About
63
Publications
11,505
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,027
Citations
Current institution
Additional affiliations
March 1996 - present
University of California, Los Angeles
Position
- Professor
July 1989 - March 1996
September 1988 - June 1989
Publications
Publications (63)
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion, proteolytically processed OPA1 proteins f...
Dominant optic atrophy (DOA) is an inherited disease that leads to the loss of retinal ganglion cells (RGCs), the projection neurons that relay visual information from the retina to the brain through the optic nerve. The majority of DOA cases can be attributed to mutations in optic atrophy 1 (OPA1), a nuclear gene encoding a mitochondrial-targeted...
Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine in multiple models of retinal degeneration. To understand mechanisms underlying its broad neuroprotective effects, we have investigated the influence of CNTF on metabolism in a mouse model of photoreceptor degeneration. CNTF treatment improves the morphology of photorecept...
Ciliary neurotrophic factor (CNTF) has potent neuroprotective activity in retinal degeneration animal models, yet the cellular mechanisms underlying its broad neuronal survival effects remain unclear. Here, we investigated the impact of CNTF on retinal metabolism in a mouse model of human retinitis pigmentosa. CNTF treatment resulted in improved mi...
The developing retina expresses multiple bHLH transcription factors. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors ATOH7 and Neurog2 in human ES cell-derived retinal organoids. Single cell transcriptome analyses identify three states of proli...
Multiple transcription factors containing the bHLH motif are expressed during retinogenesis. Their precise functions and interactions in uncommitted retinal progenitors remain to be fully elucidated. Here, we investigate the roles of bHLH factors in human ES cell-derived 3D retinal organoids by elevating ATOH7 and Neurog2 expression. Single cell tr...
The development of the mammalian retina is a complicated process involving the generation of distinct types of neurons from retinal progenitor cells (RPCs) in a spatiotemporal-specific manner. The progression of RPCs during retinogenesis includes RPC proliferation, cell-fate commitment, and specific neuronal differentiation. In this study, by perfo...
Pathological myopia (PM) is a major cause of irreversible vision impairment worldwide. We have successfully reprogrammed the peripheral blood mononuclear cells (PBMCs) from a PM patient to induced pluripotent stem cells and characterized their pluripotency and genetic stability, as well as the potential to differentiate to retinal pigment epitheliu...
Best's disease (BD) is an inherited retinal degenerative disease caused by mutations in BEST1 gene. A human induced pluripotent stem cell (iPSC) line has been generated with integration-free Sendai virus method from peripheral blood mononuclear cells (PBMCs) of a BD patient carrying c.888C > A mutation in BEST1 gene. This cell line may serve as a m...
The production of vertebrate retinal projection neurons, retinal ganglion cells (RGCs), is regulated by cell-intrinsic determinants and cell-to-cell signaling events. The basic-helix-loop-helix (bHLH) protein Atoh7 is a key neurogenic transcription factor required for RGC development. Here, we investigate whether manipulating human ATOH7 expression...
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell-derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self-repair mechanisms in patients, through the recruitment of e...
We evaluated the effect of AAV2- and 17-AAG (17-N-allylamino-17-demethoxygeldanamycin)-mediated upregulation of Hsp70 expression on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). AAV2-Hsp70 expression in the retina was primarily observed in the ganglion cell layer. Approximately 75% of all transfected cells were R...
The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs). The replenishment of lost RGCs and...
Significance
The cytokine CNTF has been approved by the FDA as a neuroprotective treatment for major retinal degenerative diseases. However, the mechanism of CNTF-triggered protection and CNTF-responsive cells in the retina remains unknown. Using molecular genetic analyses in a retinal degeneration mouse model, we identify the Müller glial cell as...
Epigenetic regulation of the genome is critical for the emergence of diverse cell lineages during development. To understand the role of DNA methylation during retinal network formation, we generated a mouse retinal-specific Dnmt1 deletion mutation from the onset of neurogenesis. In the hypomethylated Dnmt1-mutant retina, neural progenitor cells co...
Primary neuronal culture and transfection are useful tools in determining gene functions within specific tissue contexts and developmental stages. Chicken embryonic retinal cultures are easily obtainable and often robust as the chicken eye is relatively large compared to mouse eye at similar developmental stages. Various DNA-based constructs have b...
The lipid phosphatase PTEN is a critical negative regulator of extracellular signal-induced PI3K activities, yet the roles of PTEN in the neural retina remain poorly understood. Here, we investigate the function of PTEN during retinal development. Deletion of Pten at the onset of neurogenesis in retinal progenitors results in the reduction of retin...
Age-related macular degeneration (AMD) is characterized by the loss or dysfunction of retinal pigment epithelium (RPE) and is the most common cause of vision loss among the elderly. Stem-cell-based strategies, using human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (hiPSCs), may provide an abundant donor source for generati...
Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) exhibit multiple biological effects in the developing vertebrate retina. CNTF/LIF inhibits rod photoreceptor, and promotes bipolar cells and Muller glia differentiation. In addition, CNTF/LIF has been shown to have proliferative and apoptotic effects. Moreover, LIF also inhibit...
The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retin...
Pax6 levels among cells in different phases of the cell cycle. Pax6 levels among cells in different phases of the cell cycle.
Mammalian programmed cell death (PD)-1 is a membrane-associated receptor regulating the balance between T-cell activation, tolerance, and immunopathology; however, its role in neurons has not yet been defined. The hypothesis that PD-1 signaling actively promotes retinal ganglion cell (RGC) death within the developing mouse retina was investigated....
Cell-extrinsic signals can profoundly influence the production of various neurons from common progenitors. Yet mechanisms by which extrinsic signals coordinate progenitor cell proliferation, cell cycle exit, and cell fate choices are not well understood. Here, we address whether Hedgehog (Hh) signals independently regulate progenitor proliferation...
Purpose: Usher 1B, one of the major subtypes of a combined blindness and deafness disease, is caused by mutations in the MYO7A gene, which encodes a large unconventional myosin expressed in the retinal pigment epithelium (RPE) and photoreceptor (PR) cells. This study aims at developing viral vectors expressing the wild type human MYO7A at an adequa...
One of the most disabling forms of retinal degeneration occurs in Usher syndrome, since it affects patients who already suffer from deafness. Mutations in the myosin VIIa gene (MYO7A) cause a major subtype of Usher syndrome, type 1B. Owing to the loss of function nature of Usher 1B and the relatively large size of MYO7A, we investigated a lentivira...
To characterize molecular and cellular changes induced by sustained expression of ciliary neurotrophic factor (CNTF) in the rds mutant mouse retina.
Recombinant adeno-associated virus (rAAV) expressing CNTF was injected subretinally, for transduction of peripherin/rds(+/)(-) transgenic mice that carry the P216L mutation found in human retinitis pig...
During vertebrate neurogenesis, multiple extracellular signals influence progenitor cell fate choices. The process by which uncommitted progenitor cells interpret and integrate signals is not well understood. We demonstrate here that in the avascular chicken retina, vascular endothelial growth factor (VEGF) secreted by postmitotic neurons acts thro...
Ciliary neurotrophic factor (CNTF) exhibits multiple biological effects during vertebrate retinogenesis, including regulation of photoreceptor cell differentiation. In the early postnatal mouse retina, CNTF induces rapid and transient phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3 and the extracellular signal...
Formation of the vertebrate visual system involves complex interplays of cell-extrinsic cues and cell-intrinsic determinants. Studies in several vertebrate species demonstrate that multiple classes of signaling molecules participate in pattern formation of the eye and neurogenesis of the retina. Certain signals, such as hedgehog, BMP, and FGF molec...
Ciliary neurotrophic factor (CNTF) exhibits multiple biological effects during vertebrate retinal development, including regulating the differentiation of photoreceptor cells and promoting the survival and axonal growth of ganglion cells. We report here that in addition to affecting the differentiation of retinal neurons, CNTF also promotes Muller...
Members of the ciliary neurotrophic factor (CNTF) family of cytokines have been shown to influence neuronal differentiation during retinal development and enhance cell survival in various retinal degeneration models. However, the cellular mechanism of CNTF signaling and the target cell types for CNTF in the developing retina remain unidentified. Th...
Stargardt-like macular dystrophy (STGD3) is an autosomal dominant form of early onset macular degeneration. The disease causing gene ELOVL4 encodes a protein that belongs to a family of proteins functioning in elongation of long chain fatty acids. The purpose of this study is to characterize cross-species conservation of ELOVL4 and investigate its...
The receptor tyrosine kinase Flk1 is known to mediate signals of vascular endothelial growth factor (VEGF) during vasculogenesis and hematopoiesis. We demonstrate by in situ hybridization that in addition to endothelial cells, chick Flk1 mRNA is also expressed in the notochord and in the neural epithelial cells of the ventral diencephalon, hindbrai...
The chick embryo is an excellent model for studying eye morphogenesis, retinal cell fate determination, and retinotectal projections due to its accessibility and the available molecular tools. Avian replication-competent retroviruses allow efficient infection of proliferating cells and stable integration of the viral genome, including up to 2.3kb o...
The anterior segment of the vertebrate eye consists of highly organized and specialized ocular tissues critical for normal vision. The periocular mesenchyme, originating from the neural crest, contributes extensively to the anterior segment. During chick eye morphogenesis, the homeobox gene Six3 is expressed in a subset of periocular mesenchymal ce...
Proper dorsal–ventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Previous studies have suggested that midline tissue-derived Sonic hedgehog (Shh) molecules play critical roles in establishing the bilateral eye fields and in determining the proximal–distal axis of the eye pr...
Previous work has shown that production of retinal ganglion cells is in part regulated by inhibitory factors secreted by ganglion cell themselves; however, the identities of these molecules are not known. Recent studies have demonstrated that the signaling molecule Sonic hedgehog (Shh) secreted by differentiated retinal ganglion cells is required t...
In situ hybridization techniques involve specific annealing of labeled nucleic acid probes with complimentary cellular RNAs, and the subsequent detection of these labeled probes within fixed cells (1,2). In situ hybridization can be applied to monolayer cells, tissue sections, or whole mount tissues. It is a powerful technique for the cellular or s...
Retroviruses are naturally occurring viruses with an RNA genome. A retroviral vector is a modified infectious virus derived from murine or avian species that can be used to introduce nonviral DNAs into a target cell. There are two prominent features of retroviralmediated DNA transduction. First, retroviral vectors can stably integrate into the host...
We have previously reported increased levels of Osteonectin/SPARC transcript in age-related cataractous compared to normal human lenses. The purpose of the present study was to evaluate the corresponding levels of osteonectin/SPARC protein in age-related cataractous relative to normal lenses and to evaluate the levels of osteonectin/SPARC transcrip...
The secreted signaling molecule Sonic hedgehog (Shh) plays critical roles in pattern formation of the vertebrate central nervous system. During neurulation, Shh is produced by the ventral midline mesoderm as well as by the ventral neural tube, and its activity is required for the determination of ventral characteristics along the anterior-posterior...
Lineage analyses of vertebrate retinae have led to the suggestions that cell fate decisions are made during or after the terminal cell division and that extrinsic factors can influence fate choices. The evidence for a role of extrinsic factors is strongest for development of rodent rod photoreceptors (‘rods’). In an effort to identify molecules tha...
Throughout development of the vertebrate retina, progenitor cells are multipotential, producing a variety of distinctive cell types. Little is known of the molecular mechanisms directing the determination of cell fate. We have examined retinal progenitor cells for expression of receptor tyrosine kinases in an attempt to define receptors that could...
In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells with...
Growth hormone receptor (GHR) forms a complex with a tyrosine kinase, suggesting involvement of a ligand-activated tyrosine kinase in intracellular signaling by growth hormone (GH). Here we identify JAK2, a nonreceptor tyrosine kinase, as a GHR-associated tyrosine kinase. Immunological approaches were used to establish GH-dependent complex formatio...
Degenerate oligonucleotide primers were employed in PCRs to clone protein tyrosine kinases that may play potential roles in the development of the mammalian CNS. Using one PCR clone to screen a mouse eye cDNA library, a full-length cDNA of a cytoplasmic tyrosine kinase, the homolog of human JAK1, was obtained. The murine JAK1 kinase belongs to a ne...
Lambdoid phage late gene operons are positively regulated by genome-specific antiterminator proteins encoded by the Q gene of each phage. In this paper, we compare the activity of phage lambda and phage 82 Q proteins. Q82-mediated antitermination, like that of Q lambda, involves a transcription pause during which the regulator can modify RNA polyme...
The Q genes of phages lambda and 82 encode transcription antiterminators that are active in vitro in a purified transcription system. Transcription termination is thought to involve two distinct steps: pausing of the transcription complex at the terminator and release of enzyme and RNA; either or both steps might be inhibited by Q protein. We show...
We have constructed novel transcription templates in which we have fused the late gene promoters of Escherichia coli phages lambda and 82 upstream from three different rho-independent transcription terminators. Using an in vitro transcription assay and an in vivo galactokinase expression assay, we find that the initial portion of the transcribed re...
The gene Q protein of phage lambda is a transcription antiterminator that modifies RNA polymerase near the phage late gene promoter and thereby causes antitermination at distant sites. To define the site of action of Q protein, we have reconstructed the regulatory system on plasmids that allow the intracellular concentration of Q protein to be regu...
The positive regulator encoded by phage lambda gene Q is a transcription antiterminator that affects RNA polymerase initiating at the phage late gene promoter, but not at other promoters. We show that this nucleotide-sequence-specific interaction of Q protein and RNA polymerase can occur while the enzyme is pausing after 16 nucleotides of the late...
Questions
Question (1)
We have substantial base OCR and ECAR readings in the Seahorse XF24 assay of our tissues (thin pieces of tissues containing about 200,00o cells), but we could not get any responses to uncoupler, rotenone, or oligomycin! For the same tissue, if dissociated and plated as a monolayer, we can get drug responses. Does anyone know what is the problem?
CJ