About
32
Publications
6,996
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
250
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (32)
The transient electromagnetic method (TEM) is widely used in the exploration of mineral, petroleum, and geothermal resources due to its sensitivity to low-resistivity bodies, limited site constraints, and strong resistance to interference. In practical applications, the TEM often uses a long wire source instead of an idealized horizontal electric d...
A long wire with large current source transient electromagnetic (TEM) monitoring, with a large detection depth, low cost, safety, and environmental protection, has unique advantages in the testing and identification of unconventional reservoir fluid and the evaluation of stimulated reservoir volume. So, the TEM 3D forward modeling method has become...
Airborne electromagnetic (AEM) surveys using airborne mobile platforms enable rapid and efficient exploration of areas where groundwork is difficult. They have been widely used in fields such as shallow resource exploration and environmental engineering. Three-dimensional AEM inversion is the main technique used in fine structural interpretation. H...
The finite-element (FE) method for three-dimensional (3D) airborne electromagnetic (AEM) modeling can flexibly simulate complex geological structures at high accuracy. However, it has low efficiency and high computational requirements. To solve these problems, one needs to generate meshes more reasonably. In view of this, we develop an adaptive oct...
As an airborne electromagnetic method induced by natural sources, the Z-axis tipper electromagnetic (ZTEM) system can primarily recover near-surface shallow structures, due to band-limited frequencies (usually 30–720 Hz) of the airborne survey and high sample rate acquisition along the terrain. In contrast, traditional ground magnetotellurics (MT)...
Z-axis tipper electromagnetic (ZTEM) technique is an airborne electromagnetic method that detects anomalies in the deep earth that are induced by natural sources. Conven- tional ZTEM forward modeling is generally conducted using structured grids that have limited accuracy and cannot be used to invert complex underground structures and topography. H...
The spectral-element (SE) method, which is based on the Galerkin technique, has been gradually implemented in geophysical electromagnetic (EM) three-dimensional (3D) simulation. The accuracy and efficiency of this approach, implemented for both deformed hexahedral and regular meshes, has been verified for airborne EM forward modeling. One advantage...
The conventional 3D magnetotelluric (MT) forward modeling and inversions generally assume an isotropic earth model. However, wrong results can be obtained when using an isotropic model to interpret the data influenced by the anisotropy. To effectively model and recover the earth structures including anisotropy, we develop a 3D MT inversion framewor...
Airborne electromagnetic (AEM) method uses aircraft as a carrier to tow EM instruments for geophysical survey. Because of its huge amount of data, the traditional AEM data inversions take one-dimensional (1D) models. However, the underground earth is very complicated, the inversions based on 1D models can frequently deliver wrong results, so that t...
In this paper, we propose a new method for two-dimensional (2-D) magnetotelluric (MT) inversion based on the curvelet transform. Unlike the conventional inversion methods that apply constraints on the model in the space-domain, the method presented in this paper is based on the sparse constraint by the curvelet transform, and we directly invert the...
The spectral element method (SEM) based on high-order complete orthogonal polynomials is an accurate and efficient numerical method for electromagnetic modelling due to its spectral accuracy and exponential convergence. The SEM combines the flexibility of the finite-element method and the high accuracy of the spectral method. In this paper, we intr...
Spectral-element (SE) method is a kind of higher-order finite-element method based on weighted residual technique; however, the basis functions for SE are polynomial, like Gauss-Lobatto-Legendre (GLL) or Gauss-Lobatto-Chebyshev (GLC) polynomials. Because of its high modeling accuracy and flexibility, it has been successfully used in computational e...
Mainstream numerical methods for 3D time-domain airborne electromagnetic (AEM) modeling, such as the finite-difference (FDTD) or finite-element (FETD) methods, are quite mature. However, these methods have limitations in terms of their ability to handle complex geologic structures and their dependence on quality meshing of the earth model. We have...
Traditional 3D Magnetotelluric (MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces
and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, suc...
Traditional 3D Magnetotelluric (MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, suc...
Electrical anisotropy exists everywhere in nature that has become an important issue non-ignorable in geophysical exploration. Especially in areas of sedimentary rocks where strata in the earth result in variation of resistivity varying with the direction of current flow. In this paper, we review the research on electrical anisotropy in geo-electro...
Xiaoyue Cao C. Yin Bo Zhang- [...]
J. Cai
Traditional 3D MT data interpretations are based on an isotropic model that is sometimes inappropriate, because it has been well established that electrical anisotropy is widely present in the deep earth. The MT anisotropic modelling is generally worked on structured meshes that has a limited accuracy but cannot model complex geology. We present a...
Marine controlled-source electromagnetic (MCSEM) method is an important predrill reservoir appraisal method to reduce exploration risk in detecting sub-seafloor hydrocarbon reservoirs. Most 3D forward modelings for MCSEM are based on conventional numerical methods like finite-difference and finite-element method. In this paper, we introduce spectra...
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem...
The 3-D spectral-element method (SE) based on Gauss–Lobatto–Legendre (GLL) polynomials is a very efficient and accurate solver for high-frequency computational electromagnetic (EM) modeling. Although the SE method is based on a weighted residual technique similar to the finite-element method (FE), it utilizes polynomial interpolation functions rath...
Spectral element method (SE) is a kind of numerical simulation method based on weighted residual technique, whose interpolation functions are polynomials rather than linear functions. The polynomials have the characteristic of exponential convergence with the polynomial orders. This helps improve the computational accuracy. In this paper, we apply...
As an effective and efficient geophysical tool, airborne EM (AEM) is specifically suitable for the exploration in areas of high mountains, desert, swamp, and forest. With the development of national economy of China, the demand for mineral resources increases sharply, geophysical explorations in areas with favorable geological conditions have been...
An airborne electromagnetic (AEM) survey often covers hundreds of square kilometers. Huge amounts of survey data make 2D/3D data inversion very difficult. However, due to the compact configurations of AEM systems, the sensitive area for each single survey station is much smaller than the whole survey area, which makes it possible to only invert par...