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Abstract

In the last 20 years or so, chemists and molecular biologists have synthesized some novel

DNA polyhedra. Polyhedral links were introduced to model DNA polyhedra and study

topological properties of DNA polyhedra. As a very powerful invariant of oriented links,

the Homfly polynomial of some of such polyhedral links with small number of crossings has

been obtained. However, it is a challenge to compute Homfly polynomials for polyhedral

links with large number of crossings such as double crossover 3-regular links considered

here. In this paper, a general method is given for computing the chain polynomial of the

truncated cubic graph with two different labels from the chain polynomial of the original

labeled cubic graph by substitutions. As a result, we can obtain the Homfly polynomial

of the double crossover 3-regular link which has relatively large number of crossings.

Introduction

In the last 20 years or so, many DNA biomolecules with the shape of polyhedron have

been synthesized by chemists and molecular biologists in the laboratory. For example, the

DNA cube [1], DNA tetrahedron [2], DNA octahedron [3], DNA truncated octahedron [4],

DNA bipyramid [5] and DNA dodecahedron [6]. In recent several years, a type of more

complicated DNA polyhedra have been reported in [7–10]. They are all synthesized by the

strategy of “n-point stars”. In fact they are called double crossover DNA polyhedra in [11].

In addition, similar DNA molecular structures can also be found in [12, 13]. Polyhedral

links modelling the double crossover DNA polyhedra are called double crossover polyhedral

links. As an example, the planar diagram of the double crossover hexahedral link is given

in Fig. 1.

Fig. 1: The planar graph of a double crossover hexahedral link with 16× 12 = 192 crossings.

Fig.1. The planar graph of a double crossover hexahedral link with 16×12 =

192 crossings.

The DNA double crossover hexahedron was assembled from two different component

three-point-star tiles (A and B), the process is shown in Fig. 2. The hexahedral structures
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have been confirmed by multiple techniques including polyacrylamide gel electrophoresis

(PAGE), dynamic light scattering (DLS), cryogenic electron microscopy (cryo-EM) imag-

ing, and single particle three-dimensional (3D) reconstruction [9]. We shall use the ori-

entation of the 2 backbone strands of the dsDNA to orient DNA polyhedral links. Thus

we always consider DNA polyhedral links as oriented links with antiparallel orientations.

Under this orientation, the double crossover hexahedral link in Fig. 1 is a negative one,

i.e., each crossing is left-handed. See Fig. 3.
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Fig. 2: Assembly of DNA 4-turn hexahedra from two different component three-point-star tiles (A and

B).

Fig. 2. Assembly of DNA 4-turn hexahedra from two different component

three-point-star tiles (A and B).

+ -

Fig. 3: Right-handed (+) and left-handed crossings (−).

Fig. 3. Right-handed (+) and left-handed crossings (−).

For understanding, describing and quantizing DNA polyhedra, many invariants of

polyhedral links modeling DNA polyhedra have been computed and analyzed [14–26].

Among these invariants, the Homfly polynomial [27, 28] is a very powerful one. It bears

much information of oriented links, containing the Jones polynomial [29] and Alexander-

Conway polynomial [30,31] as special cases. The Homfly polynomial can distinguish most

links from their mirror images, and it helps to determine other numerical invariants such as

braid index and the genus etc [32–34]. Unfortunately, computing the Homfly polynomial

is, in general, very hard. Computer software (e.g. KnotGTK) can only deal with links
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with small (about 50) number of crossings.

Mathematically, given any planar (not necessarily polyhedral) graph, we can construct

the corresponding double crossover link by covering the vertex of degree n with the n-

point star. In this paper we shall focus on 3-regular, i.e. cubic plane graphs and call the

corresponding double crossover links the double crossover 3-regular links. Based on results

in [35] and [36], Cheng, Lei and Yang established a relation in [22] between the Homfly

polynomial of the double crossover link and the chain polynomial [37] of the truncated

graph with two distinct labels (See Figs. 4-6 for examples). Using this relation, they

obtained the Homfly polynomial of the double crossover tetrahedral link which has 96

crossings. To compute the Homfly polynomial of the double crossover 3-regular link with

more large number of crossings, in the paper we give a general method to obtain the chain

polynomial of a truncated cubic (i.e. 3-regular) graph with two different labels via the

chain polynomial of the original cubic graph based on the Y −△ transform theorem in [39].

As a consequence, for example, we obtain the Homfly polynomial of the double crossover

hexahedral link with 192 crossings.

Fig. 4: The labeled theta graph Θ and the labeled triangular prism truncated from the labeled theta

graph Θ′.

Fig. 4. The labeled theta graph Θ and the labeled triangular prism trun-

cated from the labeled theta graph Θ′.

Fig. 5: The labeled tetrahedral graph T and its truncation T ′.

Fig. 5. The labeled tetrahedral graph T and its truncation T ′.
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Fig. 6: The labeled hexahedral graph H and its truncation.

Fig. 6. The labeled hexahedral graph H and its truncation.

Method

We rely on two relationships in order to obtain the Homfly polynomial of double crossover

3-regular links. One relation (RI) is between the chain polynomial of a cubic labelled

plane graph and that of its truncation with two different labels. See Theorem 1. The

other (RII) is between the chain polynomial of truncated cubic graphs with two different

labels and the Homfly polynomial of double crossover 3-regular links. See Theorem 2.

1. RI

The chain polynomial was introduced by Read and Whitehead in [37] for studying the

chromatic polynomial of homeomorphic class of graphs. A chain in G is a path in which

all vertices, except possibly the end vertices, have degree 2 in the graph G. The length of

a chain will be the number of edges in it. A graph with edges labeled elements a, b, c, · · ·
of a commutative ring with unity 1 is called a labeled graph. Let G be a labeled graph.

We usually identify the edges with their labels for convenience.

Definition 1 The chain polynomial Ch(G) = Ch(G;ω; a, b, c, · · · ) of a labeled graph G is

defined as

Ch(G) =
∑
Y

FY πU ,

where the summation is over all subsets Y of the edge set E of the graph G; FY = FY (1−ω)

denotes the flow polynomial in variable ω of ⟨Y ⟩, the spanning subgraph of G with edge

set Y ; πU denotes the product of the labels of the edges in U = E − Y .

For a survey on the flow polynomial of graphs, see [38].

Proposition 1 ( [37]) Let G be a labeled graph. Then

(1) If G has no edges, then Ch(G) = 1.
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(2) If G consists of two graphs A and B having at most one vertex in common, then

Ch(G) = Ch(A)Ch(B).

(3) The chain polynomial of a loop with the label a is a− ω.

(4) The term independent of the variables a, b, c, · · · is the flow polynomial of G.

(5) If a is an edge of G and is not a loop, let H be the graph obtained from G by deleting

the edge a, and let K be the graph obtained by contracting it. Then

(i) Ch(G) = (a− 1)Ch(H) + Ch(K).

(ii) Ch(H) is the coefficient of a in Ch(G).

(iii) Ch(K) is obtained from Ch(G) by putting a = 1.

Since the flow polynomial of a graph with bridges is 0, we have:

Lemma 1 Let a1, a2, · · · , as be a chain of length s of a labeled graph G. Let H be the

labeled graph obtained from G by replacing the chain a1, a2, · · · , as by a single edge a. Then

Ch(H) can be obtained from Ch(G) by replacing a1a2 · · · as by a and conversely, Ch(G)

can be obtained from Ch(H) by replacing a by a1a2 · · · as.

Proposition 2 ( [39]) Let C be a cut-set of edges in a graph G. Then any term in Ch(G)

that contains the labels of all but one of the edges in C has zero coefficient.

In the case of the graph GY shown in Fig. 7 (left), {x, y, z} is a cut-set. By Proposition

2, in Ch(GY ) there are no terms containing labels xy except z, yz except x or xz except

y.

Lemma 2 ( [39], The Y −△ theorem) Let GY be a labeled graph containing a vertex

of degree 3 with incident edges labelled x, y and z. Let its chain polynomial be Pxyz+Ax+

By+Cz+ V . Let G△ be the labeled graph obtained from GY by a Y −△ transformation,

where the rest of G△ is the same as in GY , as shown in Fig. 7. Then

Ch(G△) = P (xyz − ω) +A(yz + x− ω − 1) +B(xz + y − ω − 1) +

C(xy + z − ω − 1) + V (x+ y + z − ω − 2).

Fig. 7: The Y −△ transformation.

Fig. 7. The Y −△ transformation.
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Lemma 2 implies that Ch(G△) can be obtained from Ch(GY ) = Pxyz + Ax + By +

Cz + V by the following substitutions:

xyz −→ xyz − ω,

x −→ yz + x− ω − 1,

y −→ xz + y − ω − 1,

z −→ xy + z − ω − 1,

V −→ V (x+ y + z − ω − 2).

Let G be a cubic graph, i.e. a 3-regular graph. By truncating G we mean inserting

two vertices to each edge of G firstly, then doing the Y −△ transformation to each vertex

of degree 3. Let G′ be the truncated graph of G with original edges of G labeled with a

and newly produced edges labeled with b. See Figs. 4 (right), 5 (right) and 6 (right). Now

we shall provide a general theorem to obtaining Ch(G′) via Ch(G) by substitutions.

Theorem 1 Let G be a cubic graph with n vertices v1, v2, · · · , vn and m edges labeled

a1, a2, · · · , am. Let G′ be the truncated graph of G with original edges of G labeled with a

and newly produced edges labeled with b. Suppose

Ch(G) = a1a2 · · · am +

m−1∑
i=1

∑
Uij

FYijπUij + FG, (1)

where Uij is a subset of cardinality i of {a1, a2, · · · , am} and j = 1, 2, · · · ,

(
m

i

)
; Yij

denotes the complementary subset of Uij. Then we can obtain Ch(G
′
), namely

Ch(G
′
) = am(b3 − ω)n

+ (3b− ω − 2)n
m−1∑
i=1

ai
∑
Uij

FYij (
b3 − ω

3b− ω − 2
)pij (

b2 + b− ω − 1

3b− ω − 2
)qij

+ FG(3b− ω − 2)n,

(2)

where pij and qij are the numbers of k’s such that qk = 3 and qk = 1 in Eq. (3).

Proof. We divide the whole proof into three steps.

Step 1. Compute the chain polynomial of the labeled graph G∗ obtained from the labeled

graph G by the replacements shown in Fig. 8.

Fig. 8. The construction of the labeled graph G∗ from the labeled graph G.

For each k = 1, 2, · · · ,m, we suppose that vi and vj are the end-vertices of the edge

labeled ak. Recall that

Ch(G) =
m∑
i=0

∑
Uij

FYijπUij

= a1a2 · · · am +

m−1∑
i=1

∑
Uij

FYijπUij + FG,
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Fig. 8: The construction of the labeled graph G∗ from the labeled graph G.

where Uij is a subset of cardinality i of {a1, a2, · · · , am} and j = 1, 2, · · · ,

(
m

i

)
; Yij

denotes the complementary subset of Uij . By Lemma 1, replace ak by biabj in Ch(G), we

obtain Ch(G∗). For a fixed i from 0 to m,
∑
Uij

FYijπUij becomes ai
∑
Uij

FYij

∏n
k=1 b

qk
k , where

qk is the number of edges in Uij incident with the vertex vk. Thus we have:

Ch(G∗) =
m∑
i=0

ai
∑
Uij

FYij

n∏
k=1

bqkk

= am
n∏

i=1

b3i +

m−1∑
i=1

ai
∑
Uij

FYij

n∏
k=1

bqkk + FG,

(3)

where qk = 0, 1, 2, 3 depending on Uij . Additionally, for nonzero terms in Ch(G∗), qk can

not be 2. When ql = 0, it means that bl doesn’t appear in
∏n

k=1 b
qk
k .

In the following, we apply Lemma 2 to each vertex of degree 3 of G∗. Namely, for

each k = 1, 2, · · · , n, for each term of Ch(G∗), replacing b3k (namely qk = 3) by b3k −ω and

bk by b2k + bk − ω − 1, multiplying the other terms (namely, the term V in Lemma 2) by

3bk − ω − 2. We divide it into two steps for clarity.

Step 2. For each k = 1, 2, · · · , n, for each term of Ch(G∗), replacing b3k by x and bk by y,

we obtain a polynomial in x, y, a, ω, denoted it by Ch(G∗∗), namely,

Ch(G∗∗) = amxn +

m−1∑
i=1

ai
∑
Uij

FYijx
pijyqij + FG, (4)

where pij and qij are the numbers of k’s such that qk = 3 and qk = 1 in Ch(G∗), respec-

tively. Note that pm1 = n, qm1 = 0, p01 = 0 and q01 = 0.

Step 3. In Ch(G∗∗), replace x by b3−ω
3b−ω−2 and y by b2+b−ω−1

3b−ω−2 , and normalize entire

polynomial by (3b− ω − 2)n.

Therefore, the first term am
∏n

i=1 b
3
i becomes am(b3−ω)n and the last term FG becomes

FG(3b− ω − 2)n. Note that the numbers of k’s such that qk = 0 is n− pij − qij , which is

exactly the times we need multiply the term corresponding to Uij by 3b− ω − 2. �

A polyhedral graph is planar, it is worth pointing out that our Theorem 1 applies to

any cubic graphs which are not necessarily planar. Now we provide several examples.
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Example 1 The chain polynomial of the labeled theta graph Θ as shown in Fig. 4 (left)

and the more general labeled generalized theta Sm graph with m > 3 edges are given in [39]

and [40]. Note that the triangular prism as shown in Fig. 4 (right) is the truncated graph

of the theta graph. Applying Theorem 1, we have

Ch(Θ) = a1a2a3 − ω(a1 + a2 + a3) + ω2 + ω.

Step 1. a1 → b1ab2, a2 → b1ab2, a3 → b1ab2.

Ch(Θ∗) = a3b31b
3
2 − 3ωab1b2 + ω2 + ω.

Step 2. b31 → x, b32 → x, b1 → y, b2 → y

Ch(Θ∗∗) = a3x2 − 3ωay2 + ω2 + ω.

Step 3. x → b3 − w, y → b2 + b − w − 1, then only need to multiply the last term by

(3b− ω − 2)2, we obtain:

Ch(Θ′) = a3(b3 − w)2 − 3ωa(b2 + b− w − 1)2 + (ω2 + ω)(3b− ω − 2)2,

which matches the result in [39].

Example 2 Let T be the tetrahedral graph labeled as shown in Fig. 5 (left), whose chain

polynomial was calculated in [37,39]. Applying Theorem 1, we have

Ch(T ) = a1a2a3a4a5a6 − (a1a2a3 + a1a5a6 + a2a4a6

+ a3a4a5 + a1a4 + a2a5 + a3a6)ω + (a1 + a2 + a3 + a4

+ a5 + a6)ω(ω + 1)− ω(ω + 1)(ω + 2).

Step 1. a1 → b1ab3, a2 → b1ab4, a3 → b1ab2, a4 → b2ab4, a5 → b2ab3, a6 → b3ab4.

Ch(T ∗) = a6b31b
3
2b

3
3b

3
4 − ωa3(b31b2b3b4 + b1b2b

3
3b4 + b1b2b3b

3
4 + b1b

3
2b3b4)

− ωa2(b1b2b3b4 + b1b2b3b4 + b1b2b3b4) + ω(ω + 1)a(b1b3 + b1b4

+ b1b2 + b2b4 + b2b3 + b3b4)− ω(ω + 1)(ω + 2).

Step 2. b3k → x, bk → y, k = 1, 2, 3, 4.

Ch(T ∗∗) = a6x4 − 4ωa3xy3 − 3ωa2y4 + 6ω(ω + 1)ay2 − ω(ω + 1)(ω + 2).

Step 3. x → b3 − w, y → b2 + b − w − 1, then multiplying every term by (3b − ω −
2)4−d(x)−d(y), where d(x) and d(y) are degrees of x and y in the corresponding term in

Ch(G∗∗), respectively, we obtain:

Ch(T ′) = a6(b3 − w)4 − 4ωa3(b3 − w)(b2 + b− w − 1)3 − 3ωa2(b2 + b− w − 1)4

+ 6ω(ω + 1)a(b2 + b− w − 1)2(3b− ω − 2)2 − ω(ω + 1)(ω + 2)(3b− ω − 2)4,

which matches the reuslt in [22].
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Example 3 Let H be the labeled hexahedral graph with V (H) = {v1, v2, · · · , v8} and

E(H) = {a1, a2, · · · , a12} as shown in Fig. 6 (left). By performing the Maple program in

the Appendix of [22]) which can be used to compute the chain polynomial of labelled graph

with small number of edges, we obtain the chain polynomial of the labeled hexahedral graph

as follows.

Ch(H) = −3 a1a7w
2 − a6a3a4a10a12a9w − a2a6a4a12a8a11w − a2a6a9a10a8a4w − ...

− a7a10w
3a11 − a12a8a11w

3 + a2a4a12w
2 + a2a4a12w + a2a9w

2a11 + ...

− 3 a2a7w
2 − 2 a2a7w − 2 a2a10w

2 − a2a10w − a2a12w − 3 a2a4w
2 − 2 a2a4w.

According to Theorem 1, a simple program in the Maple platform for calculating Ch(G
′
)

from Ch(G) can be written. See Appendix. By applying the program, we obtain the chain

polynomial of the truncated hexahedral graph H ′ with two labels as shown in Fig. 6 (right).

Namely,

Ch(H ′) = a12(b3 − ω)8 − (11ω + 25ω2 + 20ω3 + 7ω4 + ω5)(3b− ω − 2)8

+ (96ω2 + 48ω + 12ω4 + 60ω3)(b2 + b− ω − 1)2(3b− ω − 2)6a

− (108ω2 + 66ω + 42ω3)(b2 + b− ω − 1)4(3b− ω − 2)4a2

− (24ω2 + 16ω + 8ω3)(b3 − ω)(b2 + b− ω − 1)3(3b− ω − 2)4a3

+ 32(ω2 + ω)(b2 + b− ω − 1)6(3b− ω − 2)2a3

+ 24(ω2 + ω)(b3 − ω)(b2 + b− ω − 1)5(3b− ω − 2)2a4

− 6ω(b2 + b− ω − 1)8a4 + 3ω2(b2 + b− ω − 1)8a4

+ 12(ω2 + ω)(b3 − ω)2(b2 + b− ω − 1)4(3b− ω − 2)2a5

− 16ω(b3 − ω)2(b2 + b− ω − 1)6a6

− 6ω(b3 − ω)4(b2 + b− ω − 1)4a8.

2. RII

In [22], a relation between the Homfly polynomial of positive double crossover polyhedral

link and the chain polynomial of truncated polyhedral graph with two labels is obtained.

For completeness we give an outline of the proof of the relation. Here we consider the

negative double crossover polyhedral links and the two tangles T1 which is used to cover

the original edge (labelled a) of a polyhedron and T2 which is used to cover the newly

produced edge (labelled b) after truncation are shown in Fig. 9.

Fig. 9. The double crossover tangle T1 (left) and the vertical integer tangle

T2 (right).

Let T be a 2-tangle. We denote by Nu(T ) and De(T ) the numerator and denominator

of the 2-tangle T , respectively. Let δ = v−1−v
z . After calculation, we obtain:
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Fig. 9: The double crossover tangle T1 (left) and the vertical integer tangle T2 (right).

PNu(T1)(v, z) = δ−1(1− v−4)2 + δ−12v−4(1− v−4) + δv−8

PDe(T1)(v, z) = δ−2(1− v−4)2 + 2v−4(1− v−4) + δ2v−8

PNu(T2)(v, z) = 1

PDe(T2)(v, z) = δ−1(1− v−4) + δv−4.

Hence,

µ(T1) =
δPNu(T1) − PDe(T1)

δ2 − 1

= z2(v−1 + v−3)2

w(T1) =
δPDe(T1) − PNu(T1)

δPNu(T1) − PDe(T1)

=
v−3 − v−1 − 2z2(v + v−1)

z3(1 + v2)2

µ(T2) =
δPNu(T2) − PDe(T2)

δ2 − 1

= −z(v−1 + v−3)

w(T2) =
δPDe(T2) − PNu(T2)

δPNu(T2) − PDe(T2)

= −z−1(v + v3)−1.

After changing v to −v−1, you will find µ(T1), µ(T2) and w(T1), w(T2) coincide with

µx(e), µy(e) and wx(e), wy(e) in Theorem 3.3 of [22].

Let P be a polyhedral graph. Let P ′ be the truncated polyhedral graph of P . Let

L(P ) be the negative double crossover 4-turn link based on P . Then [35]

PL(P )(v, z) = δ−1[z(v−1 + v−3)]4|E(P )|QP ′(δ, δ),
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where the weights of the original edges and the newly produced edges by truncation

are v−3−v−1−2z2(v+v−1)
z3(1+v2)2

and −z−1(v + v3)−1, respectively. Combining it with the relation

between the dichromatic polynomial QP ′ and the chain polynomial Ch(P ′) obtained in [36]

(see Lemma 2.5), we obtain:

Theorem 2 Let P be a polyhedral graph having x edges. LetP ′ be the truncated polyhedral

graph of P with two labels a and b (having 2x vertices and 3x edges). Let L(P ) be the

negative double crossover 4-turn link based on P . In Ch(P ′), we let

w = 1− δ2,

a =
v−2 − 1− z2(1 + v2 + v4 + v6)

v−2 − 1− 2z2(v2 + 1)
,

b = v4.

Then

PL(P )(v, z) = δ−1

[
v−3 − v−1 − 2z2(v + v−1)

v13 − v15

]x
Ch(P

′
).

After changing v to −v−1, you can find Theorem 2 coincides with Theorem 3.4 in [22].

Results

In this section we use Theorem 2 to compute the Homfly polynomial of negative double

crossover 3-regular links based on the theta graph, the tetrahedron and the cube. To

obtain the Homfly polynomial of the positive double crossover polyhedral links, one only

need change v to −v−1. Recall that the Conway and Jones polynomials are both special

cases of the Homfly polynomial, i.e.

∇L(z) = PL(1, z),

VL(t) = PL(t,
√
t− 1√

t
).

Some computational results are too long to be included in this paper, we refer the readers to

the website http : //121.192.180.131 : 93/papers/UploadF iles4429/201502/2015022315554

363.pdf for the complete results of the chain polynomial of hexahedral graph and the Hom-

fly polynomial of double crossover DNA hexahedral link, in these cases we only list a few

terms here:
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PL(Θ)(v, z) = −v−55z−7(v48z14 + 7 v46z14 + 28 v44z14 + 84 v42z14 + 3 v42z12 + 207 v40z14

+ 15 v40z12 + 441 v38z14 + 47 v38z12 + 838 v36z14 + 115 v36z12 + 1450 v34z14

+ 3 v36z10 + 246 v34z12 + 2308 v32z14 + 9 v34z10 + 478 v32z12 + 3388 v30z14

+ 36 v32z10 + 836 v30z12 + 4570 v28z14 + 84 v30z10 + 1332 v28z12 + 5590 v26z14

+ 4 v30z8 + 196 v28z10 + 1834 v26z12 + 6069 v24z14 + 4 v28z8 + 372 v26z10

+ 2066 v24z12 + 5619 v22z14 + 52 v26z8 + 528 v24z10 + 1554 v22z12 + 4116 v20z14

+ 52 v24z8 + 664 v22z10 − 374 v20z12 + 2140 v18z14 + 9 v24z6 + 238 v22z8

− 285 v20z10 − 2815 v18z12 + 679 v16z14 − 9 v22z6 + 238 v20z8 − 2319 v18z10

− 3291 v16z12 + 97 v14z14 + 184 v20z6 − 1066 v18z8 − 1996 v16z10 − 1705 v14z12

− 184 v18z6 − 1066 v16z8 + 684 v14z10 − 341 v12z12 + 66 v18z4 − 606 v16z6

+ 1190 v14z8 + 1518 v12z10 − 198 v16z4 + 606 v14z6 + 1190 v12z8 + 506 v10z10

+ 12 v16z2 + 66 v14z4 + 624 v12z6 − 418 v10z8 − 60 v14z2 + 330 v12z4

− 624 v10z6 − 418 v8z8 + v14 + 108 v12z2 − 330 v10z4 − 211 v8z6 − 7 v12

− 60 v10z2 − 66 v8z4 + 211 v6z6 + 21 v10 − 60 v8z2 + 198 v6z4 − 35 v8

+ 108 v6z2 − 66 v4z4 + 35 v6 − 60 v4z2 − 21 v4 + 12 v2z2 + 7 v2 − 1),

PL(T )(v, z) = −v−109z−13(v96z26 + 13 v94z26 + 91 v92z26 + 455 v90z26 + 6 v90z24

+ 1814 v88z26 + 66 v88z24 + 6110 v86z26 + 400 v86z24 + 18014 v84z26

+ 15 v84z22 + 6240 v82z24 + · · ·+ 76044 v44z16 − 568318 v42z18

− 9151952 v40z20 − 35714154 v38z22 − · · · − 3982176 v26z14 + 2351088 v24z16

+ 3395394 v22z18 − 464792 v20z20 + · · ·+ 24 v2z2 + 13 v2 − 1),

PL(H)(v, z) = −v−217z−25(v192z50 + 25 v190z50 + 325 v188z50 + 2925 v186z50 + 12 v186z48

+ 20463 v184z50 + 276 v184z48 + 118455 v182z50 + 3320 v182z48 + 589867 v180z50

+ 27784 v180z48 + 2594275 v178z50 + · · ·+ 117286813536 v146z44 + · · ·

+ 24631386348 v118z36 + · · · − 4342184782394 v82z34 − · · ·

+ 604406814588216v62z36 + · · · − 316550564 v42z6 + · · ·

+ 6981260760v24z10 − · · ·+ 48 v2z2 + 25 v2 − 1).

Thus,

∇L(Θ)(z) = −37632 z7,

∇L(T )(z) = −1078984704 z13,

∇L(H)(z) = −748419423085264896 z25,
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VL(Θ)(z) = −t
−103

2 (t48 − 7 t47 + 28 t46 − 84 t45 + 210 t44 − 462 t43 + 924 t42 − 1713 t41

+ 2985 t40 − 4939 t39 + 7819 t38 − 11912 t37 + 17544 t36 − 25072 t35 + 34875 t34

− 47326 t33 + 62766 t32 − 81462 t31 + 103570 t30 − 129055 t29 + 157634 t28

− 188690 t27 + 221242 t26 − 253870 t25 + 284755 t24 − 311685 t23 + 332298 t22

− 344228 t21 + 345601 t20 − 335293 t19 + 313457 t18 − 281464 t17 + 242045 t16

− 198659 t15 + 155160 t14 − 114883 t13 + 80386 t12 − 52914 t11 + 32652 t10

− 18771 t9 + 10012 t8 − 4907 t7 + 2200 t6 − 885 t5 + 320 t4 − 98 t3 + 27 t2

− 5 t+ 1),

VL(T )(z) = −t
−205

2 (t96 − 13 t95 + 91 t94 − 455 t93 + 1820 t92 − 6188 t91 + 18564 t90

− 50382 t89 + 125898 t88 − · · ·+ 405708071163 t42 − 422901756090 t41)

+ 434762332438 t40 − 440420890844 t39 + · · ·+ 90t2 − 11t+ 1),

VL(H)(z) = −t
−409

2 (t192 − 25 t191 + 325 t190 − 2925 t189 + 20475 t188

− 118755 t187 + 593775 t186 − · · ·+ 64833446416942962011t136 − · · ·

− 451043083493105466629441t89 + · · · − 388424807064142369273t39 + · · ·

+ 1083862665t10 − · · ·+ 324t2 − 23t+ 1).

To our surprise their Conway polynomials are so simple, all having only one term. Let

L = K1 ∪ K2 ∪ · · · ∪ Kn be an oriented link with n components. Let A(L) = (aij)n×n

be the linking matrix with aij = lk(Ki,Kj), the linking number of Ki and Kj , if i ̸= j

and aii = −
∑n

j=1,j ̸=i lk(Ki,Kj). In [41,42] the authors proved that the first coefficient of

∇L(z) (i.e. the coefficient of the term of the lowest degree n− 1) is equal to the cofactor

of A(L) up to a sign. Our computational results are the same to the results obtained from

cofactor of linking matrices.

Let PL(v, z) be the Homfly polynomial of the oriented link L. In [43] and [44], Franks,

Williams and Morton independently gave a lower bound for the braid index b(L) of an

oriented link L in terms of spanvPL(v, z) as follows:

1

2
spanvPL(v, z) + 1 ≤ b(L), (5)

where spanvPL(v, z)=max degv PL(v, z)−min degv PL(v, z) , and max degv PL(v, z) and

min degv PL(v, z) denote, respectively, the maximal degree and minimal degree of v in the

polynomial PL(v, z). This inequality (5) is usually called MFW inequality. By combining

the following result obtained by Ohyama in 1993 [45] which states that for a non-splittable

oriented link L,

b(L) ≤ 1 +
c(L)

2
, (6)

where c(L) is the crossing number of L.

Hence, b(L(θ)) = 25, b(L(T )) = 49 and b(L(H)) = 97. These results coincide with

results in [21].
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Discussion

A general method is given in this paper for computing the chain polynomial of the truncat-

ed cubic graph with two different labels from the chain polynomial of the original labeled

cubic graph by substitutions. Hence, we convert the computation of the chain polynomial

of a large graph with two labels to that of the chain polynomial of a small graph. As an

application, by combining with the relation between the Homfly polynomial of a double

crossover polyhedral link and the chain polynomial of the truncated polyhedral graph with

two different labels, we obtain the Homfly polynomial of the double crossover hexahedral

link, which has 192 crossings.

From our computational results, we know that the double crossover DNA hexahedral

link is topologically chiral and its braid index is 97. More deeply chemical and biological

understanding of our computational results deserves further exploring. To our surprise the

Conway polynomials of the double crossover links based on the theta graph, the tetrahedral

graph and the hexahedral graph all have only one term. It may coincide with Corollary

4.6 in [35].

We only consider double crossover 3-regular links. Similar approach may be developed

to deal with double crossover n-regular links. It may be a more difficult task to compute

the Homfly polynomial of polyhedral link modeling protein polyhedra in [46,47].
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Fig. 1. The planar diagram of the double crossover hexahedral link with 16×12 = 192

crossings.

Fig. 2. Assembly of DNA 4-turn hexahedra from two different component three-point-

star tiles (A and B).

Fig. 3. Right-handed (+) and left-handed crossings (−).

Fig. 4. The labeled theta graph Θ and the labeled triangular prism truncated from

the labeled theta graph Θ′.

Fig. 5. The labeled tetrahedral graph T and its truncation T ′.

Fig. 6. The labeled hexahedral graph H and its truncation.

Fig. 7. The Y −△ transformation.

Fig. 8. The construction of the labeled graph G∗ from the labeled graph G.

Fig. 9. The double crossover tangle T1 (left) and the vertical integer tangle T2 (right).
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