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Abstract

In the last 20 years or so, chemists and molecular biologists have synthesized some novel
DNA polyhedra. Polyhedral links were introduced to model DNA polyhedra and study
topological properties of DNA polyhedra. As a very powerful invariant of oriented links,
the Homfly polynomial of some of such polyhedral links with small number of crossings has
been obtained. However, it is a challenge to compute Homfly polynomials for polyhedral
links with large number of crossings such as double crossover 3-regular links considered
here. In this paper, a general method is given for computing the chain polynomial of the
truncated cubic graph with two different labels from the chain polynomial of the original
labeled cubic graph by substitutions. As a result, we can obtain the Homfly polynomial

of the double crossover 3-regular link which has relatively large number of crossings.

Introduction

In the last 20 years or so, many DNA biomolecules with the shape of polyhedron have
been synthesized by chemists and molecular biologists in the laboratory. For example, the
DNA cube [1], DNA tetrahedron [2], DNA octahedron [3], DNA truncated octahedron [4],
DNA bipyramid [5] and DNA dodecahedron [6]. In recent several years, a type of more
complicated DNA polyhedra have been reported in [7-10]. They are all synthesized by the
strategy of “n-point stars”. In fact they are called double crossover DNA polyhedra in [11].
In addition, similar DNA molecular structures can also be found in [12,13]. Polyhedral
links modelling the double crossover DNA polyhedra are called double crossover polyhedral

links. As an example, the planar diagram of the double crossover hexahedral link is given
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Fig. 1: The planar graph of a double crossover hexahedral link with 16 x 12 = 192 crossings.

Fig.1. The planar graph of a double crossover hexahedral link with 16 x 12 =

192 crossings.

The DNA double crossover hexahedron was assembled from two different component

three-point-star tiles (A and B), the process is shown in Fig. 2. The hexahedral structures
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have been confirmed by multiple techniques including polyacrylamide gel electrophoresis
(PAGE), dynamic light scattering (DLS), cryogenic electron microscopy (cryo-EM) imag-
ing, and single particle three-dimensional (3D) reconstruction [9]. We shall use the ori-
entation of the 2 backbone strands of the dsDNA to orient DNA polyhedral links. Thus
we always consider DNA polyhedral links as oriented links with antiparallel orientations.
Under this orientation, the double crossover hexahedral link in Fig. 1 is a negative one,

i.e., each crossing is left-handed. See Fig. 3.
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Fig. 2: Assembly of DNA 4-turn hexahedra from two different component three-point-star tiles (A and
B).

Fig. 2. Assembly of DNA 4-turn hexahedra from two different component
three-point-star tiles (A and B).

KX

Fig. 3: Right-handed (+) and left-handed crossings (—).

Fig. 3. Right-handed (+) and left-handed crossings (—).

For understanding, describing and quantizing DNA polyhedra, many invariants of
polyhedral links modeling DNA polyhedra have been computed and analyzed [14-26].
Among these invariants, the Homfly polynomial [27,28] is a very powerful one. It bears
much information of oriented links, containing the Jones polynomial [29] and Alexander-
Conway polynomial [30,31] as special cases. The Homfly polynomial can distinguish most
links from their mirror images, and it helps to determine other numerical invariants such as
braid index and the genus etc [32-34]. Unfortunately, computing the Homfly polynomial

is, in general, very hard. Computer software (e.g. KnotGTK) can only deal with links
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with small (about 50) number of crossings.

Mathematically, given any planar (not necessarily polyhedral) graph, we can construct
the corresponding double crossover link by covering the vertex of degree n with the n-
point star. In this paper we shall focus on 3-regular, i.e. cubic plane graphs and call the
corresponding double crossover links the double crossover 3-regular links. Based on results
n [35] and [36], Cheng, Lei and Yang established a relation in [22] between the Homfly
polynomial of the double crossover link and the chain polynomial [37] of the truncated
graph with two distinct labels (See Figs. 4-6 for examples). Using this relation, they
obtained the Homfly polynomial of the double crossover tetrahedral link which has 96
crossings. To compute the Homfly polynomial of the double crossover 3-regular link with
more large number of crossings, in the paper we give a general method to obtain the chain
polynomial of a truncated cubic (i.e. 3-regular) graph with two different labels via the
chain polynomial of the original cubic graph based on the Y — A transform theorem in [39].
As a consequence, for example, we obtain the Homfly polynomial of the double crossover

hexahedral link with 192 crossings.

Fig. 4: The labeled theta graph © and the labeled triangular prism truncated from the labeled theta
graph ©'.

Fig. 4. The labeled theta graph © and the labeled triangular prism trun-
cated from the labeled theta graph ©'.

Fig. 5: The labeled tetrahedral graph T and its truncation 7”.

Fig. 5. The labeled tetrahedral graph T and its truncation 7".
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Fig. 6: The labeled hexahedral graph H and its truncation.

Fig. 6. The labeled hexahedral graph H and its truncation.

Method

We rely on two relationships in order to obtain the Homfly polynomial of double crossover
3-regular links. One relation (RI) is between the chain polynomial of a cubic labelled
plane graph and that of its truncation with two different labels. See Theorem 1. The
other (RII) is between the chain polynomial of truncated cubic graphs with two different

labels and the Homfly polynomial of double crossover 3-regular links. See Theorem 2.

1. RI

The chain polynomial was introduced by Read and Whitehead in [37] for studying the
chromatic polynomial of homeomorphic class of graphs. A chain in G is a path in which
all vertices, except possibly the end vertices, have degree 2 in the graph G. The length of
a chain will be the number of edges in it. A graph with edges labeled elements a, b, c, - - -
of a commutative ring with unity 1 is called a labeled graph. Let G be a labeled graph.

We usually identify the edges with their labels for convenience.

Definition 1 The chain polynomial Ch(G) = Ch(G;w;a,b,c,---) of a labeled graph G 1is
defined as
Ch(G) =) Fymy,
%

where the summation is over all subsets Y of the edge set E of the graph G; Fy = Fy (1—w)
denotes the flow polynomial in variable w of (Y'), the spanning subgraph of G with edge
set Y; my denotes the product of the labels of the edges in U = E — Y.

For a survey on the flow polynomial of graphs, see [38].

Proposition 1 ( [37]) Let G be a labeled graph. Then
(1) If G has no edges, then Ch(G) = 1.
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(2) If G consists of two graphs A and B having at most one vertex in common, then
Ch(G) = Ch(A)Ch(B).

(8) The chain polynomial of a loop with the label a is a — w.

(4) The term independent of the variables a,b,c,--- is the flow polynomial of G.

(5) If a is an edge of G and is not a loop, let H be the graph obtained from G by deleting
the edge a, and let K be the graph obtained by contracting it. Then

(i) Ch(G) = (a — 1)Ch(H) + Ch(K).

(i) Ch(H) is the coefficient of a in Ch(G).

(iii) Ch(K) is obtained from Ch(G) by putting a = 1.

Since the flow polynomial of a graph with bridges is 0, we have:

Lemma 1 Let aq,a9,--- ,as be a chain of length s of a labeled graph G. Let H be the
labeled graph obtained from G by replacing the chain a1, a9, - ,as by a single edge a. Then
Ch(H) can be obtained from Ch(G) by replacing aias - --as by a and conversely, Ch(G)
can be obtained from Ch(H) by replacing a by aiag -+ as.

Proposition 2 ( [39]) Let C be a cut-set of edges in a graph G. Then any term in Ch(Q)

that contains the labels of all but one of the edges in C' has zero coefficient.

In the case of the graph Gy shown in Fig. 7 (left), {x,y, z} is a cut-set. By Proposition

2, in Ch(Gy) there are no terms containing labels xy except z, yz except = or zz except

Y.

Lemma 2 ( [39], The Y — A theorem) Let Gy be a labeled graph containing a vertex
of degree 3 with incident edges labelled x,y and z. Let its chain polynomial be Pryz+ Ax+
By+Cz+ V. Let Ga be the labeled graph obtained from Gy by a Y — /A transformation,
where the rest of G is the same as in Gy, as shown in Fig. 7. Then

Ch(Gp) = Plryz—w)+Alyz+r—-—w—-1)+Brz+y—w—1)+
Clay+z—w—-1)+V(@+y+z—w-—2).

Fig. 7: The Y — A transformation.

Fig. 7. The Y — A transformation.
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Lemma 2 implies that Ch(G ) can be obtained from Ch(Gy) = Pzxyz + Az + By +
Cz + V by the following substitutions:
TYz — TYZ — W,
r — yz+r—w-—1,
Yy — z24y—w-—1,
z — zry+z—w-—1,
V. — Vie+y+z—w—-2).
Let G be a cubic graph, i.e. a 3-regular graph. By truncating G we mean inserting
two vertices to each edge of G firstly, then doing the Y — A transformation to each vertex
of degree 3. Let G’ be the truncated graph of G with original edges of G labeled with a

and newly produced edges labeled with b. See Figs. 4 (right), 5 (right) and 6 (right). Now
we shall provide a general theorem to obtaining Ch(G’) via Ch(G) by substitutions.

Theorem 1 Let G be a cubic graph with n vertices vi,vs,--- ,v, and m edges labeled
ai,as, -+ ,am. Let G' be the truncated graph of G with original edges of G labeled with a
and newly produced edges labeled with b. Suppose

m—1
i=1 U

where Uj; is a subset of cardinality i of {a1,a2, -+ ,am} and j = 1,2,---, ( mn >; Yi;
denotes the complementary subset of U;j. Then we can obtain C’h(G/), namely
Ch(G) = a™(b® —w)"

m—1
n i ¥-w ., bPP+b-—w-—1_
+(3b—w—2) E a E Fyz.].(?)b_w_2)p11( PT—— )qm (2)

i=1
+ Fe(3b —w —2)",
where p;; and q;; are the numbers of k’s such that g, =3 and q,, =1 in Eq. (3).
Proof. We divide the whole proof into three steps.

Step 1. Compute the chain polynomial of the labeled graph G* obtained from the labeled
graph G by the replacements shown in Fig. 8.

Fig. 8. The construction of the labeled graph G* from the labeled graph G.

For each k = 1,2,--- ,m, we suppose that v; and v; are the end-vertices of the edge
labeled a;. Recall that

m

Ch(G) = Z Z FYijﬂ—Uij

i=0 Uy

m—1
= Q102 Gy + E ZFYZ.J.TFU“ + Fgq,
i=1 Uy

6
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Fig. 8: The construction of the labeled graph G* from the labeled graph G.

m
where Uj; is a subset of cardinality ¢ of {a1,a2,- - ,am} and j = 1,2,---, -
i

denotes the complementary subset of U;;. By Lemma 1, replace aj by bjab; in Ch(G), we
obtain Ch(G*). For a fixed i from 0 to m, Y Fy,my,, becomes a’ Y Fy,, [T_; b{*, where

ij

gr is the number of edges in U;; incident with the vertex vi. Thus we have:

n

Ch(G*) = i at Y Fy, [ o
=0 U'j

k=1

n m—1 n
=a" 0P+ > "> By, [] b8 + Fo.
i=1 i=1 k=1

(3)

where g, = 0,1,2,3 depending on U;;. Additionally, for nonzero terms in Ch(G*), gi can
not be 2. When ¢; = 0, it means that b; doesn’t appear in [];'_, bi*.

In the following, we apply Lemma 2 to each vertex of degree 3 of G*. Namely, for
each k =1,2,--- ,n, for each term of Ch(G*), replacing b3 (namely g = 3) by b} —w and
b by b2 + by, —w — 1, multiplying the other terms (namely, the term V in Lemma 2) by
3br — w — 2. We divide it into two steps for clarity.

Step 2. For each k = 1,2, ,n, for each term of Ch(G*), replacing b3 by x and by by v,

we obtain a polynomial in z,y, a,w, denoted it by Ch(G**), namely,

m—1
Ch(G™) = a™a" + 3 a'y | Fy,a"y™ + Fa, (4)
i=1 Ui

where p;; and ¢;; are the numbers of £’s such that ¢, = 3 and ¢, = 1 in Ch(G"), respec-
tively. Note that pp1 =n, ¢gn1 =0, po1 = 0 and ¢p; = 0.
Step 3. In Ch(G**), replace = by Sbbi% and y by %, and normalize entire
polynomial by (3b —w — 2)™.

Therefore, the first term a™ []7_, b3 becomes a™(b®—w)™ and the last term F; becomes
F(3b —w —2)™. Note that the numbers of k’s such that g, = 0 is n — p;; — ¢;;, which is

exactly the times we need multiply the term corresponding to U;; by 3b —w — 2. [J

A polyhedral graph is planar, it is worth pointing out that our Theorem 1 applies to

any cubic graphs which are not necessarily planar. Now we provide several examples.
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Example 1 The chain polynomial of the labeled theta graph © as shown in Fig. 4 (left)
and the more general labeled generalized theta Sy, graph with m > 3 edges are given in [39]
and [40]. Note that the triangular prism as shown in Fig. 4 (right) is the truncated graph
of the theta graph. Applying Theorem 1, we have

Ch(©) = ajagas —w(a; + ag + a3) + w2+ w.
Step 1. a1 — biabs, as — biaby, az — biabs.
Ch(0*) = a’b3b3 — 3wabiby + w? + w.
Step 2. b3 — 2,03 — x,b1 — y,by =y
Ch(0*) = a®z? — 3way® + w? + w.
Step 3. * — b3 —w,y — b +b—w — 1, then only need to multiply the last term by
(3b — w — 2)2, we obtain:
Ch(®) = a®(b® — w)? = 3wa(P* +b—w —1)? + (W? + w)(3b —w — 2)?,

which matches the result in [39].

Example 2 Let T be the tetrahedral graph labeled as shown in Fig. 5 (left), whose chain
polynomial was calculated in [37, 39]. Applying Theorem 1, we have

Ch(T) = arazasasasag — (a1a2a3 + arasag + asasag
+ asasas + araq + azas + asag)w + (a1 + a2 + az + as
T a5+ ag)w(w + 1) — wlw+ 1)(w +2).
Step 1. a1 — biabs,as — biaby,az — biaby, ag — boaby, as — boabs, ag — bzaby.
Ch(T*) = a®b3b3b3b; — wa® (b3babsby + b1bab3by + bibabsbi + bib3bsby)
— wa?(b1babsby + bibabsby + bibabsby) + w(w + 1)a(bybs + biby
+ b1 + baby + babz + b3by) — w(w + 1)(w + 2).

Step 2. bi - x,bp >y, k=1,234.
Ch(T*) = abz* — dwadzy® — 3way* + 6w(w + 1)ay? — w(w + 1)(w + 2).

Step 3. x — b3 —w,y — b +b—w — 1, then multiplying every term by (3b — w —
2)4*d(m)*d(y), where d(x) and d(y) are degrees of x and y in the corresponding term in
Ch(G**), respectively, we obtain:

Ch(T") = a%(b® — w)* — 4wa(® — w)(D* + b —w — 1)3 — 3wa®(b* + b — w — 1)*
+ 6w(w+ Da®® +b—w—1)?3b —w —2)* —w(w + 1)(w +2)(3b — w — 2)*,

which matches the reuslt in [22].
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Example 3 Let H be the labeled hexahedral graph with V(H) = {vi,ve, -+ ,vs} and
E(H) = {ay,a2, -+ ,a12} as shown in Fig. 6 (left). By performing the Maple program in
the Appendiz of [22]) which can be used to compute the chain polynomial of labelled graph
with small number of edges, we obtain the chain polynomial of the labeled hexahedral graph

as follows.

Ch(H) =-3 a1a7w2 — aa304010012049W — A206A401208011W — A206A9A10A8A4W — ...
— arajowiar; — ajaaganw® + asagarnw® + asasarsw + asagw?ary + ...
-3 a2a7w2 — 2asa7w — 2a2a10w2 — a2a10W — A2G12W — 3a2a4w2 — 2 asa4qw.
. . . . !/
According to Theorem 1, a simple program in the Maple platform for calculating Ch(G")

from Ch(G) can be written. See Appendiz. By applying the program, we obtain the chain
polynomial of the truncated hexahedral graph H' with two labels as shown in Fig. 6 (right).

Namely,
Ch(H") = a"2(b® — w)® — (11w + 25w? + 20w> + Tw?* + w®)(3b — w — 2)8
+ (96w? + 48w + 12wt 4+ 60w®)(B? + b — w — 1)%(3b — w — 2)5a
— (108w? + 66w 4 420w3)(b? +b — w — 1)*(3b — w — 2)*a>
— (24w? + 16w + 8w) (0> — W) (b* +b—w — 1)3(3b — w — 2)%a®
+ 32w+ w) B +b—w—1)%(3b — w —2)%?
+ 24(w? + W) (B> — W) (B +b—w —1)°(3b — w — 2)%a’
— 6w +b—w—1)8%"+3*0* +b—w—1)%"
+12(w? + w) (B —w)2P* + b —w — 1)1(3b — w — 2)%d°
— 16w (b® — w)*(b* +b — w — 1)5°
— 6w (b — W) (V? +b—w — 1)
2. RII

In [22], a relation between the Homfly polynomial of positive double crossover polyhedral
link and the chain polynomial of truncated polyhedral graph with two labels is obtained.
For completeness we give an outline of the proof of the relation. Here we consider the
negative double crossover polyhedral links and the two tangles 77 which is used to cover
the original edge (labelled a) of a polyhedron and 75 which is used to cover the newly
produced edge (labelled b) after truncation are shown in Fig. 9.

Fig. 9. The double crossover tangle 7; (left) and the vertical integer tangle
T, (right).

Let T be a 2-tangle. We denote by Nu(T") and De(T") the numerator and denominator

of the 2-tangle T', respectively. Let ¢ = ”717_” After calculation, we obtain:
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v

<
0

A

Fig. 9: The double crossover tangle Ti (left) and the vertical integer tangle T5 (right).

Pryry)(v,2) = 0 (1—o™ )2+ 1207 (1 =07 + 6078
Poeryy(v,2) = 0721 — v 4 2074 (1 — 07" + 677"
PNU(TQ)(/Ua Z) — 1
PDe(Tz)(’U) Z) = 5_1(1 - 1)_4) + 51)_4.
Hence,
SPyu(ry) = Ppe(ny)
wli) = 62— 1
= 22(/1)_1 + ,0—3)2
w(Ty) = Pper) = Prum
SPNw(ry) = Ppe(my)
e e i G
a z3(1 4 v?)?
OPNu(ry) = Ppe(ry)
w(lz) = ]
= —z(v_1 + v_3)
w(Ty) = 0Ppe(ry) = Prnu(my)

OPNu(Ty) — Ppe(ty)
= —z lw4+3)h

After changing v to —v™!, you will find u(7}), u(T2) and w(Ty),w(T:) coincide with
ez (€e), py(e) and wy(e), wy(e) in Theorem 3.3 of [22].

Let P be a polyhedral graph. Let P’ be the truncated polyhedral graph of P. Let
L(P) be the negative double crossover 4-turn link based on P. Then [35]

Prpy(v,2) = 5zt + v HEDNQ (4, 6),

10
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where the weights of the original edges and the newly produced edges by truncation

v 3—v 1222 (v4v 1)
23 (14v2)2

between the dichromatic polynomial @ p and the chain polynomial Ch(P’) obtained in [36]

and —z 7' (v + v3)7!, respectively. Combining it with the relation

are

(see Lemma 2.5), we obtain:

Theorem 2 Let P be a polyhedral graph having x edges. LetP’ be the truncated polyhedral
graph of P with two labels a and b (having 2x vertices and 3z edges). Let L(P) be the

negative double crossover 4-turn link based on P. In Ch(P'), we let

w = 1—52,
v72 —1—22(1 4%+ v* + )

“ = v2—1-222(v2 +1) ’

b = ot

Then

v3 —v7l =222 (v 4+ v7Y)
13 _ 15

Pripy(v,z) =6 Ch(P").

After changing v to —v~!, you can find Theorem 2 coincides with Theorem 3.4 in [22].

Results

In this section we use Theorem 2 to compute the Homfly polynomial of negative double
crossover 3-regular links based on the theta graph, the tetrahedron and the cube. To
obtain the Homfly polynomial of the positive double crossover polyhedral links, one only
need change v to —v~!. Recall that the Conway and Jones polynomials are both special

cases of the Homfly polynomial, i.e.

Vi(z)=Pr(1,z),

V() = Pp(t, Vi — \2).

Some computational results are too long to be included in this paper, we refer the readers to
the website http : //121.192.180.131 : 93 /papers/Upload Files4429/201502 /2015022315554
363.pdf for the complete results of the chain polynomial of hexahedral graph and the Hom-
fly polynomial of double crossover DNA hexahedral link, in these cases we only list a few

terms here:

11
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PL(@) (U, Z)

—_ —1)7552'77( 48 14 + 7,046 14 + 28’[)44 14 + 841)42 14 4 3?)42 12 + 207040214
+ 15029212 4 441 03821 4 47038212 4+ 838036214 + 115070212 4 1450034214

+ 3030210 4 246 03212 + 2308 032211 + 9034210 4 478032212 4 338830214

+ 36032210 4 836 039212 + 4570 v 21 + 84030210 4 1332028212 4 5590 02021
+ 403928 196028210 + 1834076212 4 6069 v 214 4 402828 4 37202610

+ 2066 v** 212 + 5619 02221 + 5202028 + 528 0?4210 + 1554022212 + 4116020214
+ 5202428 4+ 664 022210 — 374020212 4 2140 0182 + 902420 + 238 022,8

— 285020210 — 281508212 4 67901021 — 902220 4 23802028 — 2319 18,10

— 3291010212 4 97 vz 4 18402026 — 1066 01828 — 1996 116210 — 1705 v14212
— 18401828 — 1066 0028 + 684 01210 — 341 012212 + 66 v'82* — 606 v'62°

+ 1190 028 + 1518 v!2210 — 19801621 + 606 v112° 4 1190 v122® 4 506 v1021°
+ 120922 + 66 0142* 4+ 62401220 — 41801928 — 6001422 + 330 01224

— 6240025 — 418 082% 4+ v + 108 v!222 — 3300102% — 2110825 — 7012

— 60022 —660°%2* +2110°2 + 210! — 600322 + 198 002* — 3548

+ 1081522 — 66012t 4+ 350° — 600122 — 21 0% + 120222 + T0% — 1),

PL(T) (U, Z) — _v7109Z713(U96Z2G + 131}942’26 +91 2}92 26 + 455 U902’26 + 61190,224

+ 1814038220 4+ 66 0322 4 6110050226 4 400 080224 + 18014 v84226

+ 15081222 + 624005222 + ... 4 76044 v11210 — 568318 v12 218

— 9151952019220 — 35714154 038222 — ... — 3982176 v?°21* 4+ 2351088 1?4216
+ 3395394 022218 — 464792020220 4 ... 4 240722 £ 1307 — 1),

PL(H) (U, Z) _ _,U—217Z—25 (’1)192250 +925 U1902‘50 + 3925 ,0188250 + 2925 U1862’50 +12 ,0186248

Thus,

+ 20463 v'84250 4 276 v 248 4 118455 182250 4 3320 0182248 4 589867 v180 50
+ 27784 0180218 1 2594275 0178250 4 ... 4 117286813536 011024 4 ...

+ 24631386348 0118236 ... — 4342184782394 32234 —

+ 604406814588216v52236 + ... — 316550564 v225 + -

+ 6981260760020 — ... 4480?22 + 2502 — 1).

Vie)(z) = —37632 27,
Vi) (2) = —1078984704 23,
Vi) (z) = —748419423085264896 =,

12
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Vi) (2) = —t72 (" — 77 + 2840 — 844" + 210¢M — 462" + 924¢% — 17131
+ 208540 — 493939 4+ 78193 — 11912437 4 17544 ¢3¢ — 25072 ¢3° + 34875 3
— 47326 33 + 62766 32 — 81462 3! 4 103570 t3° — 129055 t2° + 157634 %
— 188690 27 + 221242 %0 — 253870 % + 284755 24 — 311685 % + 332298 22
— 344228 t*1 + 345601 t2° — 335293 19 + 313457 ¢'® — 281464 t'7 4- 242045 t1°
— 19865915 + 155160 t1* — 114883 ¢! + 80386 t12 — 52914 ¢! + 32652 ¢1°
— 1877117 + 10012 — 49077 + 22005 — 885> + 320 t* — 98¢3 + 27 ¢>
—5t+1),

Vi) (2) = =72 (1% — 13¢% + 914 — 455¢% 4 18201%% — 6188¢°" + 18564 1
— 5038259 + 125898 %% — ... + 405708071163 t*? — 422901756090 t*!)
+ 434762332438 10 — 440420890844 t3° 4 - - + 90t% — 11t + 1),

Vi (2) = —t 72 (8192 — 254191 4 325 £190 — 2925 ¢189 4 20475 1153

— 118755 ¢"7 4 593775 ¢'%% — ... 4 64833446416942962011¢"%0 — - .-
— 451043083493105466629441% + . .. — 388424807064142369273t%% + - - .
+ 1083862665¢'0 — - - - + 324t% — 23t + 1).

To our surprise their Conway polynomials are so simple, all having only one term. Let
L = Ky UKy U---UK, be an oriented link with n components. Let A(L) = (aij)nxn
be the linking matrix with a;; = lk(Kj, Kj), the linking number of K; and Kj, if i # j
and a;; = — >0 ., Ik(K;, K;). In [41,42] the authors proved that the first coefficient of
Vi(z) (i.e. the coefficient of the term of the lowest degree n — 1) is equal to the cofactor
of A(L) up to a sign. Our computational results are the same to the results obtained from
cofactor of linking matrices.

Let Pr(v, z) be the Homfly polynomial of the oriented link L. In [43] and [44], Franks,
Williams and Morton independently gave a lower bound for the braid index b(L) of an

oriented link L in terms of span,Pf (v, z) as follows:
1
B spany, Pr,(v,z) + 1 < b(L), (5)

where span, P, (v, z)=max deg, Pr(v,z)—min deg, Pr(v,2) , and max deg, Pr(v,z) and
min deg, Pr (v, z) denote, respectively, the maximal degree and minimal degree of v in the
polynomial Pp (v, z). This inequality (5) is usually called MFW inequality. By combining
the following result obtained by Ohyama in 1993 [45] which states that for a non-splittable
oriented link L,

c(L)

b(L) < 14—~

(6)
where ¢(L) is the crossing number of L.

Hence, b(L(0)) = 25, b(L(T)) = 49 and b(L(H)) = 97. These results coincide with

results in [21].
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Discussion

A general method is given in this paper for computing the chain polynomial of the truncat-
ed cubic graph with two different labels from the chain polynomial of the original labeled
cubic graph by substitutions. Hence, we convert the computation of the chain polynomial
of a large graph with two labels to that of the chain polynomial of a small graph. As an
application, by combining with the relation between the Homfly polynomial of a double
crossover polyhedral link and the chain polynomial of the truncated polyhedral graph with
two different labels, we obtain the Homfly polynomial of the double crossover hexahedral
link, which has 192 crossings.

From our computational results, we know that the double crossover DNA hexahedral
link is topologically chiral and its braid index is 97. More deeply chemical and biological
understanding of our computational results deserves further exploring. To our surprise the
Conway polynomials of the double crossover links based on the theta graph, the tetrahedral
graph and the hexahedral graph all have only one term. It may coincide with Corollary
4.6 in [35].

We only consider double crossover 3-regular links. Similar approach may be developed
to deal with double crossover n-regular links. It may be a more difficult task to compute

the Homfly polynomial of polyhedral link modeling protein polyhedra in [46,47].

Acknowledgements

This work was started when the first author visited Xiamen University. The authors
thank Associate Professor X.-S Cheng, Assistant Professor Weiling Yang, Ms Yujuan Lei

and Ms Nana Zhao for some discussions.

References

[1] Chen J, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a
cube. Nature. 1991;350: 631-633.

[2] Goodman RP, Berry RM, Turberfield AJ. The single-step synthesis of a DNA tetra-
hedron. Chem. Commun. 2004;12: 1372-1373.

[3] Shih WM, Quispe JD, Joyce GF. A 1.7-kilobase single-stranded DNA that folds into
a nanoscale octahedron. Nature. 2004;427: 618-621.

[4] Zhang Y, Seeman NC. The construction of a DNA truncated octahedron. J. Am.
Chem. Soc. 1994;116: 1661-1669.

[5] Erben CM, Goodman RP, Turberfield AJ. A Self-Assembled DNA Bipyramid. J. Am.
Chem. Soc. 2007;129: 6992-6993.

[6] Zimmermann J, Cebulla MPJ, Ménninghoff S, Kiedrowski GV. Self-Assembly of a
DNA Dodecahedron from 20 Trisoligonucleotides, with C3;, Linkers. Angew. Chem.
Int. Ed. 2008;47: 3626-3630.

14


APPLE
在文本上注释
Originally, it was "[29]".

APPLE
在文本上注释
Originally, it was "[40,41]".

APPLE
在文本上注释
Originally, it was "J.Chen,N.C.Seeman".

APPLE
在文本上注释
Originally, it was "Nature 350(1991)631-633".


[7]

[13]

[14]

[15]

[19]

[20]

[21]

[22]

He Y, Su M, Fang P, Zhang C, Ribbe AE, Jiang W, et al. On the chirality of self-
assembled DNA octahedra, Angew. Chem. Int. Ed. 2010;49: 748-751.

He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, et al. Hierarchical self-assembly of
DNA into symmetric supramolecular polyhedra. Nature. 2008;452: 198-201.

Zhang C, Ko SH, Su M, Leng Y, Ribbe AE, Jiang W, et al. Symmetry Controls the
Face Geometry of DNA Polyhedra. J. Am. Chem. Soc. 2009;131: 1413-1415.

Zhang C, Su M, He Y, Zhao X, Fang P, Ribbe AE, et al. Conformational flexibility
facilitates self-assembly of complex DNA nanostructures. PNAS. 2008;105: 10665-
10669.

Fu TJ, Seeman NC. DNA Double-Crossover Molecules. Biochemistry. 1993;32: 3211-
3220.

Lin C, Liu Y, Yan H. Designer DNA Nanoarchitectures. Biochemistry. 2009;48: 1663-
1674.

Kuzuya A, Komiyama M. DNA origami: Fold, stick, and beyond. Nanoscale. 2010;2:
310-322.

Jin XA, Zhang FJ. The Homfly polynomial for even polyhedral links. MATCH Com-
mun. Math. Comput. Chem. 2010;63: 657-677.

Jin XA, Zhang FJ. The Jones polynomial for polyhedral links. MATCH Commun.
Math. Comput. Chem. 2011;65: 501-520.

Cheng XS, Qiu WY, Zhang HP. A novel molecular design of polyhedral links and
their chiral analysis. MATCH Commun. Math. Comput. Chem. 2009;62: 115-130.

Cheng XS, Liu SY, Zhang HP, Qiu WY. Fabrication of a family of pyramidal links
and their genus. MATCH Commun. Math. Comput. Chem. 2010;63: 115-130.

Comoglio F, Rinaldi M. A Topological Framework for the Computation of the HOM-
FLY Polynomial and Its Application to Proteins. PLoS ONE. 2011;6(4): €18693.

Hu G, Qiu WY, Ceulemans A. A New Euler’s Formula for DNA Polyhedra. PLoS
ONE. 2011;6(10): ¢26308.

Cheng XS, Jiang X, Dai H. The braid index of polyhedral links. J. Math. Chem.
2012;50: 1386-1397.

Cheng XS, Jin XA. The braid index of complicated DNA polyhedral links. PLoS
ONE. 2012;7: e48968.

Cheng XS, Lei YJ, Yang WL. The Homfly polynomial of double crossover links. J.
Math. Chem. 2014;52: 23-41.

15


APPLE
在文本上注释
The newly added references


[23]

[24]

Duan JW, Hu G, Qiu WY. Topological Aspect of DNA Cages: Genus. MATCH
Commun. Math. Comput. Chem. 2014;72(2): 475-488.

Sun XB, Zheng X, Qiu WY. The Architecture of DNA Polyhedral Links with Odd
Tangles. MATCH Commun. Math. Comput. Chem. 2014;72(2): 489-500.

Zhang H, Deng K. Spectrum of Matching Forcing Numbers of a Hexagonal System
with a Forcing Edge. MATCH Commun. Math. Comput. Chem. 2015;73(2): 457-471.

Zhang H, Zhao S, Lin R. The Forcing Polynomial of Catacondensed Hexagonal Sys-
tems. MATCH Commun. Math. Comput. Chem. 2015;73(2): 473-490.

Freyd P, Yetter D, Hoste J, Lickorish WBR, Millett K, Ocneanu A. A new polynomial
invariant of knots and links. Bull. Amer. Math. Soc. 1985;12: 239-246.

Przytycki JH, Traczyk P. Invariants of links of Conway type. Kobe J. Math. 1987;4:
115-139.

Jones VFR. A polynomial invariant for knots via Von Neumann algebras. Bull. Amer.
Math. Soc. 1985;12: 103-112.

Alexander JW. Topological invariants of knots and links. Tran. Amer. Math. Soc.
1928;30: 275-306.

Conway JH. An enumeration of knots and links, and some of their algebraic properties.
Comput. Problems in Abstract Algebra. New York: Pergamon Press; 1970;329-358.

Cromwell PG. Knots and Links. Cambridge University Press; 2004.
Murasugi K. Knot Theory and Its Applications. Birkhauser; 1996.
Adams CC. The Knot Book. American Mathematical Society; 2004.

Jin XA, Zhang FJ. The Homfly and dichromatic polynomials. Proc. Amer. Math.
Soc. 2012;140: 1459-1472.

Jin XA, Zhang FJ. On the location of zeros of the Homfly polynomial. J. Stat. Mech.
2011; PO7011.

Read RC, Whitehead Jr EG. Chromatic polynomials of homeomorphism classes of
graphs. Discrete Math. 1999;204: 337-356.

Shahmohamad H. A survey on flow polynomial. Utilitas Mathematica. 2002;62: 13-32.
Read RC. Chain polynomials of graphs. Discrete Math. 2003;265: 213-235.

Jin XA, Zhang FJ, Dong FM, Tay EG. Zeros of the Jones polynomial are dense in
the complex plane. Electron. J. Comb. 2010;17(1): R94.

Hosokawa F. On V-polvnomials of links. Osaka Math. J. 1958;10: 273-282.

16


APPLE
在文本上注释
The newly added references


[42] Hoste J. The first coefficient of the Conway polynomial. Proc. Amer. Math. Soc.
1985;95: 299-302.

[43] Franks J, Williams RF. Braids and the Jones polynomial. Trans. Amer. Math. Soc.
1987;303: 97-108.

[44] Morton HR. Seifert circles and knot polynomials. Math. Proc. Cambridge Philos. Soc.
1986;99: 107-109.

[45] Ohyama Y. On the minimal crossing number and the braid index of links. Canad. J.
Math. 1993;45: 117-131.

[46] Wikoff WR, Lilja L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE. Topologically
Linked Protein Rings in the Bacteriophage HK97 Capsid. Science. 2000;289: 2129-

2133.

[47] Helgstrand C, Wikoff WR, Duda RL, Hendrix RW, Johnson JE, Liljas L. The Re-
fined Structure of a Protein Catenane: The HK97 Bacteriophage Capsid at 3.44 A°
Resolution. J. Mol. Biol. 2003;334: 885-899.

Fig. 1. The planar diagram of the double crossover hexahedral link with 16 x 12 = 192

crossings.

Fig. 2. Assembly of DNA 4-turn hexahedra from two different component three-point-
star tiles (A and B).

Fig. 3. Right-handed (4) and left-handed crossings (—).

Fig. 4. The labeled theta graph © and the labeled triangular prism truncated from
the labeled theta graph ©'.

Fig.
Fig.
Fig.
Fig.
Fig.

5.

© o N>

The labeled tetrahedral graph T and its truncation 7.

The labeled hexahedral graph H and its truncation.

The Y — A transformation.

The construction of the labeled graph G* from the labeled graph G.

The double crossover tangle T} (left) and the vertical integer tangle T5 (right).
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