Y90 M8N UOPLOT $3BQ PUEBSNOY]
1OYSHGNS [RUCISSEICicf DLE JBUCHEINDT [BLONBUISIUY
suonedlignd 39VYS

b44/

1A0H H I

HUVISH
- T1dWvs
T1VWS
40
331931VAllS
VINLSILVLS




19

S’/t/ructural Equatlon Modeling
Analysis With Small Samples
U§|ng Partial Least Squares

N L

N i

. [ SR
SRR R DL DN

w7 .
AR A
T fatl

Wynne W.“'Chi_nl & Peter R. Newsted

STRUCTURAL EQUATION MODELING (SEM) techniques as
represented by software such as LISREL, EQS, AMOS, SEPath,
CALIS, and RAMONA have become very popular among social
scientists in the past decade. Viewed as a coupling of two tra-
ditions: &n econometric perspective focusing on prediction and
a psychometric emphasis that models concepts as latent (unob-
served) variables that are indirectly inferred from multiple ob-
served measures (alternately termed as indicators or manifest
variables), SEM essentially offers social scientists the ability to
perform path-analytic modeling with latent variables. This ap-
proach, in turn, has led some to describe it as an éxample of “a
second generation of nultivariate analysis” (Fornell, 1987).

The primary advantage that SEM-based procedures have
over first-generation techniques such as principal components
analysis, factor analysis, discriminant analysis, or multiple re-
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gression is the greater flexibility that a researcher has for the
interplay of theory and data. Overall, SEM-based approaches
provide researchers with the flexibility to perform the following:
» Model relationships among multiple predictor and criterion
variables. '
¢ Construct unobservable latent variables.
* Model errors in measurements for observed variables,
- o Statistically test a priori substantive/theoretical and mea.
surement assumptions against empirical data (i.e., confirma-
tory analysis). - -

Essentially, second-generation multivariate techniques such
as SEM involve generalizations and extensions of first-generation
procedures. Applying certain constraints or assumptions on one
or more particular second-generation techniques would result in
a first-generation procedure with correspondingly less flexibility
in modeling theory with data. _

Yet, a number of factors, including sample size, tend to pre-
clude the use of the predominate technique of covariance-based
SEM. The objective of this chapter is to elaborate on a lesser
known approach for SEM analysis called partial least squares
(PLS). Rather than view PLS as a competing method, it wil! be
shown as complementary in terms of rescarch objectives, data
conditions, and modeling. In addition to considering sample sizc,
this chapter begins by ocutlining the factors that should be con-
sidered in choosing one approach over the other. The specific al-
gorithm is then covered in a nontechnical fashion. Finally, the
results of a Monte Carlo simulation are presented to see how PLS
performs under varying levels of sample size and model complex-
ity with the extreme case being 21 latent variables, 672 indica-
tors, and a sample size of 20.

'-Contrasting Partial Least Squares and Covariance-Based
Structural Equation Modeling

The coveriance-based approach for SEM dates back to the origi-
nal development by Jéreskog (1973), Keesling (1972), and Wiley
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(1973). Its widespread popularity is due in a large part to the
availability of the LISREL III program developed by Joreskog
and Sérbom in the mid-1970s and subsequent updates (see Pref-
ace, Joreskog and Sgrbom, 1989). Typically, using & maximum-
likelihood (ML) function, covariance-based SEM attempts to min-
imize the difference between the sample covariances and those
predicted by the theoretical model (i.e., T — %.(©)). Therefore, the
parameter estimation process attempts to reproduce the covari-
ance matrix of the observed measures.

Along with the benefits discussed earlier, the use of covari-
ance-based SEM (hereafter CBSEM) involves constraints in the
form of parametric assumptions, sample size, model complexi-
ty, identification, and factor indeterminacy. In order to use this
approach, it is assumed that the observed variables follow a spe-
cific multivariate distribution (normality in the case of the ML
function) and that observations are independent of one another.
Possibly more critical is the sample size requirement, which 1is
often beyond the range of researchers. Small samples that are
not “asymptotic” in characteristics can lead to poor parameter
estimates and model test statistics (Chou & Bentler, 1995; Hu &
Bentler, 1995). In fact, inadmissible solutions in the form of nega-
tive variances and out-of-range covariances often occur as sample
size decreases (e.g., Anderson & Gerbing, 1984; Boomsma, 1983;
Dillon, Kumar, & Mulani, 1987; Gerbing & Anderson, 1987; Mac-
Callum, 1986; van Driel, 1978). When the latent variates are
dependent, fit indices tend to overreject models at sample sizes
of 250 or less (Hu & Bentler, 1995, p. 95).

Equally critical with small sample sizes is the potential for
Type Il error, whereby a poor model can still falsely achieve ade-
quate model fit. According to MacCallum, Browne, and Sugawara
(1996), sample sizes less than 200 are inadequate to achieve the
standard.80 level for a test of close fit when models have degrees
of freedom at 55 or lower. Using their alternative test of “not close
fit,” models at samples sizes of 200 need to be even mare restric-
tive (i.e., degrees of freedom greater than 80). Furthermore, un-
der exploratory conditions with small-to-moderate sample sizes
(i.e., 100 to 400), MacCallum (1986) demonstrated that final mod-
els derived via post hoc modifications should not be trusted.
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 Complex models also can be problematic relative to fit in-
dices and computation. As the degrees of freedom increase with
increasing number of indicators and latent variables, various
model fit indices tend to be positively biased relative to simpler
models (Mulaik et al., 1989). Pragmatically, current software
packages begin to slow down or possibly fail to run as the number
of indicators approaches 50 or 100 (approximately 20 to 30 in the
case of distribution-free estimation).

Covariance-based SEM analysis typically requires indicators
in a reflective mode. Under this condition, indicators are viewed
as being influenced or affected by the underlying latent variable.
Yet, an alternative conceptualization has the indicators in a for-
mative mode. In this situation, indicators are viewed as causing
rather than being caused by the latent variable. According to
Bollen and Lennox (1991), such formative indicators “do not con-
form to the classical test theory or factor analysis models that
treat indicators as effects of a construct” (p. 305). As an example,
Cohen, Cohen, Teresi, Marchi, and Velez (1990} used the latent
variable of socioeconomic status (SES) with education, occupa-
tional prestige, and income as indicators. In this instance, the
indicators determine an individual's SES. If one of the indicators
increases, the other ones need not do so. Yet, an increase in any
one indicator {e.g., income) will lead to an increase in the latent
variable SES. Another example of formative indicators would be
job loss, divorce, recent accident, and death in the family for
the latent variable life stress. Although a CBSEM analysis gen-
erally requires all latent variables to have reflective indicators,
researchers may unknowingly incorporate formative ones. As Co-
hen et al. (1990, Table 1, p. 186) showed in a survey of 15 arti-
cles that performed CBSEM analysis, a sizable number of Jatent
variables were indeed inappropriately modeled, treating forma-
tive indicators as reflective. Finally, as MacCallum and Browne
(1993) demonstrated, any attempts to model formative indicators
in a CBSEM analysis can lead to identification problems, implied
covariances of zero among some indicators, and/or the existence
of equivalent models. Although these problems can be managed,
MacCallum and Browne (1993) argue that this would involve
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s Mol AR

«pltering the original model in terms of its substantive meaning
or parsumony, or both” (p. 540).

There is also an inherent indeterminacy in the CBSEM proce- -
dure. In other words, case values for the latent variables cannot
be obtained in the process. Thus, it is not possible to estimate
scores for the underlying latent variables in order to predict the
observed indicators. In fact, an infinite set of possible scores can
be created that are not only consistent with the parameter es-
timates, but need not be correlated. This may or may not be
viewed as problematic depending on the objectives (see Maraun,
1096, and the two rounds of commentary). The CBSEM approach
is ideal if the goal is to obtain population parameter estimates for
explaining covariances with the assumption that the underlying
model is correct. However, this procedure was not developed for
predictive purposes where the researcher desires parameter es-
timates (i.e., weights for each i_ndividual indicator) in order to
create latent variable scores that can be used to predict its own
indicators or other latent variables. As will be explained in more
detail later, this is the primary goal of partial least squares: pre-
dicting the variances of latent and manifest variables.

Identification problems pertaining to a unique set of esti-
mates can also occur ecither algebraically or empirically under
conditions where the number of indicators per construct is low,
the correlation among factors is zero, or both (Rindskopf, 1984).
Thus, it is generally necessary to have three or more indicators
per latent variable in order to avoid identification problems in
CBSEM analysis.

A final issue to consider when using a CBSEM procedure is
the role theory plays in the analyses of the data. At this point,
very little has been done to examine the influence of model mis-
specification on parameter estimates. Being a full information
approach, the parameter estimates in one part of a model (e.g.,
loadings for one latent variable) may be unduly influenced by
misspecifications in some other part of the madel (e.g., missing
structural paths or poor indicators for another construct). This is
- less of an issue for a large percentage of CBSEM studies, which
follow a confirmatory mode whereby the analyses are done un-
der strong theory and use measures that were developed from
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prior studies—typically via a series of exploratory factor analy-
ses. When the theory is still relatively tentative or the measures
for each latent variable are new, however, greater emphasis may
need to be placed on the data relative to the theory.

In the case of CBSEM, it has been argued that theory is given
more influence in estimating parameters as opposed to the par-
tial least squares approach to SEM analysis. For example, if a
correlated two-factor model was specified, the estimated correla-
tion between the two abstract latent variables tends to go up as

the correlations among observed indicators go down. Given a spe-
cific theoretical model, the only logical deduction for situations
with low observed correlations is that there is a large amount of
random error/noise affecting each indicator. According to Fornell
(1989),

. consistent with the specification of reflective indica-
tors, the abstract model specification plays a large role in
determining the results; almost to the point that it “over-
rides” the data .... Thus, it is here that the researcher
must make a decision about the relative weight that
should be given to data vs. theory .... Fortunately, al-
ternatives to covariance structure analysis are available
when the analyst is unwilling to depart too far from the
data and wants to obtain a different balance between the-
ory and observation. One such alternative is partial least
squares (PLS) developed by Herman Wold. (pp. 165—-166)

As an alternative to covariance-based SEM analysis, the
variance-based approach of PLS shifts the orientation from
causal model/theory testing to component-based predictive mod-
eling. Rather than focusing on building models that are meant to
explain the covariances of all the observed indicators, the objec-
tive of PLS is prediction. As such, latent variables are defined
as the sum of their respective indicators. The PLS algorithm
attempts to obtain the best weight estimates for each block of
indicators corresponding to each latent variable. The resulting
component score for each latent variable based on the estimated
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indicator weights maximizes variance explained for dependent
variables (i.e., latent, observed, or both).

Partial least squares can be a powerful method of analysis be-
cause of the minimal demands on measurement scales (i.e., cat-
egorical to ratio level indicators can be used in the same model),
sample size, and residual distributions (Wold, 1985). Although
PLS can be used for theory confirmation, it can also be used to
suggest where relationships might or might not exist and to sug-
gest propositions for later testing. Being closer to the data and
a limited estimation procedure, misspecifications in one part of
a model have less influence on the parameter estimates in oth-
er parts of the model. Compared to the better known CBSEM,
the component-based PLS avoids two serious problems: inadmis-
sible solutions and factor indeterminacy (Fornell & Bookstein,
1982). Because the iterative algorithm performed in a PLS anal-
ysis generally consists of a series of ordinary least squares anal-
yses, identification is not a problem for recursive models, nor
does it presume any distributional form for measured variables.
Furthermore, the computational efficiency of the algorithm lends
itself to estimating large complex models on the order of hun-
dreds of latent variables and thousands of indicators. The util-
ity of the PLS method has been documented elsewhere (Falk &
Miller, 1992, p. xi) as possibly more appropriate for a large per-
centage of the studies and data sets typically used among re-
searchers.

In summary, if the hypothesized structural and measure-
ment model is correct in the sense of explaining the covaria-
tion of all the indicators and the data/sample size conditions
are met, the covariance-based procedure provides optimal esti-
mates of the model parameters. It is ideal for model confirmation
and estimation of the “true” underlying population parameters.
However, depending on the researcher’s objectives and epistemic
view of data to theory, properties of the data at hand, or lev-
el of theoretical knowledge and measurement development, the
PLS approach can be argued to be more suitable. Table 1
provides a summary of the key differences between PLS and
CBSEM.
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Table 1 Comparison of Partial Least Squares and Covariance-Based

Structural Equation Modeling

[ S —

Criterion PLS CBSEM
Objective: Prediction oriented Parameter oriented
Approach: Variance based Covariance based

Assumptions:

Parameter
estimates:

lLatent variable
scores:
Epistamic
relationship
between a latent
variable and

its measures:

Implications:

Model complexity:

Sample size:

Predictor specification
{nonparametric)

Consistent as indicators
and sample size increase
{i.e., consistency

at large)

Explicitly estirnated

Can be modeled in
either formative or
reflective mode

Optimal for
prediction accuracy

Large complexity
{e.g., 100 constructs
and 1,000 indicators)

Power analysis based
on the portion of the
model with the largest
number of predictors.
Minimal
recornmendations range
from 30 to 100 cases.

Typically multivariate
normal distribution and

[T

independent observations
{parametric)

Consistent

- e €0t ARt mna ettt e e e

Indeterminate

Typically only with
reflective indicators

Optimal for

parameter accuracy

Small to moderate
complexity (e.g., less
than 100 indicatars)

!deally based on power
analysis of specific
model—minimal
recommendations range
from 200 to 800.
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The Standard Partial Least Squares Algorithm

The basic PLS design was completed in 1977 (see Wold,
1982, p. 35 and has subsequently been extended in various
ways. Lohméller (1984, 1989) covered various inner weighting
schemes. Wold (1982) discussed nonlinearities among latent vari-
ables, whereas Hui (1978, 1982) used a fixed-point PLS method
to model nonrecursive (i.e., interdependent) relationships. In ac-
cord with this chapter’s objective of providing 2 simple introdue-
tion to the PLS method, the following discussion is restricted to
the basic design involving recursive models.

As discussed earlier, the objective of PLS is to help the re-
searcher obtain determinate values of latent variables for pre-
diction. - The formal model (to be described later) explicitly
defines latent variables as linear aggregates of their observed in-
dicators. The weight estimates to create the latent variable com-
ponent scores are obtained based on how the inner (i.e., struc-
tural) and outer (i.e. measurement) models are specified. Asa
result, the residual variances of dependent variables (both latent
and observed variables) are minimized.

The parameter estimates obtained via PLS can be viewed as
falling into three categories. The first category 18 the weight
estimates, which are used to create the latent variable scores.

‘The second reflects the path estimates connecting latent vari-
ables and between latenit variables and their respective block
of indicators (1e., loadings). The third category pertains to the
means and location parameters (i.e., regression constants) for in-
dicators and latent variables. In order to come up with these
three sets of parameter estimates, the PLS algorithm follows a
three-stage process with each stage used to obtain each set of es-
timates, respectively. Therefore, the first stage results in obtain-
ing the weight estimates. The second stage provides estimates
for the inner model (.e., structural relations among latent vari-
ables) and outer model (.e., reflective or formative measurement
paths). And the third stage yields the means and location esti-
mates. In the first two stages, the indicators and latent variables
are treated as deviations from their means. In the third stage,
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should the researcher wish to obtain estimates based on the orig-
inal data metries, the weight and path estimates from the pre-
vious two stages are used for calculating the means and location
parameters. '

~ Stage 1 represents the heart of the PLS algorithm. It consists
of an iterative procedure that almost always converges to a stable
set of weight estimates. Essentially, component score estimates
for each latent variable are obtained in two ways. The outside
approximation represents a weighted agpregate of its own indi-
cators. The inside approximation refers to a weighted aggregate
of other component scores that are related to it in the theoreti-
cal model. During each iteration, the inner model estimates are
used to obtain the outside approximation weights, whereas the
outer model estimates are used to obtain the inside approxima-
tion weights. The procedure stops when the percentage change of
each outside approximation weight relative to the previous round
is less than 0.001. Thus, both the theoretical and the measure-
ment portions of the model contribute in the estimation process.
This is contrasted to a two-step approach where the measure-
ment model is derived first before it is used at the structural leve}
(see Fornell & Yi, 1992, for further discussion relating the one-
and two-step approach toward modeling).

Multiblock Example

To illustrate the stage 1 process PLS goes through, let’s look
at the model provided in Figure 1. As depicted, the measures
are partitioned into four blocks (two exogenous £s and two en-
dogenous 7s). As a starting point, the algorithm does an initial
outside approximation estimation of the latent variables (LVs)
by summing the indicators in each block with equal weights. The
weights, in each iteration, are scaled to obtain unit variance for
the latent variable scores over the NV cases in the sample. Using
the estimated scores for each LV as given, an inside approxima-
tion estimate of the LVs is performed.

There have been three primary “inside approximation” weight-
ing schemes developed thus far for combining “neighboring” LVs
to obtain an estimate for a specific LV: centroid, factor, and path
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weighting. Although each weighting scheme follows a particular
logic, it has been noted that the choice tends to have little influ-
ence on the results: 005 or less for structural paths and .05 or
less for measurement paths (Noonan & Wold, 1982).

The centroid weighting scheme was the original procedure
used by Wold. It only considers the sign of the correlations be-
tween the LV and the neighboring LVs. The strength of the cor-
relations and the direction of the structural model are not taken
into account. It is computationally simple because the result-
ing estimates are obtained by adding up all connected LVs with
either weights of +1 o1 — 1 depending on the sign of their correla-
tion, which leads each LV to become similar to the centroid factor
{Lohmaller, 1989). Thus, if a structurally linked LV is correlated
— .30, the weight assigned to it would be —1. This approach is
considered advantageous (relative to the path weighting scheme)
when the LV correlation matrix is singular because the weights
are based only on the bivariate correlations among component
scores. A disadvantage arises when an LV correlation is close t0
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zero and thus may oscillate during iterations from a small pos-
itive to a small negative and back. Under this situation, these
values are magnified by the corresponding +1 and —1 weights.

The factor weighting scheme, therefore, uses the correlation
coefficients between the focal LV and its neighboring LVs as the
weights. The LV becomes the “principal component” of its neigh-
boring LVs. According to Lohmédller (1989), the factor weighting
scheme maximizes the variance of the principal component of the
LVs when the number of LVs goes to infinity.

Finally, the path weighting scheme differentially weights
neighboring LVs depending on whether they are antecedents or
consequents of the focal LV. This scheme, thus, attempts to pro-
duce a component that ideally can both be predicted and at the
same time be a good predictor for subsequent dependent vari-
ables. To do this, all independent variables influencing the target
LV are weighted by the multiple-regression coefficients, whereas
all dependent LVs are weighted by the correlation coefficients. In
a sense, the focal LV becomes the best mediating LV between the
source and target LVs. As the only procedure among the three
that takes into account the directionality of the structural maodel,
the path weighting scheme is often used for models with hypoth-
esized causal relations. If, on the other hand, no propositions
are made regarding the associations among the LVs, the factor
weighting scheme would be the logical choice.

If a factor: weighting scheme were used in this example, the
inside approximation estimate for £, would be the sum of the out-
side approximation estimates for n, and ny weighted by their re-
spective correlation coefficients with £;. & is not included in the
estimate because there is no link between it and £;. #;, on the
other hand, is a weighted estimate of the other three LVs because
it has structural paths with all three.

Under a path weighting scheme, there are three different in-
side approximation situations. As both £ and &; are exogenous
constructs, they are weighted by correlation coefficients. So, for
example, the estimate for £; would follow the same procedure
as under the factor weighting scheme. In the case of n2, being
a pure endogenous (dependent) variable, a multiple regression
is performed with the outside approximation estimates for &1, &2,
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and 1100 the outside approximation estimate of n2- The multiple-
regression coefficients are then used as the weights for combining
the outside approximation estimates of §1, £p,and m to obtain the
inside approximation estimate for nz. Finally, the estimate for m
uses both multiple-regression coefficients and correlation coeffi-
cients as weights, m1 18 regressed on £y and &2 10 obtain weights
for £1 and &2 and the simple correlation between n1 00 112 ig taken
for the weight of n2-

Given the LV estimates from the inside approximation, anew
set of weights from a new round of outside approximations can be
obtained. Taking the inside approximation scores as fixed, either
simple or multiple regression 18 performed depending o0 whether
the ‘block of indicatorsisina reflective mode (termed mode A)ora
formative mode (termed mode B) mode. Recause &1, 125 and n1 are
modeled as mode A with arrows directed toward the indicators,
each indicator in each block would be individually regressed on
its respective LV estimate (e, inside approximation score). In
the case of &2, being in mode B with arrows directed toward the
1V, a multiple regression of the estimate of kg on its indicators is
performed. The simple- Or multiple-regressions coefficients are
then used as new weights for an outside approximation of each
V. Figure 2 depicts the logical flow of this iterative process.

Once the latent variable scores from stage 1 are estimated,
the path relations are jmmediately estimated by ordinary least
squares regression in stage 2. Each dependent variable in the
model (either endogenous 1Vs or indicators in a reflective mode)
is regressed on its respective independent variables (i.e., other
LVs or indicators in a formative mode). When the final paths are
estimated in stage 2 and it makes substantive sense (e.g., dif-
ferences in the means, scale, and variances are meaningful), the
means and location parameters for the indicators and 1Vs are
estimated in stage 3. To do this, the means for each indicator
are first calculated based on the original data. Then, using the
weights derived in stage i, the means for each LV are calculated.
(Given means for the LVs and path estimates from stage 2, the
Jocation parameter for each dependent 1V is simply calculated as
the difference between the just obtained mean and the system-

tic part accounted for by the independent 1Vs that influence it.

a
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Figure 2 Stage 1 Algorithm for Estimating LV Scores
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320




Structural Equation Modeling Analysis With Small Samples

Likewise, the location parameter for a reflective indicator is sim-
ply the difference between its mean and the estimate based on
its underlying LV and path loading.

Formal Specification of the Partial Least Squarés Model

Having covered the PLS estimation procedure, the formal model
specification that guides the process is now presented. As noted,
the latent variable path models in PLS consist of three sets of re-
lations: (1) the inner model, which specifies the relationships be-
tween LVs; (2) the outer model, which specifies the relationships
between LVs and their associated observed or manifest variables
(MVs); and (3) the weight relations upon which case values for
the LVs can be estimated. Without loss of generality, it can be
assumed that LVs and MVs are scaled to zero means and unit
variances so that location parameters (i.e., constant parameter
terms) can be eliminated in the following equations.

Inner Mode!

The inner model (also referred to as the inner relations, struc-
tural model, substantive theory) depicts the relationship among
latent variables based on gubstantive theory:

n=PBo+Bn+TE+L, Y

where 7 represents the vector of endogenous (i.e., dependent) la-
tent variables, ¢ is a vector of the exogenous latent variables, and
¢ is the vector of residual variables (i.e., unexplained variance).
Because the basic PLS design assumes recursive relations
(i.e., one-way arrows) among LVs, each dependent latent vari-
able 7; in this often termed “causal chain system” of IVs can be
“specified as follows: '

=y Binit+ > vinkn + & (2
i k
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where B; and p;; are the path coefficients linking the predic-
tor endogenous and exogenous latent variables & and 5 over the
range specified by the indices i and 4, and ; is the inner residual
variable. _ '

The inner model (Equation 1) is subject to predictor specifica-
tion (Wold, 1988):

CEGy | V0 &) =Y Bimi + ) vinkn.
. i Ko

Thus, it is assumed that each LV is a linear function of its
predictors and that there are no linear relationship between the
predictors and the residual, '

E(ivn.&)=0 and  Cov{{, n) =Cov(t, &) =0

for the indices i and A ranging over all predictors.

The structural form of the inner model can be also be written
in reduced form by subtracting 87 from both sides of Equation 1
and premultiplying by (I — £)~! yielding:

n=U - T+ -l
=pE+¢°,

where B* represents the total effect of the exogenous latent vari-
able &.

To make predictor specification possible for both the struc-
tural and the reduced forms, the assumption is made that E(gj* |
¥&,) = 0 for all j endogenous LVs as they relate to the exogenous
LVs impacting in the first j relations given in the structural form
given in Equation 2.

Outer Model

The outer model (also referred to as outer relations or mea-
surement model) defines how each block of indicators relates to
its latent variable. The MVs are partitioned into non-overlapping
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blocks. For those blocks with reflective indicators, the relation-
ships can be defined as

X = AIE +€xa
y=Am+ &y,

where x and y are the MVs for the exogenous and endogenous
IVs ¢ and 75, respectively. Ay and A, are the loadings matri-
ces representing simple regression coefficients connecting the LV
and their measures. The residuals for the measures &: and &y, in
turn, can be interpreted as measurement errors or noise.
Predictor specification, as in the case for the inner model, is
assumed to hold for the outer model in reflective mode as follows:

E[x | §] = AIE!
3)
Elylnl = Ay,
For those blocks in a formative mode, the relationship is defined
as:

E: IIEx+85,
n=T,y+é,

where £, 7, x, and y are the same as those used in Equation 3.
M, and II, are the multiple-regression coefficients for the LV on
its block of indicators and §, and §, are the corresponding resid-
uals from the regressions. Predictor specification is also in effect
as

E[£ | x] = H;x,
Elptlyl =TI,y

As opposed to the weight relations to be discussed next, the
formative specification for outer relations refer to the MV and the
true LV, This, in turn, provides the basis for the manner in which
the weights are determined within the PLS estimation algorithm
estimating the LV.
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Weight Relations

Although the inner and outer models provide the specifica-
tions that are followed in the PLS estimation algorithm, the
weight relations need to be defined for completeness. The case
value for each LV is estimate in PLS as follows:

E =) wwxen,
kh

A=) WeiYki
ki

where w;, and wg; are the & weights used to form the LV esti-
mates of & and n;.

Thus, the LV estimates are linear aggregates of their ob-
served indicators whose weights are obtained via the PLS estima-
tion procedure as specified by the inner and outer models where
7 1s a vector of the endogenous (i.e., dependent) latent variables,
£ is a vector of the exogenous (i.e., independent) latent variables,
¢ is a vector of residuals, and B and I' are the path coefficient
matrices.

o

=
T
N

¢ i{\redictor Specification

Predictor specification (Presp), therefore, forms the basis for PLS
modeling. Whereas the covariance-based ML estimation rests on
the assumptions of a specific joint multivariate distribution and
independence of observations, the PLS approach does not make
these hard assumptions. Instead, the PLS technique of mod-
el building uses very general, soft distributional assumptions,
which often lead to this approach being termed “soft modeling.”
Thus, as Lohmoller (1989, p. 64) noted, “it is not the concepts nor
the models nor the estimation techniques which are ‘soft, only
the distributional assumptions.”

Presp “is imposed on relations that the investigator wants
to use for prediction, be it'in theoretical or estimated form, and
Presp provides the ensuing predictions” (Wold, 1988, p. 589).
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Lohméller (1989) further states that Presp “starts with the pur-
pose of prediction (not primarily a structural explanation) [and]
sets up a system of relations preferably linear, where the struc-
ture of the relations must be-founded in the substance of the mat-
ter, and the predictive purpose should not jeopardize a structural-
causal interpretation of the relation (causal-predictive relation)”
(p. 72). Presp adopts the statistical assumptions for a linear con-
ditional expectation relationship between dependent and inde-
pendent variables, which can be summarized as

y=o+ Bx+v, y=Eiy|x] =+ Bx
=>E[U] =0
. 4
= Cov[x, v] = Cov[§,v] =0
= Covlx, y] = Covlx, §] = B varlx],

where y and x are m x 1 and n x 1 matrices of dependent and

independent variables, v is an m x 1 matrix of residuals, and B

the m x n matrix of coefficient relations between y and x. The

implications are that, for a given x and y:

1. xis a predictor (cause or stimulus) of y, and not the other way
around (i.e., nonreversability).

2. §is the systematic part of y, with respect to x.

3. The systematic part, #, is a linear function of x.

The observational or empirical representation of Equation 4
would follow simply by including the index n for observations
1,...,.\V:

y=a+ Pxn + va Ja=Elyn i xol = 0 + Bxn
= Elv) =0
= Covlxy, va] = Covijn, val = 0
= Covlxn, yn] = Covixs, Fal = B var(x,).

Therefore, it should be noted that identical distributions.are
not assumed. For any two cases, say 1 and n+1, no assumption is
made that the residuals v, and Va1 have the same distribution.
Nor is independence of cases required because no specification
was made regarding the correlation between two different cases
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(i.e., Cov[vy, vy41]). In general, a sufficient condition for consis-
tency of least squares estimates is that, as the number of obser-
vations approaches infinity, the sum of the correlations between
cases must stay below infinity (i.e., 3, Jcor(v,, vuy1)| < co; Wold,
1988). :

Thus, predictor specification can be viewed as a least squares
counterpart to the distributional assumptions of ML modeling.
It avoids the assumptions that observations follow a specific dis-
tributional pattern and that they are independently distributed.
Therefore, no restriction is made on the structure of the resid-
ual covariances and, under least squares modeling, the residual
variance terms are minimized. In summary, Wold (1988) states
that Presp “provides a general rationale for (i) LS [least squares]
specification and (i} LS estimation, and thereby also for the ap-
plication of (iii) the cross-validation test for predictive relevance
... and (iv) the assessment of SEs by Tukey’s jackknife” (p. 587),
which are used for model evaluation.

Sfample Size Requirements Based on the Inside and
Outside Approximations

With the formal model specification and the basic PLS estima-
tion process described, the requirements for sample size become
reasonably clear for all three stages. As our previous exam-
ple demonstrates, either simple or multiple regressions are per-
formed, depending on the mode for each block of indicators and
the inner weighting scheme. Due to the partial nature of the es-
timation procedure, where only a portion of the model is involved
at any one time, only that part that requires the largest multiple
regression need be found. Although stages 2 and 3 are equivalent
in sample size requirements, stage 1 may not require as large a
sample size contingent on which inner approximation is selected.

Overall, for an initial sense of the sample size required at
stages 2 and 3, one simply looks at the model specification or,
equivalently, the graphical model such as that depicted in Fig-
ure 1 and finds the largest of two possibilities: (1) the block with
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the largest number of formative indicators (i.e., largest measure-
ment equation) or (2) the dependent LV with the largest num-
ber of independent Vs influencing it (i.e., the largest structural
equation). If one were to use a regression heuristic of 10 cases per
predictor, the sample size requirement would be 10 times either
(1) or (2), whichever is greater.

Ideally, for a more accurate assessment, one needs to spec-
ify the effect size for each regression analysis and look up the
power tables provided by Cohen (1988) or Green’s (1991) approx-
imation to these tables. Using Figure 1 as an example, the only
block with formative indicators consists of four indicators influ-
encing E2. The dependent LV with the largest number of inde-
pendent LVs influencing it is 52, with three paths going into it.
Thus, the largest regression at any one time consists of four inde-
pendent variables.. Assuming a medium effect size as defined by
Colen (1988), a minimum sample size of 84 is needed to obtain
a power of .80. With a large effect size, the sample requirement
drops to 39. '

For stage 1, the use of a path weighting scheme would result
in the same sample requirements as necessary for stages 2 and 3.
However, with the use of a factorora centroid weighting scheme,
only simple regressions between the LVs are performed in calcu-
lating the weights to be used for the inside approximation. In this
situation, only the measurement model with formative indicators
becomes the critical factor in sample size requirements. Had all
latent variables been modeled as reflective (mode A), the use of
either a factor or 2 centroid weighting scheme would entail only
a series of simple regressions during the entire stage 1 process,
resulting in minimum sample size requirements of 53 and 24 for
medium and large effect sizes, respectively.

In fact, the minimum sample size required to assess compo-
nent loadings for reflective indicators is likely even smaller. Giv-
en that the standard requirement for loadings 18 normally set
at .60 or above, the effect size of component loadings is larger
than what is considered large in regression power analysis (i.e.,
2 of .35, Cohen, 1988). For example, a .60 loading represents an
f? effect size of .56 and requires & sample size of 15 to obtain a
power of .80 for detection. This situation is demonstrated partly
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in the Monte Carlo study to follow, wherein sample sizes of 20
could not detect structural paths of .40, but easily detected load-
ings of .60 and .80.

Model Evaluation

As noted, PLS makes no distributional assumption {other than
predictor specification) in its procedure for estimating parame-
ters. Thus, traditional parametric-based techniques for signifi-
cance testing/evaluation would not be appropriate. Instead, Wold
(1980, 1982) argued for tests consistent with the distribution-
free/predictive approach of PLS. In other words, rather than
based on covariance fit, evaluation of PLS models should apply
prediction-oriented measures that are also nonparametric. To
that extent, the R? for dependent LVs, the Stone-Geisser (Stone,
1974; Geisser, 1975) test for predictive relevance, and Fornell and
Larcker’s (1981) average variance extracted measure are used
to assess predictiveness, whereas resampling procedures such as
jackknifing and bootstrapping are used to examine the stability
of estimates. Readers interested in more detail regarding statis-
tical tests, with examples of their use, can consult Barclay, Hig-
gins, and Thompson (1995), Chin (1998), Chin and Gopal (1995),
and Mathieson, Peacock, and Chin (1996).

et

*-Partial Least Squares Estimates: The Issue of Consistency
Y
at Large

Although one of the benefits of the PLS procedure can be argued
to be its ability to estimate LV case values, these scores can lead
to biased parameter estimates. Essentially, the case values for
the LVs are “inconsistent” relative to the CBSEM model due to
* the fact that they are aggregates of the observed variables, which
in part include measurement error. This bias tends to manifest
itself in higher estimates for component loadings (outer model re-
lations) and lower estimates at the structural level (inner model
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relations). The estimates will approach the “tyue” latent vari-
able scores as both the number of indicators per block and the
sample size increase. This limiting case is termed “consistency
at large” (Wold, 1982, p. 25). Intuitively, the larger the num-
her of indicators in a block, the more the “essence” of the LV is
confirmed by the data. However, the sample size also needs to
increase, as in the usual asymptotic notion of consistency, in or-
der for the sample covariance matrix to become a better estimate
of the population covariance matrix. Thus, in PLS, better esti-
mates cannot simply be obtained by increasing the sample size.
Both more indicators and more cases are needed. Furthermore,
increasing the block size not only results in estimates that ap-
proach the “true” parameter scores, but also lowers the standard
errors, which have been shown to vary inversely with the square
root of the block size (Lyttkens, 1966, 1973).

Although closed-form solutions for estimating the amount of
bias are not available for multiblock heterogeneous loading con-
ditions, formulas for estimating the bias of PLS estimates rel-
ative to the parameter-oriented CBSEM ML estimates in the
single- and two-block models have been provided (for deriva-
tions, see Lohmbller, 1989, pp. 907-212). In these situations, it
was shown that the bias decreases as the loadings become more
reliable, and the bias decreases as the number of indicators in-
creases. For the simple two-block model, it was also demonstrat-
ed that the predicted correlation between indicators from differ-
ent blocks is unbiased because the loading and correlation biases
cancel each other out. The general proof that this canceling effect
occurs even under conditions of unequal block sizes, weights, and
loadings has been given by Areskoug (1982). Therefore, we again
see the distinction between prediction orientation versus param-
eter orientation. The parameter estimation accuracy of the PLS
procedure relative to the covariance-based ML procedure increas-
es under consistency at large. .

Yet, it can be argued that PLS estimates are consistent under
the formal PLS model. The bias measures just discussed were
calculated relative to CBSEM ML estimation, which presuppos-
es that the underlying model that generates the data is covari-
ance based. Schneeweiss (1990) has suggested that the consis-
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tency at large notion is really a “justification for using PLS as
an estimation method to estimate CBSEM parameters in cases
where the number of manifest variables is large” (p. 88). Instead,
Schneeweiss argues that PLS can be seen as a consistent estima-
tor of parameters and latent variables as long as we determine
which population parameters we are attempting to estimate. If
we are estimating the parameters for the population model as
defined by PLS, then we have the advantage of “treating PLS as
a method for defining descriptive parameters in situations where
blocks of manifest variables are related to each other” (p. 38),
even if the data cannot be regarded as stemming from a CBSEM
model, In this situation, the PLS estimation method will esti-
mate the PLS parameters consistently. If, on the other hand, the
data are generated from a covariance-based model, the PLS esti-
mates will result in inconsistent estimates. '

Therefore, while PLS can be used in a confirmatory sense
following a covariance-based orientation, it can also be used for
testing the appropriateness of a block of indicators in a predic-
tive sense and for suggesting potential relations among blocks
without necessarily making any assumptions regarding which
LV model generated the data. As Wold (1980) noted, an initial
PLS model is:

... usually tentative since the model construction is an
evolutionary process. The empirical content of the maodel
is extracted from the data, and the model is improved by
interactions through the estimation procedure between
the model and the data and the reactions of the re-
searcher. Consequently, the researcher should begin with
a generous number of observables-indicators in the vari-
ous blocks. To use many observables makes for rich em-
pirical content of the model and is favorable to the accu-
racy of the PLS estimation procedure. In the interaction
between the data and the original model it will become
apparent which indicators are relevant and which should
be omitted (p. 70).
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* Monte Carlo Simulation

In this section, the results of two Monte Carlo studies are
summarized.! The studies were designed to examine how well
the PLS algorithm performs in recovering the “true” population
parameters under varying numbers of latent variables, indica-
tors, and sample cases. More specifically, the estimates for struc-
tural paths and component loadings were examined under con-
ditions (as discussed earlier) that are normally out of the range
of CBSEM analysis. Although the distinction in generating da-
ta conforming to a PLS model versus a CBSEM model and its
impact on the notion of consistency was made, a CBSEM-based
model was nonetheless applied in order to see how well PLS
performs under the notion of consistency at large. In terms of
structural path recovery, PLS was also compared to simple path-
analytic regression using a simple summation of the indicators.
No attempt was made in these studies to compare the PLS esti-
mates to CBSEM estimates. The sample size and model complex-
ity tested in these studies were, by and large, beyond the scope
of current CBSEM programs. The data were generated using
PRELIS 2.14 and tested using PLS-Graph, Version 2.91.

In the first Monte Carlo study, the three treatments consist-
ed of sample sizes (20, 50, 100, 150, and 200 cases), number of
connected latent variables (2, 4, 8, 12, and 16), and number of
indicators attached to each latent variable (4, 8, 12, 16, or 32 in-
dicators). For each of the 125 cells in the design, 100 replications
were made. Figure 3 represents the model tested. In this model,
a focal exogenous latent variable is connected to m endogenous
latent variables with standardized paths of .40. As with the oth-
er m LVs, the focal LV has n indicators. Consistent with CBSEM
models, all latent variables were modeled with reflective indica-
tors. In all runs, the “true” loadings for each LV were kept het-
- erogeneous with the first 25% of indicators set at standardized
loadings of .20, the next 25% at .60, and the last 50% at 0.80.

1 Due to page limitations, results of the Monte Carlo studies are not present-
ed in tabular form. Tabled results can be obtained from either author, the editor,
or on the World Wide Web at http://disc-nt.cba.uh.edu/chinlsagelappendix.htm.
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Figure 3 Model Used to Generate Results for Study 1. All Structural Paths

Connecting the Focal Latent Variable to the Other m LatentVariablesWere

Setat .40. For Each Latent Variable, ComponentLoadmgsWere Setat 20,
.60, and .80 for 26%, 25%, and 50% of the nn Indicators, Respectwe!y
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Essentially, this represents a situation in which one fourth of the
indicators for each LV are useless, one fourth adeguate, and one
half considered good.

The impact of consistency at large on loading estimates was
clear. Specifically, increasing sample size alone does not provide a
better approximation to the population value. Instead, the num-
ber of indicators also has to increase. As an example, for the .80
loading in the 150 sample size analysis, a substantial improve-
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ment occurs when the number of indicators increases from four
to eight, whereupon it starts to plateau. As expected, increasing
sample size lowered standard errors. At the extreme, the very
small loading of .20 was not detected until sample sizes of 150
and 200 were reached. However, as discussed earlier, it was pos-
sible to successfully estimate and detect path loadings of .60 and
80 at the small sample size of 20, albeit with reasonably large
standard errors.

Interestingly, the number of connected latent variables did
not seem to help the loading estimates. At best, the standard
error dropped slightly as the number of Vs increased, but only
when the number of indicators was at four or eight. For example,
using the 100 sample size analysis with four indicators, the stan-
dard error for the .60 loading drops from .07 to .05 as the number

. of LVs increases from 2 to 16. Similarly, the standard error for
the .80 loading goes from .04 to .02. Tt is possible that a more sig-
nificant LV influence may oceur if a structural path larger than
the .40 had been specified.

Partial least squares always performed better than the sim-
ple summed regression approach, although it did best at lower
numbers of indicators. As discussed earlier, the minimum sample
size for a medium effect size, which .40 represents, is 53. Thus, it
was not surprising to find nonsignificant results for the N = 20
analysis and less accurate estimates for the N = 50 analysis. For
the N = 200 analysis, both the PLS and regression estimate im-
proved as the number of indicators increased. However, the PLS
estimate was approximately .05 closer to the population param-
eter for four- and eight-indicator conditions. The gap dropped to
03 as the number of indicators increased. For sample sizes of
150 or 200, the mean PLS estimate yielded the population pa-
rameter at indicator levels of 16 and 32 with the regression es-
timate being quite close. Overall, with 16 or more indicators,
the regression approach might be preferred because it obtains
similar results at a simpler level of computation. At the more
realistic level for social science research (i.e., four or eight indica-
tors), however, the more accurate estimates would suggest using
PLS.
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In the second study, treatments consisted of sample sizes (50,
100, and 200}, number of connected latent variables (2, 8, and
16}, and number of indicators attached to each latent variable
(4, 8, 16, or 32 indicators). Heterogeneous loadings were set in
the same fashion as in the first study. In addition to restricting
the scope of the treatments, the model was modified by adding
four independent exogenous LVs impacting our focal LV (all with
standardized paths of .40). Thus, the focal LV becomes a media-
tor between four exogenous LVs and m endogenous LVs. Figure 4
depicts the model analyzed.

‘Figure 4 Model Used to Generate Results for Study 2. All Structiral Paths
‘Connecting the Focal Latent Variable to the Other Latent Variables Were
Set at .40. There Are Four Exogenous Latent Variables and m Endoge-
nous Latent Variables Connected to the Focal Latent Variable.“‘:Fo'r_';Each
‘Latent Variable, Component Loadings Were Set at .20, .60,-and .80

for 25%, 25%, and 50% of the n Indicators, Respectively}§:

Predictor
Latent -
Varigble 1

Predictor
Latent
Variable 2

Predictor
Latent
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Latent
Varisble 4

Indicatorm fa4 ¢ -] Indicator N
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The results of Study 2 essentially corroborated the results ob-
tained in the first study. Earlier, it was noted that a regression
involving four independent variables and medium effect sizes
would need a minimum sample size of 80. Interestingly, the
analysis at sample size 50 still generated significant results. The
standard errors, as expected, dropped as sample size increased.
Though not as strong, the PLS estimates again performed best
relative to the simple summed regression approach with four and
eight indicators; the difference in the standardized beta was ap-
proximately 02 or .03. With greater numbers of indicators, the
PLS and regression estimates were essentially the same.

Overall, the results show that the PLS3 approach can provide
information about the appropriateness of indicators at sample
size as low as 20. Furthermore, it performed better than the sim-
ple summed regression approach with four or eight indicators.
Computationally, the most-complex model in this study, which
involved 672 indicators, 91 latent variables, and 200 cases, took
approximately 1.5 minutes to run on a 166-MHz Pentium com-
puter. Such an analysis would not be possible using CBSEM.

-

Summary

As mentioned at the beginning of this chapter, by far the most
common approach for SEM has been covariance-based proce-
dures. Yet, the PLS procedure may be more suitable under cer-
tain circamstances. The PLS model and estimation procedure
covered in this chapter revealed many differences between CB-
SEM and PLS.

Programs such as LISREL, EQS, AMOS, SEPath, CALIS,
and RAMONA use covariance-based procedures with the objec-
tive of obtaining optimal parameter accuracy. The level of theo-
retical/substantive knowledge that the researcher brings to the
study is a major factor jnasmuch as any given mode] becomes the
basis for explaining the covariances among all the indicators. To
obtain consistent parameter estimates, the empirical conditions
of the data require & multivariate normal distribution (under an
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ML function} and independence of observations. Finally, indica-
tors are typically required to be modeled as reflective and unique
case values for LVs cannot be obtained (i.e., factor indetermi-
nacy}.

Partial least squares was developed as a counterpart to CB-
SEM analysis. In general, it can be viewed as complementary
to CBSEM because its main objective is prediction. The focus of
PLS, under predictor specification, is on the variance of depen-
dent variables and no assumptions are made regarding the joint
distribution of the indicators or the independence of sample cas-
es. Because of its prediction orientation, factors are determinate
and unique case values for the Vs are estimated. Indicators can
be modeled as either formative or reflective.

Sample size requirements under PLS can be quite minimal
relative to a CBSEM analysis. Computationally, PLS is an or-
der of magnitude faster given that its procedure involves only a .
series of least squares estimations. By virtue of the fact that,
at any moment, only a subset of the parameters is being esti-
mated, PLS can handle much larger/complex models with many
LVs and indicators in each block. Models consisting of over 1,000
indicators can be easily executed. Furthermore, as the number
of indicators per block increases along with the sample size, the
PLS estimates tend to become more stable as they converge to
the “true” parameter values.

In summary, PLS should not be viewed as simply a distri-
bution-free alternative to CBSEM. Rather, it represents a differ-
ent approach to empirical modeling—a descriptive, prediction-
oriented one, As Falk and Miller (1992) state, using the terms
“soft” and “hard” modeling for PLS and CBSEM, respectively:

A wide gulf exists between predictive relationships and
causal relationships. While causal relationships are pre-
dictive, predictive relationships need not be even remote-
ly causal. With soft modeling the researcher is forced to
adopt a more predictive, therefore descriptive, stance.

If hard modeling procedures cannot be used because
of study limitations, then soft modeling procedures can-
not be expected to answer hard modeling questions about
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statistical inferences. On the other hand, we reject the
notion that study limitations should prevent data from
being analyzed. Our position is that many research ques-
tions can and should be answered without making causal
inferences. In our view this is the role of soft modeling.
(pp. xi—xii)

We agree that the PLS methodology will likely grow in usage
in the future. The approach is congruent with a large percentage
of social seience research where:

» The objective is prediction, and/or
o The phenomenon in question is relatively new or changing

‘and the theoretical model or measures are not well formed,

and/or
« The model is relatively complex with large numbers of indi-

cators and/or LVs, and/or
« Thereis an epistemic need to model the relationship between

LVs and indicators in different modes (i.e., formative and re-

flective measures), and/or
« The data conditions relating to normal distribution, indepen-

dence, and/or sample size are not met.

Author Note: The assistance of Robert Willis in running the
Monte Carlo simulations reported in this chapter is gratefully
acknowledged.
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