1}.
Definition 2 (Rademacher complexity). Let D denote the distribution from which the samples were
drawn. For any integer m ≥ 1, the Rademacher complexity of F is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

Rm(F ,D) = E
S∼Dm

[R̂S(F )] (11)

It could be argued that the distribution for η is arbitrary. There are other possiblities such as Gaussian
complexity (Bartlett & Mendelson (2003)), but they can all be generalized to stochastic compexity
as in Zhang (2013) and result in the same conclusions. In the case that f has multiple outputs, one
can simply add the complexity measurements for each outputs together and the theory still holds.

Two qualitative properties of Rademacher complexity is worth noting here. First of all, Rademacher
complexity is always non-negative by the convexity of supremum

R̂S(F) = E
η

[
sup
f∈F

1

m

m∑
i=1

ηif(xi)

]
≥ sup
f∈F

1

m

m∑
i=1

E
ηi
[ηi]f(xi) = 0. (12)

Secondly, if for a fixed input all functions in F output the same value, then it’s Rademacher com-
plexity is 0. Assume for any f ∈ F we have f(x) = f0(x), then

R̂S(F) = E
η

[
sup
f∈F

1

m

m∑
i=1

ηif(xi)

]
= E

η

[
sup
f∈F

1

m

m∑
i=1

ηif0(x)

]
=

1

m

m∑
i=1

E
ηi
[ηi]f0(x) = 0. (13)

Therefore, one way to qualitatively minimize Rademacher complexity is to regularize functions in
F such that all functions tend to have the same output for a given input. Universum prescription
precisely does that – the prescribed outputs for unlabeled data are all constantly the same.

The principal PAC-learning result from literature is an approximation bound for function spaces
that has finite bounds for outputs. We use the formulation by Zhang (2013), but anterior results
are in Bartlett et al. (2002), Bartlett & Mendelson (2003), Koltchinskii (2001) and Koltchinskii &
Panchenko (2000). We refer the reader to these publications for proof.
Theorem 1 (Approximation bound with finite bound on output). For a well-defined objective
E(h, x, y) over hypothesis class H, input set X and output set Y , if it has an upper bound M > 0,
then with probability at least 1− δ, the following holds for all hypothesis h ∈ H:

E
(x,y)∼D

[E(h, x, y)] ≤ 1

m

∑
(x,y)∈S

E(h, x, y) + 2Rm(F ,D) +M

√
log 2

δ

2m
, (14)

where the function family F is defined as

F = {E(h, x, y)|h ∈ H} , (15)

D is a distribution on the samples (x, y), and S is a set of samples of size m drawn indentically and
independently from D.

In the theorem above, the objective functional E(h, x, y) should be lower-bounded by 0, and it
corresponds to a negatively correlated compatibility measurement between a hypothesis h and a
sample (x, y). It is similar to the definition of energy used by energy-based learning in LeCun et al.
(2006). It could be the error function E(h, x, y) = 1 − 1{y = argmini(hi(x))}, the exponential
function E(h, x, y) = exp(hy(x)), the negative probability function E(h, x, y) = 1 − Pr[Y =
y|x, h], or simply the loss E(h, x, y) = L(h, x, y).
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Table 2: Result for universum prescription. The numbers are percentages. The three numbers in
each tabular indicate training error, testing error and generalization gap. Bold numbers are the best
ones for each case. CIFAR-100 F. and CIFAR-100 C. stand for fine-grained and coarse classification
problems of CIFAR-100. STL-10 Tiny. stands for using 80 million images as the unlabeled dataset.

DATASET BASELINE UNIFORM DUSTBIN BACKGROUND
Train Test Gap Train Test Gap Train Test Gap Train Test Gap

CIFAR-10 0.00 7.02 7.02 0.72 7.59 6.87 0.07 6.66 6.59 1.35 8.38 7.03
CIFAR-100 F. 0.09 37.58 37.49 4.91 36.23 31.32 2.52 32.84 30.32 8.56 40.57 42.01
CIFAR-100 C. 0.04 22.74 22.70 0.67 23.42 22.45 0.40 20.45 20.05 3.73 24.97 21.24
STL-10 0.00 31.16 31.16 2.02 36.54 34.52 3.03 36.58 33.55 14.89 38.95 24.06
STL-10 Tiny. 0.00 31.16 31.16 0.62 30.15 29.47 0.00 27.96 27.96 0.11 30.38 30.27

For some choices of E we have a bound E(h, x, y) ≤ M by design, whereas for some others it is
more intricate to believe M exists. If the learning algorithm is an iterative optimization procedure
such as gradient descent, at each step one could believe that a limit M exists relatively to the cur-
rent hypothesis h0 (Zhang (2013)). This is because of the dynamics of iterative optimization – the
algorithm can only explore some sublevel hypothesis setH0 in later steps.

The meaning of the theorem is two-folded. When applying the theorem to the joint problem of
training using both labeled and unlabeled data, the third term on the right hand of inequality 14
is reduced by the augmentation of the extra data. The joint problem can be written as (x, y) ∼
(1− p)D+ pU. The value of the term Rm(F , (1− p)D+ pU) is also reduced when we prescribe
constant outputs, due to the qualitative properties of Rademacher complexity discussed before.

The second fold is that when the theorem applies to the supervised distribution D, we would hope
that Rm(F ,D) can be bounded by Rm(F , (1 − p)D + pU) and Rm(F ,U). It turns out that a
weighted sum of Ri(F ,D), i = 1, 2, . . . ,m is bounded.

Theorem 2 (Rademacher complexity bound on distribution mixture). Let P (m, i) =
∑m
i=0

(
m
i

)
(1−

p)m−ipi im and Q(m, i) =
∑m
i=0

(
m
i

)
(1− p)ipm−i im , we have

m∑
i=1

Q(m, i)Ri(F ,D) ≤ Rm(F , (1− p)D+ pU) +

m∑
i=1

P (m, i)Ri(F ,U) (16)

Table 1: ConvNet for section 4

LAYERS DESCRIPTION

1-3 Conv 256x3x3
4 Pool 2x2
5-8 Conv 512x3x3
9 Pool 2x2
10-13 Conv 1024x3x3
14 Pool 2x2
15-18 Conv 1024x3x3
19 Pool 2x2
20-23 Conv 2048x3x3
24 Pool 2x2
25-26 Full 2048

The proof of theorem 2 is in supplemental material. We
also show that

∑m
i=0 P (m, i) ≤ 1 and

∑m
i=0Q(m, i) ≤ 1.

The derivation above tells us that a weighted sum of the
Rademacher complexity of the supervised problems for dataset
size from 1 tom is bounded by the joint problem of sizem and
a weighted sum of unsupervised problems. Therefore, for dif-
ferent sample sizes of labeled and unlabeled data, universum
prescription may bring improvement for generalization.

4 EXPERIMENTS ON IMAGE CLASSIFICATION

In this section we test the methods on some image classifica-
tion tasks. Two series of datasets – CIFAR-10/100 (Krizhevsky
(2009)) and STL-10 (Coates et al. (2011)) – are chosen due
to the availability of unlabeled data. The model we used
is a 21-layer convolutional network (ConvNet) (LeCun et al.
(1989), LeCun et al. (1998)) inspired by Simonyan & Zisser-
man (2014), in which the inputs are 32-by-32 images and all convolutional layers are 3-by-3 and
fully padded. All pooling layers are max-pooling, and ReLUs (Nair & Hinton (2010)) are used as
the non-linearity after all convolutional and linear layers. Two dropout (Srivastava et al. (2014)) lay-
ers of probability 0.5 are inserted before the final two linear layers. The algorithm used is stochastic
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gradient descent with momentum (Polyak (1964), Sutskever et al. (2013)) 0.9 and a minibatch size
of 32. The initial learning rate is 0.005 which is halved every 60,000 minibatch steps. The training
stops at 400,000 minibatch steps. Table 1 summarizes the configurations. For a convolutional layer
the number of output feature maps is shown, and for a linear layer the number of hidden units. The
weights are initialized in the same way as He et al. (2015).

The initial motivation for choosing such a big network is to make sure it will have enough capacity
for overfitting so that the effect of regularization is clearly shown. However, in practice such a large
network already has a very good baseline even without universum prescription. This is probably due
to the data augmentation steps below, which are used in all our experiments.

1. (Horizontal flip.) Flip the image horizontally with probability 0.5.

2. (Scale.) Randomly scale the image between 1/1.2 and 1.2 times of its height and width.

3. (Crop.) Randomly crop a 32-by-32 region in the scaled image.

4. (Rotation.) Randomly rotate between −π/6 and π/6 radians.

4.1 CIFAR-10 AND CIFAR-100

The samples of CIFAR-10 and CIFAR-100 datasets (Krizhevsky (2009)) are from the 80 million
tiny images dataset (Torralba et al. (2008)). Each dataset contains 60,000 samples, consitituting a
very small portion of 80 million. This is an ideal case for our methods, in which we can use the
entire 80 million images as the unlabeled data. The CIFAR-10 dataset has 10 classes, and CIFAR-
100 has 20 (coarse) or 100 (fine-grained) classes. Table 2 contains the results. The generalization
gap is approximated by the difference between testing and training errors. All of the universum
prescription models use unlabeled data with probability p = 0.2.

Table 3: Comparison of single-model CIFAR-10 and
CIFAR-100 results, in second and third columns. The fourth
column indicates whether data augmentation is used for
CIFAR-10. The numbers are percentages.

METHOD 10 100 AUG.

universum prescription 6.66 32.84 YES
Graham (2014) 6.28 24.30 YES
Lee et al. (2015) 7.97 34.57 YES
Lin et al. (2013) 8.81 35.68 YES
Goodfellow et al. (2013) 9.38 38.57 YES
Wan et al. (2013) 11.10 N/A NO
Zeiler & Fergus (2013) 15.13 42.51 NO

We compared other single-model re-
sults on CIFAR-10 and CIFAR-100
(fine-grained case) in table 3. It
shows that our network is competitive
to the state of the art.

4.2 STL-10

The STL-10 dataset (Coates et al.
(2011)) has size 96-by-96 for its im-
ages. We downsampled them to 32-
by-32 so as to use the same model.
The dataset contains a very small
number of training samples – 5000 in
total. The accompanying unlabeled
dataset is larger with 100,000 sam-
ples. There is no guarantee that these
extra samples are outside of the supervised training classes. Both the dataset size and failure to
comply with universum assumption might be the reason why universum prescription failed.

To verify that the extra data is the problem, we also performed an experiment using the 80 million
tiny images as the unlabeled dataset, as shown in table 2. Due to long training times of our models,
we did not perform 10-fold training as in the original paper by Coates et al. (2011), therefore our
result is not comparable to those in the literature. We present them only to show the effectiveness of
universum prescription influenced by the universum assumption on the unlabled data.

5 EFFECT OF THE REGULARIZATION PARAMETER

One natural question to ask of our models is how would change of the probability p of sampling from
unlabeled data affect the results. In this section we show the experiments. To prevent an exhaustive
search on the regularization parameter from overfitting our models on the testing data, we use a
different model for this section. It is described in table 4, which has 9 parameterized layers in total.
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Training error Testing error Generalization gap
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Figure 1: Experiments on regularization parameter. The four rows are CIFAR-10, CIFAR-100 fine-
grained, CIFAR-100 coarse and STL-10 respectively.

The design is inspired by Sermanet et al. (2013). For each choice of p we conducted 6 experiments
combining universum prescription models and dropout. The dropout layers are two ones added in
between the fully-connected layers with dropout probability 0.5. Figure 1 shows the results.

From figure 1 we can conclude that increasing p will descrease generalization gap. However, we
cannot make p too large since after a certain point the training collapses and both training and
testing errors become worse. Comparing between CIFAR-10/100 and STL-10, the model variance
is affected by the combined size of labeled and unlabeled datasets.

6 CONCLUSION AND OUTLOOK

Table 4: ConvNet for section 5

LAYERS DESCRIPTION

1 Conv 1024x5x5
2 Pool 2x2
3 Conv 1024x5x5
4-7 Conv 1024x3x3
8 Pool 2x2
9-11 Full 2048

This article shows that universum prescription can be used to
regularize a multi-class classification problem using extra un-
labeled data. Two assumptions are made, in which one is that
loss used is negative log-likelihood and the other is negligible
probability of a supervised sample existing in the unlabeled
data. The loss assumption is a necessary detail rather than a
limitation. The three universum prescription methods are uni-
form prescription, dustbin class and background class. We fur-
ther provided a theoretical justification. Experiments are done
using CIFAR-10, CIFAR-100 and STL-10 datasets. The effect
of the regularization parameter is also studied empirically.

In the future, we hope to apply these methods to a broader
range of problems.
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APPENDIX: PROOF OF THEOREM 2

Lemma 1 (Separation of dataset on empirical Rademacher complexity). Let S be a dataset of size m. If S1

and S2 are two non-overlap subset of S such that |S1| = m− i, |S2| = i and S1 ∪ S2 = S, then

R̂S(F) ≥
m− i
m

R̂S1(F)−
i

m
R̂S2(F) (17)

Proof. Let (xj , yj) ∈ S1 for j = 1, 2, . . . ,m − i and (xj , yj) ∈ S2 for i = m − j + 1,m − j + 2, . . . ,m.
Denote N as the discrete uniform distribution on {1,−1}. We can derive by the convexity of supremum and
symmetry of N

R̂S1(F) = E
η∼Nm−i

[
sup
f∈F

1

m− i

m−i∑
j=1

ηjf(xj)

]

=
2

m− i E
η∼Nm−i

[
sup
f∈F

1

2

m−i∑
j=1

ηjf(xj)

]

=
2

m− i E
η∼Nm

[
sup
f∈F

(
1

2

m−i∑
j=1

ηjf(xj) +
1

2

m∑
j=m−i+1

ηjf(xj)−
1

2

m∑
j=m−i+1

ηjf(xj)

)]

=
2

m− i E
η∼Nm

[
sup
f∈F

(
1

2

m∑
j=1

ηjf(xj)−
1

2

m∑
j=m−i+1

ηjf(xj)

)]

≤ 2

m− i E
η∼Nm

[
1

2
sup
f∈F

(
m∑

j=1

ηjf(xj)

)
+

1

2
sup
f∈F

(
m∑

j=m−i+1

−ηjf(xj)

)]

=
m

m− i E
η∼Nm

[
sup
f∈F

1

m

m∑
j=1

ηjf(xj)

]
+

i

m− i E
η∼Ni

[
sup
f∈F

1

i

m∑
j=m−i+1

−ηjf(xj)

]

=
m

m− i E
η∼Nm

[
sup
f∈F

1

m

m∑
j=1

ηjf(xj)

]
+

i

m− i E
η∼Ni

[
sup
f∈F

1

i

m∑
j=m−i+1

ηjf(xj)

]

=
m

m− i R̂S(F) +
i

m− i R̂S2(F).

The lemma is obtained by directly transforming the inequality above.
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For any function space F and distribution D, denote R0(F ,D) = 0 and R̂∅(F) = 0. Define P (m, i) =∑m
i=0

(
m
i

)
(1−p)m−ipi i

m
andQ(m, i) =

∑m
i=0

(
m
i

)
(1−p)ipm−i i

m
. By definition of Rademacher complex-

ity and lemma 1, we get

Rm(F , (1− p)D+ pU) = E
S∼((1−p)D+pU)m

[R̂S(F )]

=

m∑
i=0

(
m

i

)
(1− p)m−ipi E

S1∼Dm−i

[
E

S2∼Ui
[R̂S1∪S2(F )]

]

≥
m∑
i=0

(
m

i

)
(1− p)m−ipi E

S1∼Dm−i

[
E

S2∼Ui

[
m− i
m

R̂S1(F)−
i

m
R̂S2(F)

]]

=

m∑
i=0

(
m

i

)
(1− p)m−ipi

[
m− i
m

E
S1∼Dm−i

[
R̂S1(F)

]
− i

m
E

S2∼Ui

[
R̂S2(F)

]]

=

m∑
i=0

(
m

i

)
(1− p)m−ipi

[
m− i
m

Rm−i(F ,D)− i

m
Ri(F ,U)

]

=

[
m∑
i=0

Q(m,m− i)Rm−i(F ,D)

]
−

[
m∑
i=0

P (m, i)Ri(F ,U)

]

=

[
m∑
i=1

Q(m, i)Ri(F ,D)

]
−

[
m∑
i=1

P (m, i)Ri(F ,U)

]
.

Theorem 2 is therefore established. The fact that
∑m

i=0Q(m, i) ≤ 1 and
∑m

i=0 P (m, i) ≤ 1 is evident from
the proof by each term being less than a term of the binomial expansion.
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