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Abstract 
This manuscript is focused on transit smart card data and finds that the release of such trajectory 
information after simple anonymization creates high concern about breaching privacy. Trajectory data is 
large-scale, high-dimensional, and sparse in nature and, thus, requires an efficient privacy-preserving data 
publishing (PPDP) algorithm with high data utility. This paper describes the investigation of the publication 
of non-interactive sanitized trajectory data under a differential privacy (DP) definition. To this end, a new 
prefix tree structure, an incremental privacy budget allocation model, and a spatial-temporal 
dimensionality reduction model are proposed to enhance the sanitized data utility as well as to improve 
runtime efficiency. The developed algorithm is implemented and applied to real-life metro smart card 
data from Shenzhen, China, which includes a total of 2.8 million individual travelers and over 220 million 
records. Numerical analysis finds that, compared with previous work, the proposed model outputs 
sanitized dataset with higher utilities, and the algorithm is more efficient and scalable.  

Keywords: Privacy-Preserving Data Publishing (PPDP), Differential Privacy (DP), Transit Smart Card, 
Trajectory Data; 

Highlights: 

• Quantitatively measure the privacy breach risks of transit smart card data 

• A privacy-preserving data publishing (PPDP) algorithm is proposed 

• The proposed algorithm outperforms two previous models on data utility and runtime efficiency 

  



1. Introduction 
With the rapid advancement of information and communication technologies (ICT), a variety of data 
collection methods have been developed to collect information on individual traveler’s spatial-temporal 
movement. Commonly seen technologies include the Global Positioning System (GPS), social medias,  
smart card or IC card and so on. These data carry rich information on traffic conditions and traveler’s 
activity patterns, and have been widely shared and used by researchers and transportation practitioners 
for various purposes.  

Privacy breaches occur when users are re-identified from anonymous data. A prevailing assumption, 
nowadays, is that if the attributes that carry personal information (such as names and addresses) are 
removed before sharing, concerns about privacy leakage can be eliminated. However, it has been proved, 
in many fields, that the anonymity of personal information removal does not effectively protect privacy. 
For example, research has shown that 87% of the population in the United States have reported 
characteristics that likely made them unique, based only on a 5-digit ZIP code, gender, and date of birth 
(Sweeney 2000). This means that, even if an individual’s name and address are removed, there is still a 
way to identify that person based on a combination of only a few attributes.  

Privacy issues have also been a major concern in transportation engineering, as transportation datasets 
usually capture each individual traveler’s spatial-temporal movements and, as a common practice, to 
make them publicly available after some simple attempts at anonymity. In this manuscript, we focus on 
data collected by a smart card (or IC card) that record the payment history of travelers who boarded 
and/or alighted from transit vehicles in Shenzhen, China. The dataset being analyzed includes a total of 
2.8 million different travelers and over 220 million records. One would think that, with merely two 
boarding/alighting records for each trip, and without including personal information (such as names, 
home addresses, and dates of birth), such data would not impose a privacy concern. However, our analysis 
shows that, if a traveler’s two travel records are known, and by using subway station names and departure 
times (with an accuracy of 10 minutes), 30.7% of users can be uniquely identified even though their 
personal information has been removed from the original dataset. 

Figure 1 presents part of June 7, 2016, Shenzhen metro smart card dataset, which includes anonymous ID 
and ride records. Each line includes an anonymous identifier for the passenger, part of the trajectory 
records, and sensitive information that can be inferred from historical trajectories (such as home and work 
address). For example, as shown in the second line, a user with a pseudo-identifier ID 20016755 checked 
into “Bu Xin” station at 09:24am, and then “Fu Tian” station at 09:52am. The red line in Figure 1 represents 
the background knowledge owned by the attacker. The green line represents the sensitive information 
that an attacker may obtain. If an attacker has already known Alice has traveled to “Bu Xin station” on 
that day, around 7:20am-7:30am (i.e. with an accuracy of 10 minutes), and to “Long Cheng Center” station 
(on the same day) around 8:09am -8:19am, Alice’s unique ID can easily be found to be 20015461 as she is 
the only passenger with these two travel records in the dataset. With this information, the attackers can 
discover all historical travel records for Alice, and use them to infer sensitive personal information (such 
as approximate home and work addresses and other living habits).  

The degree for a privacy breach increases when more background knowledge of the trip or traveler 
becomes available. For example, if the attacker already knows that Frank has traveled to “Gangxia station” 
on June 7, 2016, at around 19:00-21:00 (i.e. with an accuracy of 2 hours), they are not sure if his 
identification number is 20160553 or 20099459. However, if they know that Frank rode on a bus right 
after the subway, then Frank’s unique ID can easily be identified as 20099459. From our experiment, if we 
have a passenger’s background information on a bus transfer, then the likelihood of him/her being 
uniquely identified in the dataset will increase to 41.4%. In other words, almost half of the people using 



smart cards are identifiable and an attacker can use such information to view an individual’s complete 
travel history in the dataset.  

 
Figure 1. Examples of background knowledge attacks. 

A differential privacy-based privacy protection algorithm for a transit smart card data is described in this 
manuscript. When compared with existing models, such as SeqPT (Chen et al. 2012) and SafePath (Khalil 
et al. 2018), it improves data utility while enhancing algorithm efficiency at the same time. Transit 
trajectory data is unique in a sense that it is large-scale and sparse in nature, as well as high-dimensional, 
as it includes not only spatial but also temporal information. The contributions of the proposed algorithm 
are mainly focused on the following three aspects.  

• A new prefix tree structure without taxonomy tree as sublevel is developed to effectively utilize 
the privacy budget, with a goal of improving sanitized data utility. Previous research often built 
taxonomy trees for time and location dimensions at each level, which results in wasting the 
privacy budget. A new prefix tree, without a taxonomy tree at each level is proposed to save the 
privacy budget which, subsequently, will lead to data utility improvement. More budget can now 
be used to build a prefix tree with less noise added.  

• An incremental privacy allocation mechanism is designed to improve sanitized data utility. 
Existing research allocates a privacy budget that is equal on each layer of the tree. However, due 
to the nature of the tree structure, as the depth increases, the number of nodes in each layer 
decreases and the random noise generated by the same amount of privacy budget becomes more 
significant. The proposed model reduces the impact of the noise on the prefix tree, with the same 
privacy budget amount, and brings a higher data utility, as compared with that of previous works.  

• A spatial-temporal domain reduction model is developed to improve runtime efficiency. This is 
achieved by effectively filtering unreachable nodes, as the prefix tree grew and, thus, significantly 
reduce the computational workload. Compared with sequence data without the timestamp 
adopted in previous research, such as (Chen et al. 2012), the data investigated in this manuscript 
includes both timestamp and location information. A differential privacy model is needed that 
meets the randomness computation requirement when a prefix tree grows all possible timestamp 
and location combinations in the value domain. As such, the computation workload would 
increase dramatically and make critical efficiency improvement.  

This paper is organized as follow. Work related to various privacy protection models is reviewed in Section 
2. Some applications of privacy protection methods in transportation engineering are also summarized. 



Section 3 introduces some preliminary concepts and formalizes the problem. Section 4 presents the 
proposed algorithm. The developed algorithm is implemented and compared with existing models in 
Section 5. Section 6 concludes this paper along with some discussion of future work. 

2. Literature Review 
With the rapid advancements in data collection technologies and applications, privacy-protected data 
mining has quickly attracted research attention, mainly in computer science, whereas algorithm 
development and studies of their applications in transportation have been very limited. In this section, 
related work is reviewed in two categories based different privacy principles. The first focuses on data 
indistinguishability, with 𝑘-anonymity and ℓ-diversity as the representative methods, and the second 
focuses on data uninformativeness, with differential privacy as the representative method. 

In distinguishability models, private trajectories are published after anonymizing sensitive information. 
Generalization, which replaces individual values of attributes with a broader category, and suppression, 
which removes sensitive records from a dataset to meet specified anonymity constraints, are the most 
widely-used anonymization mechanisms. For generalization methods, Nergiz et al. (2008) redefined the 
notion of 𝑘-anonymity for sequences of spatial-temporal points, and released a randomly generated set 
of representative trajectories. A generalization-based	𝑘-anonymity approach was applied to trajectory 
data for the first time. Abul et al. (2008) proposed (𝑘, 𝛿)- anonymity for data publishing in a moving 
objects databases (MOBs) by considering the inaccuracy of sampling and positioning systems, where 𝛿 
represents a possible location imprecision. Similarly, Yarovoy et al. (2009) considered timestamp as a fixed 
quasi-identifier (QID) attribute for all MOBs to avoid the combining of different anonymization groups by  
an attacker. Monreale et al. (2010) proposed a method for achieving anonymity by defining a 
transformation of the original GPS trajectories based on spatial generalization and 𝑘-anonymity. The 
novelty relied on finding a generalization scheme that depended directly on the input trajectory dataset 
instead of a fixed grid hierarchy. Hu et al. (2010) proposed a new generalization paradigm, called local 
enlargement, for a given sensitive event dataset, which guaranteed that user locations were enlarged 
enough so that each event was covered by at least 𝑘  users. Virtual Trip Line (VTL) (Hoh et al. 2008) 
represents a concept of geographic marker that is placed to avoid specific privacy sensitive locations which 
allow aggregating and cloaking several location updates based on trip line identifiers, without knowing 
the actual geographic locations of these trip lines. Hoh et al. (2012) proposed a traffic monitoring system 
design based on VTLs, and Sun et al. (2013) proposed a VTL zone system for privacy protection in fine-
grained urban traffic modeling applications. 

For suppression methods, Terrovitis and Mamoulis (2008) defined an attacking model, in which different 
adversaries had different background knowledge, as a set of projections on a trajectory dataset. A greedy 
method was proposed that iteratively transformed long and detailed projections into smaller and simpler 
ones to suppress selected locations from the original trajectories until a privacy constraint was satisfied. 
Fung et al. (2009) proposed a LKC-privacy definition that could avoid attacking identity linkages and 
attribute linkages. The model transformed a raw dataset into an anonymous one by a sequence of 
suppressions. Based on that, Chen et al. (2013) first introduced local suppression to achieve a tailored 
privacy model for trajectory data anonymization, which allowed the adoption of various data utility 
metrics for different data mining tasks. Cicek et al. (2014) proposed a 𝑝 –confidentiality model which 
centered on the probability of a user visiting a sensitive location with a 𝑝 input parameter to ensure 
location diversity. 

Data privacy-related research and applications in the transportation area have been very limited, and 
primarily belong to indistinguishability models. Ghasemzadeh et al. (2014) proposed a local suppression 
model, named LK-anonymity, for achieving anonymity in a trajectory database, which guaranteed that, in 



a trajectory database, for any non-empty sub sequence with a length less than (or equal to) L must have 
a count greater than, or equal to, K in the database. Additionally, Gao et al. (2019) quantitatively measured 
the risk of privacy disclosure, in a license plate recognition (LPR) dataset, caused by re-identification 
attacks based on the concept of k-anonymity. A variety of factors were examined to determine the degree 
of anonymity of an individual, including temporal granularity and size of published data, local versus non-
local vehicles, and continuous versus non-continuous observations. It was found that five spatiotemporal 
records were enough to uniquely identify about 90% of individuals. A suppression solution and a 
generalization solution were proposed to quantify the privacy-and-utility trade-off. He and Chow (2019) 
proposed a privacy control algorithm, based on information-theoretic k-anonymity for private operators, 
to safely share complex network-oriented data objects. The algorithm was proven to converge sub linearly 
toward a constrained maximum entropy under certain asymptotic conditions, with a measurable gap.  

While these research efforts have been shown to be effective in some practical applications, 
indistinguishability models have required us to predefine or assume an attacker’s background knowledge. 
However, it has become challenging (or even impossible) to enumerate an adversary’s possible 
background knowledge before an attack occurs. As such, the indistinguishability privacy principle has been 
proven to be prone to privacy attacks, such as background knowledge attacks, and homogeneity attacks. 
To overcome these shortcomings, differential privacy was proposed as a strict definition of the 
uninformativeness privacy principle that makes no assumptions about the power or background 
knowledge of a potential adversary.  

Based on differential privacy, Chen et al. (2012) first proposed PPDP algorithms for sequential data. A 
variable-length synthetic data, named n-grams, and based on the Markov assumption, was published, 
which described trajectories as transition probabilities based on a past history of (n-1) locations. Mir et al. 
(2013) introduced DP-WHERE, a differentially private synthetic trajectory generator that represented 
trajectory data as probability distributions, instead of directly modeling the sequential data at the level of 
an individual. He et al. (2015) presented DPT, a hierarchy reference system, to synthesize mobility data 
based on raw GPS trajectories of individuals. Xiao and Xiong (2015) proposed a definition of 𝛿-location set 
to account for the temporal correlations in location data so that true locations could be hidden within a 
single trajectory. (Xiao and Xiong 2015) extended the definition of 𝛿-location set and adopted a data 
release mechanism of an isotropic space, generated a “noisy" location, and transformed that noisy 
location back to the original space. Gursoy et al. (2018) proposed a probability-distribution-based 
approach, named DP-Star, which constructed a density-aware grid in order to preserve spatial densities. 
However, the works described above considered trajectories as sequences that did not include temporal 
information, although timestamp contained important information that was very useful for trajectory 
data analysis. Liu et al. presented VTDP, a fine-grained vehicle trajectory data sanitization framework 
which releases the attributes of IDs, positions, speeds, accelerations and timestamps under differential 
privacy guarantee (Liu et al. 2019). Due to the fine time granularity, the time duration of the continuous 
data that can be processed is usually short. Differential privacy of the mutual correlation of a trajectory 
pair can be found in (Lu et al. 2018). 

Due to the high dimensionality of trajectory data that contain both timestamp and location information, 
it is challenging to achieve the goal of publishing actual trajectory data by directly adding noise with 
Laplacian or exponential mechanisms (McSherry and Talwar 2007). One way is to represent trajectory 
data as a tree. SeqPT (Chen et al. 2012) was the first tree-based trajectory PPDP algorithm to represent 
location sequence as a path from root node to leaf node, with a count of the sub-sequence frequent 
pattern stored in the tree node. Laplacian noise was added to the count to determine whether the subtree 
would keep growing on the corresponding node. In the process of growing the subtree, all locations had 
to be calculated. SeqPT obtained good utility for sequence data, but was limited in applying it to spatial-



temporal trajectory data. Due to the addition of timestamps, data dimensions grew exponentially and the 
amount of calculation also increased with the height of the tree. Our experiment shows that SeqPT is not 
suitable for high-dimensional spatial-temporal trajectory data and a large tree height (to be discussed 
later in this manuscript).  

SafePath (Khalil et al. 2018) improved SeqPT by introducing a variable height and degree taxonomy tree. 
The purpose of such a design was to reduce the possibility of generating an empty node, and to speed up 
the process of filtering all possible timestamp and location combinations, when growing a subtree for 
each node. Although the algorithm efficiency improved, when compared with SeqPT, especially when 
dealing with real spatial-temporal trajectory data with high-dimensional attributes of timestamp and 
location, it is found that a taxonomy tree consumed part of the privacy budget and, at the same time, 
leads to a relatively low utility of sanitized trajectory data.  

In summary, while many researchers have studied the problem of PPDP, research in the transportation 
area has been very limited. It remains a challenging task to balance algorithm efficiency and data utility 
under a strict privacy definition. Two models from the literature that are closest to our research, SeqPT 
and SafePath, are chosen as the benchmarks for testing the performance of our proposed algorithm. 

3. Preliminaries 
As a convenient reference, the mathematical notations used in this section are presented below.  

𝒟: Trajectory dataset 
𝒟* : Sanitized trajectory dataset output by PPDP algorithm 
𝒯: Timestamp domain 
ℒ: Location domain 
𝑡: Timestamp, 𝑡 ∈ 𝒯 
𝑙: Location, 𝑙 ∈ ℒ 
𝒫𝒯: Prefix tree 
𝑅𝑜𝑜𝑡: Root of prefix tree 𝒫𝒯 
𝐸: Set of edges of prefix tree 𝒫𝒯, each edge represents a pair of timestamp and location 
𝑉: Set of nodes of prefix tree 𝒫𝒯, each node stores the count of a sub-trajectory 
𝑣6: A tree node in set 𝑉 
𝑐6: A count number on node 𝑣6 
𝑒69: A tree edge in set 𝐸 and an in-edge of node 𝑣6 
𝑒:;<: A tree edge in set 𝐸 and an out-edge of node 𝑣6 
𝑡6𝑙6: A trajectory point on edge 𝑒69, 𝑡6 ∈ 𝒯, 𝑙6 ∈ ℒ 
𝑡6>?𝑙6>?: An adjacent trajectory point with 𝑡6𝑙6 on edge 𝑒:;< , 𝑡6>? ∈ 𝒯, 𝑙6>? ∈ ℒ 
ℎ: Prefix tree height 
𝜃: Threshold to determine if a noisy prefix tree node should be deleted or not 
𝑡𝑟: Trajectory of a trip that include pairs of timestamp and location, represented by 𝐸 in a prefix tree 
𝜖: Privacy budget 
𝛿: Parameter that relaxes differential privacy requirements 
𝑀: A differential privacy randomized mechanism 



Ω: Every set of outputs of mechanism 𝑀 
Pr[𝑀(𝒟) ∈ Ω]: Probability of 𝑀(𝒟) ∈ Ω 
𝑓: Any function 
ℝK: A real value set, which is the output domain of function 𝑓 
∆𝑓: Sensitivity of function 𝑓 
𝜆: Parameter of Laplacian distribution 
𝑙N: The 𝑙-th level of the prefix tree 
𝜖ON: A function that represents the amount of privacy budget for the 𝑙-th level in prefix tree 
𝜎: Parameter of privacy distribution function 𝜖ON 
𝜃ON: A function that represents the value of threshold for the 𝑙-th level in prefix tree 
𝑘, 𝑏: Parameters of function 𝜃ON 
𝑞: A query composed of several pairs of timestamp and location 
|𝑞|: Length of query 𝑞 

𝑇(𝑞): The set of user trajectories that contains 𝑞 
𝑞(𝒟): Count query function on dataset 𝒟, it returns the count of query 𝑞 on 𝒟 
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒WXX:X: Relative error rate of count queries 
𝑠: A sanity bound used in calculating relative error 
KL: A matrix representing travel time background knowledge between locations  
𝑘𝑡6\: Elements in matrix KL, represent the minimum arriving time between location 𝑙6 and 𝑙\ 

𝑡𝑣𝑎𝑙: Time interval between in-edge and out-edge of a tree node 
ℒX: A reduced location domain 
𝑃𝑟

_N
: The probability of an empty node having noisy count greater than or equal to 𝜃ONN 

𝔼: The expected value of number of empty nodes that were incorrectly selected 
 

3.1. Trajectory data 

This paper focuses on the PPDP problems of trajectory data collected by transit smart cards. When 
travelers board or alight from transit vehicles, their payment histories, which represent their travel 
trajectories are collected. Two basic features of such trajectory data are: 1) spatial-temporal, meaning 
such data contains both timestamp and location attributes, and 2) sequential, meaning the timestamp 
and location pairs are ordered. A definition of trajectory data is given below first, and some statistics of 
the data analyzed for this manuscript are described.  

Definition 1 (Trajectory data) A trajectory 𝑡𝑟 is defined as a sequence of timestamp 𝑡6  in timestamp 
domain 𝒯 and location 𝑙6 in location domain ℒ that contains all travel records collected with an ID card. 

𝑡𝑟 = 𝑡?𝑙? → ⋯ → 𝑡6𝑙6 → 𝑡6>?𝑙6>? → ⋯ → 𝑡9𝑙9 (1) 

Table 1 gives an example of a trajectory dataset which includes a total of eight trajectory data. Among 
them, the first trajectory data 𝑡𝑟? travels from location Y at time slot 1 to location X at time slot 4. Note 
that 𝑡6  is strictly increasing in the sequence, so that we always have 𝑡6 < 𝑡6>?. |𝑡𝑟| denotes the trajectory 



length which is the number of timestamp and location pairs in 𝑡𝑟, for example we have |𝑡𝑟?| = 2 in Table 
1. 

Table 1. Trajectory dataset 

ID Trajectory 

𝑡𝑟? 1Y→ 4X 

𝑡𝑟h 2X→ 3Z 

𝑡𝑟j 2X→ 3Z→ 4Y 

𝑡𝑟k 2Y→ 4X 

𝑡𝑟l 2Y→ 3Z 

𝑡𝑟m 3X→ 4Y 

𝑡𝑟n 1Z→ 2X→ 3Z 

𝑡𝑟o 1Z→ 4X 

A trajectory 𝑡𝑟p = 𝑡?p 𝑙?p → 𝑡hp 𝑙hp → ⋯ → 𝑡q<Xrq
p 𝑙q<Xrq

p  is a prefix of another trajectory 𝑡𝑟 = 𝑡?𝑙? → 𝑡h𝑙h → ⋯ →

𝑡|<X|𝑙|<X| , denoted by 𝑡𝑟′ ≺ 𝑡𝑟 if and only if t𝑡𝑟′t ≤ |𝑡𝑟| and ∀1 ≤ 𝑖 ≤ t𝑡𝑟′t, 𝑡6𝑙6 = 𝑡6
′𝑙6
′
. For example, in 

Table 1, 𝑡𝑟h is a prefix of 𝑡𝑟j but not 𝑡𝑟n. 

We focus on the anonymized urban metro IC card data collected from Shenzhen, China in June 2016. The 
dataset includes six metro lines and a total of 137 stations, covering a majority of the geographic area of 
the city. The data attributes include a user ID, that has been anonymized and represents a unique 
passenger, the timestamp that the traveler checked into/out of a station, the location (the name of the 
station), fare paid, and other attributes that are less relevant for this research. Overall, the dataset 
contains 220 million metro IC card records, from 2.8 million passengers, over 29 days, which accounts for 
about 10% of the resident population in Shenzhen.  

Figure 2 and Figure 3 show the geographic location and traffic flow distribution at each metro site included 
in our dataset. Figure 2 shows the metro network of Shenzhen, in which the lines (in six different colors) 
show different metro lines; the colored dots represent metro stations. Figure 3 shows traffic statistics for 
each station. Each column represents the number of check-in (purple) and check-out (yellow) trips per 
day at a subway station. We can see in Figure 3 that the trip distribution varied significantly among 
different stations. The top ten stations, with the most check-in and check-out trips, generate about 20% 
of the trip records, whereas some other stations have significantly lower traffic.  

 
Figure 2. Metro network of Shenzhen. 



 
Figure 3. Traffic statistic for each station. 

3.2. Prefix tree 

A prefix tree is a kind of tree data structure that is often used to store a dictionary table or some sequence 
of characters. The trajectory data concerned in this manuscript is a kind of spatial-temporal sequence data, 
which makes a prefix tree a good match. A trajectory prefix tree is defined below. 

Definition 2 (Trajectory Prefix Tree). A prefix tree 𝑃𝑇 of a trajectory dataset 𝒟 is defined as a triplet 𝒫𝒯 =
(𝑅𝑜𝑜𝑡, 𝐸, 𝑉) , in which 𝐸  is the set of edges with each edge representing timestamp and 
location	𝑡6𝑙6 	𝑝𝑎𝑖𝑟𝑠	in a trajectory. Timestamp and location pairs, on a path from root to node, form a 
trajectory or a prefix of the trajectory. 𝑉 is a set of nodes on which numbers represent a count of the 
trajectories on the path from root-to-node. The number on 𝑅𝑜𝑜𝑡 ∈ 𝑉  represents a count of the 
trajectories in dataset 𝒟. An edge that connects a node and its parent node is called an in-bound edge 
(referred to as in-edge) of the node, whereas an edge that connects a node and its child node is called an 
out-bound edge (referred to as out-edge) of the node. 

A trajectory prefix tree that corresponds to the dataset in Table 1 is given in Figure 4. 

 
Figure 4. Prefix tree of the trajectories in Table 1. 
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3.3. Differential privacy 

Differential privacy is a strong privacy definition. Assuming that two databases differ by only one record, 
the results of analyzing these two databases by using a differential privacy method will not show a 
significant difference. In other words, the results of an analysis would be independent from the presence 
of a particular record for a specific individual. Hence, it cannot be used in any way to violate an individual’s 
privacy.  

Differential private trajectory data publishing aims to output aggregated trajectories without disclosing 
any passenger’s information. There are two scenarios of differential private data publishing, namely 
interactive and non-interactive. This manuscript focuses on non-interactive trajectory data publishing, in 
which all queries are submitted to a data owner at the same time, and the owner can provide answers 
with full knowledge of the query set. A non-interactive setting can generate more noise than an interactive 
setting, so it requires a more adaptive privacy budget allocation mechanism. Below is a formal differential 
privacy definition in a non-interactive setting: 

Definition 3 (Differential Privacy). A randomized mechanism 𝑀  gives	𝜖-differential privacy if for any 
neighboring datasets 𝒟? and 𝒟h differing by at most one record and for any possible sanitized dataset 
𝒟* ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀),                                                                                      

    Pr[𝑀(𝒟?	) = 𝒟*] ≤ 𝑒𝑥𝑝(𝜖) × Pr{𝑀(𝒟h) = 𝒟*|      (2) 

where the probability is taken over the randomness of 𝑀.(Chen et al. 2011) 

The parameter 𝜖 refers to the privacy budget, which controls the level of privacy guarantee achieved by 
mechanism 𝑀. A smaller 𝜖 represents a stronger privacy level and can cause more noise to be added to 
the true answer. 𝜖 typically ranges 0 < 𝜖 ≤ 1. 

Differential privacy has two composition properties: sequential composition and parallel composition, 
which allow us to design more sophisticated algorithms. Sequential composition applies to situations 
where a sequence of differentially private computations takes place with the same set of data, and the 
entire sequence provides a privacy guarantee with the sum of all computations’ privacy guarantees. 
Parallel composition is suitable for cases, where a sequence of differentially private computations takes 
place on a disjoint set of data, and the entire sequence gives the worst privacy guarantee among all of the 
computation’s privacy guarantees. 

3.4. Attacking model 

Most attacks against trajectory data that are reported in the literature belong to the category of 
background knowledge attacks (also known as record linkage attacks) as defined by Fung et al. (2010). 
Background knowledge attacks aim at mapping records in a target trajectory dataset that is based on the 
background knowledge acquired by the attacker. The background knowledge can include personal travel 
habits or sensitive individual information, such as work location and home address. This information can 
be easily collected in many ways. 

A successful attack enables the attacker to establish a link with records in a dataset, which leads to privacy 
leakages, when the records include sensitive information. Through these record linkages, one can analyze 
a traveler’s work location, home address, activity pattern, and other sensitive information, based on the 
passenger's trajectories. 

Our algorithm is based on a strict differential privacy definition. We define an attacking model by assuming 
that an attacker has the background knowledge of all records, except one on trajectory dataset 𝒟 =
~𝑡𝑟?, 𝑡𝑟h, … , 𝑡𝑟|𝒟|�, and that he (or she) cannot conclude the last trajectory from a differentially private 



version of 𝒟 (denoted by 𝒟)� . As the random noise is added to the trajectory count, the sub-trajectories 
with counts, smaller than the threshold, will be deleted. An attacker cannot link background knowledge 
with one record, so the developed algorithm can effectively prevent record linkage attacks. 𝒟*  also 
guarantees its utility, in terms of count queries, which is widely used for various data analysis tasks. 

To measure the utility of an output sanitized trajectory dataset 𝒟* , relative error is defined below through 
the accuracy of count queries 𝑞(𝒟). Count query, a common function on a trajectory dataset, returns the 
number of sub-trajectories in a trajectory dataset. It is also a basic operation of many data mining 
algorithms. For the quality of the sanitized trajectory data to be published, the accuracy of count queries 
is an important metric. A count query function is defined in the following. Query	𝑞 is a sub-trajectory of 
trajectory	𝑡𝑟, denoted by 𝑞 ⊂ 𝑡𝑟, if and only if |𝑞| ≤ |𝑡𝑟| and ∀𝑡6𝑙6 ∈ 𝑞, 𝑡6𝑙6 ∈ 𝑡𝑟. |𝑞| is the length of query 
𝑞, which represents the number of timestamp and location pairs in 𝑞. Count query 𝑞  on a trajectory 
dataset 𝐷, denoted by function 𝑞(𝒟), returns the number of 𝑞 in 𝒟. Take the trajectory dataset in Table 
1 as an example, and suppose 𝑞 = 2X → 3Z, 𝑞(𝒟) = 3, as 𝑡𝑟h, 𝑡𝑟j and 𝑡𝑟n all contain 𝑞.  

Definition 4 (Relative Error) Relative error of count queries on synthetic dataset 𝒟*  is defined as follows: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒WXX:X = �
q𝑞�𝒟*� − 𝑞(𝒟)q
𝑚𝑎𝑥{𝑞(𝒟), 𝑠}

� (3) 

where 𝑠 is a sanity bound and is suggested to take a value of 0.1% of the dataset size. (Khalil et al. 
2018). 

4. Methodology 
In this section, we present an algorithm that publishes differential private trajectories. Section 4.1 gives 
an overview of our algorithm, while Section 4.2 describes each step of the algorithm. In the last part, 
Section 4.3, we present a theoretical analysis of privacy and the complexity of our algorithm. 

4.1. Methodology overview 

An algorithm is presented that can publish a differential private sanitized trajectory dataset. Compared 
with previous research, the developed algorithm features three improvements. First, as opposed to the 
commonly seen taxonomy tree structure at each level, a new prefix tree (without a taxonomy tree) utilizes 
privacy budgets better and improves the utility of output. The second is an incremental privacy budget 
allocation model which replaces the average privacy budget allocation scheme with a new model that 
distributes the privacy budget based on a distribution of count values at each prefix tree level. This module 
also helps with improving the utility of sanitized data under a fixed privacy budget. The last contribution 
is a spatial-temporal dimensionality reduction model, which narrows the timestamp and location 
combination domain and avoids dimension explosion without consuming any privacy budget. This module 
is intended to reduce the total run time. 

The framework of our methodology (shown in Figure 5) mainly includes three modules. First, in the 
Initialization module, a raw dataset is scanned once to build an initial prefix tree following the new prefix 
tree structure. Then, in the HandleSubTree module, Laplacian noise is added to each tree node level of 
the developed incremental privacy budget allocation model and the spatial-temporal dimensionality 
reduction model. In the third part, the generated noise prefix tree is traversed and the sanitized dataset 
is generated as algorithm outputs.  



 
Figure 5. Algorithm framework. 

A new prefix tree structure without taxonomy tree as sublevel: Due to the simultaneous presence of 
timestamp and location information in trajectory data, that data has high dimensionality and sparse 
characteristics. As such, a new prefix tree is used as a data structure to store the trajectory data and the 
sub-trajectory count. The developed model departed from existing research in that the commonly used 
taxonomy tree in each tree sub-level is not used, which helps with filtering empty nodes at the expense 
of consuming privacy budget. The rationale behind this is that, we believe that a taxonomy tree brings the 
problem of consuming the privacy budget and results in a reduction in the utility of sanitized trajectory 
data. Compared with previous research, that utilized a taxonomy tree to speed up the process of building 
the tree structure, our approach uses a new prefix tree, combined with a spatial-temporal background 
knowledge matrix, which does not consume extra privacy budget. 

A prefix tree is described as 𝒫𝒯 = (𝑅𝑜𝑜𝑡, 𝐸, 𝑉) , in which 𝐸  represents a combination of pairs of 
timestamp and location and 𝑉 represents a count of a sub-trajectory. Suppose there is a non-leaf and non-
root node 𝑣6 ∈ 𝑉, an edge that connects 𝑣6 and its parent node is an in-edge 𝑒69 ∈ 𝐸 of 𝑣6, whereas an 
edge that connects  𝑣6 and its child node is an out-edge 𝑒:;< ∈ 𝐸. When growing new out-edge to build a 
new tree level, each level has a privacy budget of 𝜖ON in our algorithm, as our model does not build any sub-
level during the process of forming a new prefix tree level.  

On the contrary, SeqPT and SafePath build both a timestamp taxonomy tree and a location taxonomy tree 
in the process of growing each new tree level. Suppose the height of the taxonomy tree is 𝑑, the privacy 
budget consumed on the taxonomy tree at each level is (h×K�?)

h×K
× 𝜖ON, and the privacy budget that is left 

to the real tree node is only 𝜖ON −
(h×K�?)
h×K

× 𝜖ON =
�_N
h×K

. Whereas, in the proposed model, we have the entire 
privacy budget 𝜖O  allocable to all nodes at each level. So, although the structure of the taxonomy tree 
helps with filtering empty nodes, it consumes a majority of the privacy budget to build the taxonomy tree, 
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and the privacy budget left for the final tree node is only a very small proportion, leading to a large noise 
addition.  

The new prefix tree is the basic data structure used to represent the trajectory dataset in our algorithm. 
An initial prefix tree is built first by inputting a raw trajectory dataset, and a noise prefix tree that satisfies 
the differential private definition is set up by adding noise to the counts on each tree node level, from top 
to bottom. Finally, the sanitized dataset is obtained by traversing a noise prefix tree once. The data 
structure of the new prefix tree is not only related to the problem of privacy budget allocation but, also, 
a combination node filtering. The previous problem effects output data utility, and the latter problem 
affects the efficiency of the algorithm. 

Incremental privacy budget allocation model: A given privacy budget 𝜖 needed to be allocated level by 
level to construct a noise prefix tree to satisfy the differential privacy definition. As trajectories in each 
subtree are disjointed, satisfying a parallel composition feature of the differential privacy definition, nodes 
at the same level share the same privacy budget 𝜃ON. In existing research, such as SeqPT and SafePath, at 
each level, top down, the budget is evenly distributed 𝜃6 = 𝜃6>?, 1 ≤ 𝑖 < ℎ. However, we argue that, as 
the statistical characteristics of each level are different, and the privacy budget determines the amount 
of noise added to each node, then the average budget allocation mechanism is not reasonable.  

Suppose node 𝑣6 ∈ 𝑉 is the parent node of 𝑣6>? ∈ 𝑉,	𝑐6  and 𝑐6>?are count values on node 𝑣6 and 𝑣6>?, in 
which 1 ≤ 𝑖 < ℎ. According to the characteristics of the count value on the prefix tree node, 𝑐6  is equal to 
the sum of count values on all of its child nodes. As such, it can be concluded that the count value on the 
node decreases by level, from top down, 𝑐6>? ≤ 𝑐6. We propose an incremental privacy budget allocation 
model, based on such characteristics, in which both privacy budget  𝜖ON and threshold 𝜃ON of each level are 
the results of two functions of tree level 𝑙N.	𝜎, 𝑘, 𝑏 are three adjustable parameters. 

       𝜖ON = 	
O�(ON>�)

∑ O�(ON>�)�
_��

× 𝜖, 𝜎 > 0          (4) 

       𝜃ON = 𝑘 × 𝑙N�? + 𝑏,	𝑘 > 0,	𝑏 > 0            (5) 

Privacy budget function  𝜖ON is increasing by level, from the top down, 𝜖6 < 𝜖6>?, 1 ≤ 𝑖 < ℎ. The reason is 
that, under the same privacy budget, the higher the count value is, the smaller the impact would be due 
to the added noise. On the other hand, the threshold function 𝜃ON  decreases by level, 𝜃6 > 𝜃6>?, 1 ≤ 𝑖 <
ℎ, as the average count value on nodes also decreases by level. 

We implement the incremental privacy budget allocation model in the module of a HandleSubTree, as 
shown in Figure 5. The privacy budget  𝜖ON and threshold 𝜃ON are functions of tree level 𝑙N, which are also 
determined by the total privacy budget 𝜖 and other parameters, such as 𝑘, 𝑏, and 𝜎. The amount of noise 

added is 𝐿𝑎𝑝 �∆�
�_N
� = 𝐿𝑎𝑝 �?

�_N
�, in which ∆𝑓 = 1 because the sensitivity of the counting function is 1, so 

the noise is inversely proportional to privacy budget 𝜖ON. Nodes, at the same level, share the same 𝜖ON and 
𝜃ON. All existing nodes are added noise to the raw count value	𝑐6. If the noise value is greater than, or equal 

to 𝜃ON, that is 𝑐6 + 𝐿𝑎𝑝 �
?
�_N
� ≥ 𝜃ON , the node is retained but, otherwise, it is deleted. Nodes that do not 

previously exist are added noise to 0; nodes with results greater than, or equal to, 𝜃ON , that is 0 +

𝐿𝑎𝑝 �?
�_N
� ≥ 𝜃ON, are retained until a summation of the children nodes’ noise counts exceed the value of the 

parent node, ∑ 𝑐6>? OO	¡¢6OK	9:KW£ ≥ 𝑐6. Due to our incremental privacy budget allocation mechanism, the 
noise added to the original prefix tree has less impact on the raw dataset than the models under an even 
privacy budget allocation. 



Spatial-temporal dimensionality reduction model: In order to satisfy 𝜖-differential privacy definition, all 
possible timestamp and location pairs are enumerated when building a sublevel of each node in a prefix 
tree. Such enumeration brings significant, yet unnecessary, challenges to computational efficiency. 
Although some simple rules could be designed to narrow the search domain, such as the constraint of 
timestamps on tree edges (from parent to child) that strictly increase as the dimensions of the timestamp 
and location increase. The number of combinations becomes very high and inevitably slow the algorithm. 
In this section we propose a set of rules to reduce the spatial and temporal dimensions.  

 
Figure 6. In- and out- edge of node. 

Network geometric accessibility constraint. Suppose the in-edge of node 𝑣6  is 𝑒69 ∈ 𝐸 , and 𝑡6𝑙6  is the 
timestamp-location pair on edge 𝑒69. 𝑡6>?𝑙6>? is the timestamp-location pair on edge 𝑒:;< , as shown in 
Figure 6, 𝑡6 𝑙6 and 𝑡6>?𝑙6>? are adjacent points in a trajectory. In the previous work, all locations in	ℒ are 
added on the new out-edges, which means the entire location domain ℒ is treated as a candidate location 
domain each time a node 𝑣6 needed to grow new out-edges 𝑒:;<. However, we know that there must 
have been locations 𝑙6>? ∈ ℒ that are not reachable within the time interval 𝑡6>? − 𝑡6. An accessible and 
reduced location domain ℒX ⊆ ℒ is proposed as the candidate location domain at each time new out-
edges grew. 

Minimum required travel time matrix 𝐾𝐿. Matrix KL is defined to store the background knowledge of the 
minimal required travel time between two locations. The matrix dimension is |ℒ| × |ℒ|, with |ℒ| being the 
size of location domain. 𝑘𝑡6\ in matrix KL represents the minimum arrival time from 𝑖-th location to 𝑗-th 
location in location domain	ℒ. 

    KL|ℒ|×|ℒ| = §
𝑘𝑡?? ⋯ 𝑘𝑡?|ℒ|
… 𝑘𝑡6\ …

𝑘𝑡|ℒ|? … 𝑘𝑡|ℒ||ℒ|
¨    

   (6) 

As shown in Figure 6, prefix tree 𝒫𝒯 grows a subtree of node 𝑣6 ∈ 𝑉 , after processing the out-edges that 
already exist in the raw trajectories, other out-edges need to be selected randomly from timestamp and 
location domain. 1) First, we randomly select a timestamp 𝑡6>? ∈ 𝒯 that satisfies 𝑡6>? > 𝑡6  as timestamp 
on a new out-edge 𝑒:;< , then calculate a time difference 𝑡6>? − 𝑡6  between timestamps on edge 𝑒69 and 
𝑒:;<. 2) According to the difference, we traverse the row in matrix KL which represents the minimum 
required travel time from location 𝑙6 to all other locations in	ℒ. 3) Only those locations with a minimum 
travel time 𝑘𝑡6\ ≤ 𝑡6>? − 𝑡6  are added as candidates to the location set ℒX .  

As ℒX ⊆ ℒ, the candidate location domain has narrowed following the time constraint between the in- 
and out- edge during the growth of the prefix tree. Since matrix	KL could be calculated, based on the 
distance between two locations and the free flow sped, the process of building	a	KL matrix does not 
consume any privacy budget, making it one of the main differences between our algorithm and that of 
previous works. As illustrated in Figure 5, the model is realized in a module of the HandleSubTree.  

𝑡6𝑙6 
In-edge 𝑒69 

Out-edge 𝑒:;<  

Node 𝑣6 𝑐6 

𝑡6>?𝑙6>? … … 



4.2. Algorithm steps 

Algorithm 1, the main function, included three parts: Initialization, HandleSubTree, and TraverseOutput, 
as illustrated in Figure 5. The input data is trajectory dataset 𝒟, and the output is sanitized trajectory 
dataset 𝒟* . 

In Algorithm 1, raw trajectory dataset 𝒟 is scanned once to build a trajectory prefix tree 𝒫𝒯, with a given 
height ℎ  (Algorithm 1, Line 1), and then noise is added to 𝒫𝒯,  layer by layer, iteratively, to build a 
differential private prefix tree in a top-down fashion (Algorithm 1, Line 2-11). In the last step, a noisy prefix 
tree is traversed once and output a sanitized trajectory dataset 𝒟*  (Algorithm 1, Line 12-13). 

In order to interpret the algorithm better, we run our algorithm on trajectories in Table 1. Suppose prefix 
tree height is set to ℎ = 3, thresholds in level 1 to level 3 are set to 𝜃? = 3, 𝜃h = 2, 𝜃j = 1. Figure 7 shows 
a possible output prefix tree of our algorithm. As we can see, from the up down order in the tree, noise is 
added to the counts on each node. The nodes which have counts under the threshold are removed. 
Consistency is satisfied between all parent and child nodes, that is, the count on each parent node is the 
sum of all its child node counts. 

 

Figure 7. Noisy prefix tree of the trajectories in Table 1 

Algorithm 1 MainFunc 

Input: Raw trajectory dataset 𝒟  , Timestamp domain 𝒯 , Location 
domain ℒ 

Input: Height of the prefix tree ℎ 

Input: Privacy budget 𝜖  

Input: Parameter 𝜎 ,	𝑘 ,	𝑏  

Output: Differentially-private trajectory dataset 𝒟*  

1: Scan  dataset 𝒟 once to build a Prefix tree 𝒫𝒯 with height of ℎ; 
2: 𝑖 = 1;  
3: while 𝑖 ≤ ℎ do  
4:      𝜖ON = 	

O�(6>�)
∑ O�(6>�)�
ª��

× 𝜖; 

5:      𝜃ON = 𝑘 × 𝑖�? + 𝑏; 
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6:      for each node	𝑣6 in level 𝑖 of  𝒫𝒯 do  
7:           add noise to the count value stored in node	𝑣6; 
8:           HandleSubTree (𝑣6, 𝜖ON, 𝜃ON) ;  
9:      end for 
10:      i + + ;   
11: end while  
12: 𝒟*  ← TraverseOutput (𝒫𝒯) ; 
13: return 𝒟*  ; 

One of the most important steps in Algorithm 1 is to grow a subtree of each parent node 𝑣6 by selecting 
out-edges of 𝑒:;<. This is implemented in Procedure 1. When handling a sub-level, noise is added first to 
the count on each existing node, according to privacy budget 𝜖ON (Procedure 1, Line 3). If the noise count 
on a node is greater than, or equal, to threshold 𝜃ON, the node is retained (Procedure 1, Line 4-7). After 
handling all existing nodes (Procedure 1, Line 2-11), if the summation of the noise on all existing child 
nodes is less than the noise count 𝑐6  on the parent node (Procedure 1, Line 12), then more timestamp and 
location pairs (that did not exist in the current edges) are randomly selected from a reasonable timestamp 
and location domain, according to the restricted location domain ℒX(Procedure 1, Line 12-27). The count 
value on the newly selected nodes equals 0 plus noise (Procedure 1, Line 16), and if the result is greater 
than, or equal to, 𝜃ON, the node is added to the child node set (Procedure 1, Line 17-19). The newly selected 
nodes, with an initial count of 0, are called “empty node”. If an empty node is selected, the noise count is 
added to the summation output	𝑠𝑢𝑚	(Procedure 1, Line 20-21). The summation 𝑠𝑢𝑚 is used to determine 
when to stop growing out-edges through the accumulation of counts on the child nodes. When the value 
of summation is greater than, or equal to, the count value 𝑐6, the loop ended (Line 23-25). 

Procedure 1 HandleSubTree 

Input: Parent node 𝑣6, noisy count 𝑐6, location 𝑙6, time 𝑡6  

Input: Privacy budget 𝜖ON, Threshold 𝜃ON  

Output: Noisy child nodes set 𝒩 

1: 1:  𝑠𝑢𝑚 = 0; 
2: 2:  for each child node 𝑣6>? of 𝑣6 do 

3:  𝑣6>?. 𝑐𝑜𝑢𝑛𝑡 = 𝑣6>?. 𝑐𝑜𝑢𝑛𝑡 + Lap(1/𝜖ON); 
4:   if 𝑣6>?. 𝑐𝑜𝑢𝑛𝑡 ≥ 𝜃O  then 
5:     𝒩 ← 𝑣6>?; 
6:     𝑠𝑢𝑚+= 𝑣6>?. 𝑐𝑜𝑢𝑛𝑡; 
7:   end if 
8:   if 𝑠𝑢𝑚 ≥ 𝑐6 then  
9:      break; 
10:   end if 
11: end for 
12: while 𝑠𝑢𝑚 < 𝑐6 do  
13:     Randomly select a time 𝑡6>? ∈ 𝒯 and  𝑡6>? > 𝑡6  
14:     ℒX ← RestrictedLocDom (𝑙6 , 𝑡6>? − 𝑡6); 
15:     for each location 𝑙6>? ∈ ℒX  do 
16:         𝑐𝑜𝑢𝑛𝑡 = Lap(1/𝜖ON)+0; 
17:         if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝜃ON then 
18:             add 𝑒:;<  as a new out-edge with 𝑡6>?𝑙6>?; 
19:             add 𝑣6>? as a new child node; 



20:             𝑣6>?. 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡; 
21:             𝑠𝑢𝑚+= 𝑐𝑜𝑢𝑛𝑡; 
22:         end if 
23:         if 𝑠𝑢𝑚 ≥ 𝑐6  then  
24:              break; 
25:         end if 
26:     end for 
27: end while  
28: return 𝒩 ; 

A spatial-temporal dimensionality reduction model is implemented in Procedure 2. There are three input 
parameters: location knowledge matrix KL, location 𝑙6 ,  and a time interval 𝑡𝑣𝑎𝑙 . According to the 
timestamp and location pair 𝑡6 𝑙6 on the in-edge 𝑒69 of a parent node, a time 𝑡6>? > 𝑡6  is randomly selected 
from the time domain 𝒯 . Then, we calculate the time interval 	𝑡𝑣𝑎𝑙 = 𝑡6>? − 	𝑡6 , traverse the row 
corresponding to location 𝑙6 in matrix KL (Procedure 2, Line 1).The locations that have a minimum arrival 
time 𝑘𝑡6°, that is less than, or equal to, the time interval 𝑡𝑣𝑎𝑙 be added to the reachable location set ℒX  
(Procedure 2, Line 2-4)). The location on the out-edge 𝑒:;<  is randomly selected from ℒX , which is a subset 
of location domain ℒ. It could be found that the set of ℒX  is determined by the parameters of location 𝑙6 
and time interval 𝑡𝑣𝑎𝑙. As different in-edges have different timestamp and location pairs, they have 
different ℒX . 

Procedure 2 RestrictedLocDom 

Input: Location knowledge matrix KL  

Input: Location 𝑙6, time interval 𝑡𝑣𝑎𝑙 of parent node 

Output: A reachable location domain ℒX  

1: for each element	𝑘𝑡6°  of the row in the matrix KL presents location 𝑙6 do 
2:   if 	𝑘𝑡6° ≤ 𝑡𝑣𝑎𝑙 then 
3:       ℒX ← 𝑙° 
4:   end if 
5: end for 
6: Return ℒX  ; 

4.3. Theoretical analysis 

Algorithm Improvements  

We compare the proposed model with SeqPT model (Chen et al. 2012) and SafePath model (Khalil et al. 
2018). Both of them allocate privacy budget evenly on each level of the prefix tree. Every node at the 
same level share the privacy budget, regardless of the number of nodes at each level, due to the 
characteristics of the prefix tree. When the tree level gets deeper, the trajectory count becomes smaller, 
so that the same privacy budget has a greater impact on deep nodes. For this reason, our algorithm is 
designed to assign adaptive, variable privacy budgets ϵON and threshold 𝜃ON to different levels. 

SafePath improves tree structure by introducing a taxonomy tree to build multi hierarchies. Some empty 
nodes are filtered out earlier, but the taxonomy tree consumes part of the privacy budget at the same 
time, and the privacy budget used to build the prefix tree is thus reduced. On the contrary, the proposed 
algorithm implements a spatial-temporal dimensionality reduction model instead of a taxonomy tree to 
help filter out empty nodes.  



Number of descendant empty nodes 

Next, we focus on the analysis of the probability that an empty node is selected. As discussed in previous 
research, this probability is used as the basis for theoretical analysis of the algorithm. We argue that, in 
the case of a fixed privacy budget, the choice of empty nodes is a must. Also, the number of empty nodes 
is only related to the privacy budget and, whether the probability is low or high, the number of empty 
nodes is relatively stable. A lower probability would neither increase the privacy level nor increase 
sanitized data utility, although it would increase algorithm runtime. Obviously, when the number of empty 
nodes needed is fixed, the lower the probability is, and the longer the entire process would take. 
Therefore, reducing the probability of selecting an empty node would not improve the level of differential 
privacy protection but, instead, will reduce the efficiency of the algorithm. Our algorithm increases the 
probability by reducing the threshold in order to speed up the process of picking empty nodes. This is one 
of the reasons why our algorithm is more efficient than those in previous works (Chen et al. , Khalil et al.) . 

According to the following theoretical analysis, the probability is inversely proportional to 𝜖ON and 𝜃ON. In 
our algorithm, the noise of the empty node is added to 0. Let 𝑝(𝑥) = ?

h²
𝑒𝑥𝑝 ³�´

²
µ be probability density 

function of the Laplace distribution. Given sensitivity Δ𝑓 = 1 for a count query based on function 𝑓 and 
privacy budget portion 𝜖ON, we have 𝜆 = ·�

�_N
= ?

�_N
. Hence, 𝑝(𝑥) = �_N

h
𝑒𝑥𝑝(−𝑥𝜖ON). Given threshold 𝜃ON, the 

probability of an empty node having noise count 𝑥 + 0 ≥ 𝜃ON is 

     𝑃𝑟
_N
= 𝑃𝑟[𝑥 ≥ 𝜃ON] = ∫

�_N
h

∞
^_N

𝑒𝑥𝑝(−𝑥𝜖ON)𝑑𝑥 =
?
h
𝑒𝑥𝑝(−𝜖ON𝜃ON)      

   (7) 

Since −𝜖ON𝜃ON < 0, we have 𝑃𝑟
_N
< ?

h
.  

As 𝜖ON = 	
O�(ON>�)

∑ O�(ON>�)�
_N��

× 𝜖 < 𝜖 and 𝜃ON = 𝑘 × 𝑙N�? + 𝑏 < 𝑏 because 𝑙N ≥ 1, we have 𝑃𝑟
_N
> ?

h
𝑒𝑥𝑝(−𝜖 × 𝑏). 

It can be concluded that  ?
h
𝑒𝑥𝑝(−𝜖 × 𝑏) < 𝑃𝑟

_N
< ?

h
. 

For an empty node 𝑣6  at level 𝑖  and a noise prefix tree of our algorithm with height ℎ, the expected 
number of descendants of 𝑣6 that are all empty nodes can be calculated as below.  

     𝔼 = ³|ℒX||𝒯|𝑃𝑟 _N
µ
¢�6

< ³?
h
|ℒX||𝒯|µ

¢�6
         (8) 

Privacy guarantee  

Algorithm 1 consists of three steps, namely Initialization, a HandleSubTree, and TraverseOutput. Given 
the total privacy budget 𝜖, the first step merely converts the original trajectory dataset into the data 
structure of the trajectory prefix tree, so there is no privacy budget consumption in the first step. 

In second step, the HandleSubTree builds a noise prefix tree by iteratively constructing one level at a time 
based on the output of the first step. Since all nodes on the same level contain a disjoint set of trajectories, 
according to the parallel composition theorem, the entire privacy budget consumed in a level is shared by 

all of the nodes on the same level. Each level is a dedicated privacy budget portion 𝜖ON = 	
O�(ON>�)

∑ O�(ON>�)�
_N��

× 𝜖, 

since the height of the noisy prefix tree is ℎ, the HandleSubTree consumes the privacy budget in an 
amount that equals to ∑ 𝜖ON

¢
ON¹? = 𝜖. 

The step, TraverseRelease, processes the noise prefix tree without accessing the underlying raw 
trajectories, so there is no privacy budget consumption in this step. 

In summary, given 𝜖 as a user-input privacy budget, Algorithm 1 is 𝜖-differentially private. 



Complexity analysis 

The run time of Algorithm 1 consists of three parts, which include those spent on building an initial prefix 
tree, adding noise and selecting an empty node to build a noise prefix tree, and traversing and releasing 
the sanitized trajectories. Assume that the input trajectory dataset is 𝒟, that has |𝒟| trajectories, the 
output sanitized dataset is 𝒟*, that has q𝒟*q trajectories. The height of the prefix tree is ℎ, the size of time 
domain is |𝒯|, and the size of the location domain is |ℒ|. 

The process of establishing a prefix tree is to scan each trajectory once, insert it into the prefix tree as a 
path from the root to a leaf or non-leaf node. The maximum path length is ℎ. The time complexity of 
building a whole prefix tree is 𝛰(ℎ ∙ |𝒟|). 

The second step of adding noise and selecting an empty node to build a noise prefix tree is the most time-
consuming operation. For each selection, a timestamp 𝑡6>?, that is greater than the previous location’s 
timestamp 𝑡6, is randomly selected from time domain	𝒯. According to the selected timestamp𝑡6>?, a set 
of locations ℒX  is filtered based on location back knowledge matrix KL. The time complexity is 𝛰(|ℒ|). 
After adding Laplace noise, the timestamp and location pairs, whose noisy counts are greater than the 
threshold, are added to the prefix tree. Repeat the selection of 𝑡6>? ∈ 𝒯  and 𝑡6>? > 𝑡6  until the 
summation of the count values on all child nodes is greater than, or equal to, the noise count of the parent 
node. The time complexity is |𝒯|. The selection process is performed on all nodes, except the leaf nodes, 
and the number of executions has the same complexity with |𝒟| . Thus, the total complexity is 
𝛰(|𝒟| ∙ |𝒯| ∙ |ℒ|	) 

In the last step, the computation cost of generating the private release by traversing the noisy prefix tree 
once is 𝛰�ℎ ∙ q	𝒟*q�, which can be approximated as 𝛰(ℎ ∙ |𝒟|). 

Since ℎ  is a very small constant, as compared to |𝒯| ∙ 	 |ℒ| , the total complexity of Algorithm 1 is 
𝛰(|𝒟| ∙ 	 |𝒯| ∙ 	 |ℒ|). 

5. Numerical experiment  
This section describes a comprehensive analysis of the proposed algorithm. We evaluate the efficiency 
and scalability of the proposed algorithm, as well as the utility of the sanitized trajectory data used for 
counting queries. The real life datasets from the Shenzhen Metro smart card records, that are used, cover 
2.8 million smart card users. Table 2 lists the datasets used in the experiment, in which |𝒟| is the number 
of trajectories. Each trajectory corresponds to one user. |𝒯| represents the size of time domain, we define 
two adjacent timestamps 𝑡, 𝑡 + 1 in |𝒯|. The time interval between 𝑡 and 𝑡 + 1 is set to 15 minutes in 
our experiments. |ℒ| represents the number of locations. max|𝑡𝑟| represents the maximum length of 
trajectories in the dataset, and avg|𝑡𝑟| represents the average length of all trajectories. 

By changing the size of the raw trajectory dataset, including the number of trajectories |𝒟| and the size 
of the timestamp domain |𝒯|, we obtain four different trajectory datasets, as described in Table 2.  

1) Dataset 1 has the smallest data size, with |𝒟| = 393,552, and the smallest |𝒯| = 16. Dataset 1 
also has the smallest max|𝑡𝑟| and avg|𝑡𝑟|. We select Dataset 1 as our first experiment dataset for 
two reasons. The first is to test our model in a relatively small dataset, and the second is to 
compare it with other algorithms, including SeqPT which cannot run successfully on a larger 
dataset. 

2) Datasets 2-4 are larger datasets from the same population. To comprehensively test our algorithm, 
Datasets 2-4 have |𝒟|  range from 772,606 to 845,727 and |𝒯|, which represent a significant 
increasement in the length of the trajectory, from 48 to 64 to 80. Max|𝑡𝑟| ranges from 16 to 20.  



3) Dataset 5 (Zheng et al. (2009) is a pedestrian trajectory dataset, which is used for verifying the 
developed algorithm under large location domain size |ℒ|. It contains GPS traces of 182 users over 
5 years, majority of the data is from Beijing, China. We cut the original 14,650 trajectories into 
more than 734,210 trajectories. 

Three performed analyses are described in this section. The first analysis focuses on the efficiency and 
accuracy of our algorithm with a different tree height ℎ  and privacy budget 𝜖 . We also verify the 
effectiveness of the selected threshold function by experiments. The experiment is performed on all four 
Metro smart card datasets (Dataset 1-4 in Table 2). The second analysis focuses on the scalability in 
handling datasets of different sizes and with different features and different parameters. The experiment 
is also conducted using all four different size datasets (listed in Table 2}. The third analysis focuses on a 
comparison of two similar algorithms, SeqPT and SafePath, in terms of efficiency and accuracy. Due to the 
limitations of SeqPT in handling a large-scale dataset, the comparison experiment with SeqPT is performed 
only on Dataset 1, the smallest of our datasets. The comparison experiment with SafePath is performed 
on all five datasets. 

The proposed algorithm is implemented in Python. All experiments in this section are performed on a 64-
bit personal computer with an Intel Core 2 Due 2.13 GHz CPU and 8GB RAM, running Windows 7. Table 2 
lists the features of the five datasets that were used in our experiment. 

Table 2: Experimental dataset statistics 

Dataset |𝒟| |𝒯| |ℒ| max|𝑡𝑟| avg|𝑡𝑟| 

Dataset 1 393,552 16 121 6 1.84 

Dataset 2 772,606 48 121 16 3.56 

Dataset 3 824,957  64 121 18 3.55 

Dataset 4 845,727 80 121 20 3.73 

Dataset 5 734,210 300 1571 12 4.7 

 

5.1. Utility analysis. 

This section describes our examination of the utility of a sanitized dataset of our algorithm output. We 
follow the evaluation method from previous works by (Chen et al. 2012) and (Khalil et al. 2018) which 
measure the utility by generating 40,000 random count queries. We call the number of timestamp and 
location pairs in a count query as the query length |𝑞|. For example, 𝑞 = 2X→ 3Z has a query length |𝑞| =
2. Assuming 𝑚𝑎𝑥|𝑞| is the maximum query length |𝑞| among the 40,000 random count queries, we divid 
the query set into four subsets such that the query length of the 𝑖-th subset is uniformly distributed in 
Ä1, 6

k
× 𝑚𝑎𝑥|𝑞|Å and each timestamp and location pair draw values from the timestamp and location 

domains |ℒ| and |𝑇|, following an even distribution. Taking 𝑚𝑎𝑥|𝑞| = 8 as an example, there are 40,000 
count queries, including four subsets queries, with |𝑞| = 2, 4, 6, 8, so each subset had 10,000 queries. The 
utility is measured by the average relative error of the count queries on the raw data set and the sanitized 
data set described in Eq. 3, in which the sanity bound 𝑠 is set to be 0.1% of the dataset size. The privacy 

budget distribution at level	𝑙N could be calculated via 𝜖ON =
O�(ON>�)

∑ O�(ON>�)�
_N��

× 𝜖, and the threshold at level	𝑙N is 

𝜃ON = 𝑘 × 𝑙N�? + 𝑏. In our experiments on utility analysis, we set 𝜎 = 1.1, 𝑘 = 1.5, 𝑏 = 1. 



Figure 8 shows how the average relative errors vary under different ℎ values with	max|𝑞| = ¢
h
. There are 

four subgraphs corresponding to Dataset 1-4. According to the range of max|𝑡𝑟| and avg|𝑡𝑟| of the four 
data sets, the prefix tree height ℎ, represented by X axis, is set to be between 3 and 14. Dataset 1 has a 
tree height of between 3 and 7, Dataset 2-3 is between 4 and 12, and Dataset 4 is between 4 and 14. The 
average relative error is shown by Y axis. Four lines in each subgraph represent 𝜖 = 0.5, 0.75, 1.0,1.25, 
respectly.  

It can be observed that, in almost all cases, the relative error decreases as ℎ increases. There are two 
possible explanations. The first is that the higher the tree is, the less trajectory information is lost. The 
other reason is that, as the tree height	ℎ increases, the query length |𝑞| also increases, resulting in a low 
hit rate for the query function and a smaller numerator of the error formula. Further, by comparing the 
four subgraphs, it could be observed that, as the dataset size increases, from Dataset1 to Dataset4, the 
relative error also increases. By observing the different curves in each subgraph, it could also be found 
that, as the privacy budget 𝜖  increases, the average relative error decreases slightly as well, which is 
consistent with our expectation.  

 
Figure 8. Average relative error vs. prefix tree height. 

Figure 9 examines the average relative error under varying privacy budgets, which ranges from 0.5 to 1.5, 
as illustrated in X axis. The average relative error is shown in Y axis. The four lines represent four different 
max|𝑞|. The tree height ℎ is set to 12 and max|𝑞| is set to 2, 3, 4, 5 for Datasets 1; 2, 4, 6, 8; for Datasets 
2 and 3, 6, 9,12; and for Dataset 3-4. It can be observed that the error rate decreases slowly when the 
privacy budget 𝜖 increases, which is consistent with the analysis above. On the other hand, it is found that 
𝑚𝑎𝑥|𝑞| has a larger impact on the error rate than 𝜖. When	𝑚𝑎𝑥|𝑞| is low, the relative error is relatively 
high. This is attributed to the fact that, when the maximum random queries length	𝑚𝑎𝑥|𝑞| becomes 



longer, the hit rate in the trajectory datasets becomes lower, so there is a lower error rate under the 
longer 𝑚𝑎𝑥|𝑞|. It is also found that, as the dataset size goes up, the average relative error also increases, 
which is consistent with our above findings.  

 
Figure 9. Average relative error vs. privacy budget.  

By combining Figure 8 and 9, the proposed algorithm has an average relative error of less than 0.1, in 
most cases. This means that the sanitized trajectory dataset released by our algorithm has a very high 
utility. The worst case occurs in Datset 4 when	ℎ = 6,	max|𝑞| = 3 in Figure 9, the error rate is below 0.14, 
and in Figure 9 ℎ = 12, max|𝑞| = 3, the error rate is below 0.093. It is explainable because Dataset 4 is 
the largest dataset and has the highest dimension among the four metro smart card datasets. 

We also verify the effectiveness of the selected threshold function by experiments. We compare our 
threshold allocation function 𝜃ON = 𝑘 × 𝑙N�? + 𝑏 with quadratic function 𝜃ON = 𝑘 × 𝑙N�h + 𝑏 and exponential 
function 𝜃ON = 𝑘 × 𝑒�ON + 𝑏. Figure 10 shows the average relative error under varying parameters 𝑘 and 𝑏. 
It can be observed that the function used in our paper has the best accuracy in most cases. Four sub 
figures represent results on Dataset 1-4 respectively. The star line shows result of 𝜃ON = 𝑘 × 𝑙N�? + 𝑏, which 
is adopted by our algorithm, the other two lines represent results of 𝜃ON = 𝑘 × 𝑙N�h + 𝑏  and 𝜃ON =
𝑘 × 𝑒�ON + 𝑏. The prefix tree height ℎ = 12, maximum query length 𝑚𝑎𝑥|𝑞| = 3, privacy budget 𝜖 = 1. In 
Dataset 1, 2 and 4, our function shows the best result in all cases. In Dataset 3, only when 𝑘 = 2.0, 𝑏 = 1, 
the error rate of exponential function is lower than ours. 



 
Figure 10. Average relative error under different threshold functions 

5.2. Scalability analysis 

We examine the scalability of our algorithm by varying the size of the raw trajectory dataset and the three 
parameters, 𝑘, 𝑏, and σ, that correspond to the four subgraphs in Figure 11. We set parameter ℎ =14 and 
𝜖 = 1.  

Figure 11(a) shows how runtime varied for four different datasets. X-axis represents four different 
datasets and there are four lines that represent time for reading, sanitization, writing, and total runtime. 
Reading time includes the time spent on reading a raw dataset and building the original prefix tree without 
noise added. Sanitization time refers to the time for building a noisy prefix tree. Writing time includes 
time for traversing the noisy tree and outputting sanitized trajectory data. The total run time is the 
summation of the three. It can be observed that reading, sanitization, and writing time all increase with 
the sizes of |𝒟| and |𝒯|. Compared with the others, sanitization requires the longest run time and it also 
increases most significantly with the sizes of |𝒟| and |𝒯|. Such an observation is consistent with our 
theoretical analysis in Section 4.3, as building a noisy prefix tree is the only process that has a complexity 
related with domain size.  

The algorithm is found to be efficient and, even on the largest data Dataset4, the total run time is still less 
than 100 seconds. Figure 11(b-d) shows how parameters 𝑘 , 𝑏,  and 𝜎  affect run time, where X-axis 
represents different 𝑘, 𝑏 and 𝜎, respectively, while the other two parameters are fixed. It can be observed 
that, when 𝑘, 𝑏, or 𝜎 increase, downward trends are observed. In summary, the developed algorithm is 
relatively efficient and scalable to different dataset sizes and domain sizes with different parameters. Even 
in a large size dataset and domain, which is very common in real life, the proposed algorithm still enjoys 
a stable performance. 

Combining the experiment results from Figure 10 and 11, 𝑘 is recommended to be set between [1, 2], and 
𝑏 is recommended to be set between [1, 3]. 



 
Figure 11. Scalability Analysis. 

5.3. Comparisons with other models 

In this section, the performance of the developed model is compared with SeqPT and SafePath, from the 
perspectives of average relative error and run-time efficiency.  

SeqPT fails to finish and produces an out-of-memory error when prefix tree height ℎ = 3 on Dataset 4, 
with |𝒟| = 845,727, |𝒯| = 80, |ℒ| = 121, max|𝑡𝑟| = 20, avg|𝑡𝑟| = 3.73 . When running on Dataset 1 
with |𝒟| = 393,552,  |𝒯| = 16, |ℒ| = 121,max|𝑡𝑟| = 6, avg|𝑡𝑟| = 1.84 , the run time reaches up to 
20,000 seconds with	ℎ = 8. If ℎ is set to be 9, the algorithm fails to finish. Due to the limitation of SeqPT 
with domain and dataset size, the comparison experiment with SeqPT is only performed on Dataset 1. The 
privacy budget is set to 𝜖 = 0.5, and the tree height ℎ is set between 2 and 5. 

In terms of run-time efficiency, the comparison results are visualized in Figure 12, with four subgraphs 
showing the run-time comparison under Dataset 1-4. X-axis represents different ℎ , Y-axis represents 
runtime. The proposed algorithm outperforms the other two algorithms at a prefix tree height from 2 to 
5 under Dataset 1. When ℎ = 2, our run-time is 1/3 of SeqPT and 1/4 of SafePath. As to ℎ = 5, our run-
time is 2/3 of SafePath and 1/30 of SeqPT. Although SeqPT performs pretty good when ℎ = 2, it takes 
nearly 2 hours to run when ℎ = 5. As the number of trajectories increases to 845,727 with a high domain 
size of |𝒯| and |ℒ|, it fails to finish and produces an out-of-memory error even if ℎ = 3. So under Dataset 
2-4, we only make our comparison with SafePath. In most cases, our algorithm has better performance, 
and the run-time efficiency advantage of our algorithm is more obvious, especially under the large dataset 
size of |𝒟| and the high domain size of |𝒯|. 



 
Figure 12. Run-time comparison under different tree heights. 

Figure 13 shows the results of utility comparison, with four subgraphs representing results under four 
different datasets, max|𝑞| = 2 in this experiment. X-axis represents different ℎ, Y-axis represents average 
relative error. The proposed algorithm outperforms the other two algorithms at different prefix tree 
heights, from 2 to 5. This especially occurs when ℎ = 5  under Dataset 1, and the error rate of our 
algorithm is 0.034 which is about 1/3 of SafePath and 1/200 of SeqPT. Our algorithm has a better 
performance with all metro smart card datasets, which include both a smaller dataset with a lower domain 
size and a larger dataset with a higher domain size. 



 
Figure 13. Average relative error comparison under different tree heights. 

In order to verify the efficiency and accuracy of our algorithm on dataset with large location domain size 
|ℒ|, in the final experiment, we perform the comparison on Dataset 5. We compare the efficiency and 
accuracy of our algorithm with SeqPT and SafePath. Figure 14 shows how runtime and error rate vary 
under different values of prefix tree height. It can be found that with various prefix tree height from 2 to 
5, the runtime of our algorithm increases from 113.9 seconds to 2007.3 seconds, which is lower than 
SafePath’s 1076.9 seconds and 8976.3 seconds under ℎ = 2 and ℎ = 3. When ℎ  reaches to 4 and 5, 
SafePath fails to finish. SeqPT fails to finish under all prefix tree height values from ℎ = 2 to ℎ = 5. The 
sanitized data output by our algorithm also has a better utility compared with the other two algorithms. 

 

Figure 14. Algorithm comparison under large |ℒ| 



In summary, through a comparison experiment between our algorithm, SeqPT and SafePath, with the 
same privacy budget 𝜖 and tree height ℎ, our algorithm demonstrates better efficiency and sanitized data 
utility, in most cases, especially under conditions with a large dataset size and domain size. 

6. Conclusion and Remarks  
In this paper, we focus on the problem of a publishing sanitized trajectory dataset that satisfies the 
differential privacy definition. The trajectory data that we handle is spatial-temporal data with features 
that are large scale, high-dimensional, and sparse, which brings challenges to improving algorithm 
efficiency and data utility. A new prefix tree structure without taxonomy tree as sublevel, based on an 
algorithm with a dimensionality reduction model is proposed to improve the run-time efficiency, and an 
incremental privacy budget allocation model is developed to improve data utility. Through theoretical 
analysis and comparisons with previous works based on real-life trajectory datasets, the proposed 
algorithm demonstrates more efficient and scalable results. The sanitized trajectory dataset is also shown 
to have better utility. In addition to the transit smart card data, our method has the potential of being 
directly applied to other types of trajectory data, such as those from social media, navigation apps, 
ridesharing, and so on.  

Future work could focus on the determination of optimal parameters, including tree height and 
parameters for the threshold and privacy budget function. Data structures, other than a prefix tree, may 
also be explored to further improve the performance of the proposed algorithm.  
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