
BAG2: A Process-Portable Framework for
Generator-Based AMS Circuit Design

Eric Chang, Jaeduk Han, Woorham Bae, Zhongkai Wang, Nathan Narevsky, Borivoje Nikolić, Elad Alon
University of California, Berkeley

Abstract—We present BAG2, a framework for the development
of process-portable Analog and Mixed Signal (AMS) circuit
generators. Such generators are parametrized design procedures
that produce schematics, layouts, and verification testbenches
for a circuit given input specifications. This paper expands on
previous work by introducing a universal AMS circuit verification
framework into BAG2, as well as two new layout engines,
XBase and Laygo, that enable development of process-portable
layout generators. We have developed various complex circuit
generators as driving examples, including a time-interleaved
SAR ADC and a SerDes transceiver frontend. Instances of
these designs have been produced in a TSMC 16nm FFC
process; we however verify our claims of process portability
by presenting circuits generated (using a single methodology
code-base and only primitives adapted to the specific process) in
various technology nodes, including TSMC 28nm, TSMC 16nm,
GLOBALFOUNDRIES 45nm RF-SOI, ST 28nm FD-SOI, and
GLOBALFOUNDRIES 22nm FDX.

I. INTRODUCTION

As the nature of scaling has shifted due to both technologi-

cal and economic barriers, innovations in systems and circuits

have become increasingly necessary to meet the needs to

next generation designs. However, the stringent and unintuitive

design rules of advanced multi-patterned processes [1] along

with increased interconnect resistance and capacitance due

to dimensional scaling severely lengthen the time spent in

post-layout verification and limit designers’ ability to explore

new circuit designs. Moreover, these factors also impose a

significant design cost to migrating AMS circuits to advanced

processes, which has driven a trend towards heterogeneous

implementations that may introduce performance/power bot-

tlenecks compared to monolithic designs.

Many approaches to shorten the analog circuit design cycle

have been explored. In [2], circuit sizing is transformed into

a geometric programming problem, and a solver is used

to compute individual device parameters from performance

specifications. In [3], numerical optimization is used to refine

device parameters with schematic simulation results to account

for discrepancy between actual circuit model and approxi-

mated design equations. In [4], the circuit optimization process

is further refined by incorporating layout parasitics estimated

from an automated place-and-route tool for analog circuits.

While schematic sizing is certainly a key piece of the overall

analog design process, as mentioned previously, the bottleneck

is currently almost entirely in realizing DRC clean layout

and performance-optimized post-layout design. Advances in

automatic analog placement and routing have been made [5],

[6], [7], however designers have been reluctant to adopt these

approaches, often because of ”aesthetic” issues with the results

produced by the tools (where layouts that are ”aesthetically

correct” are typically more robust to un- or poorly-modeled

layout-dependent effects) [8].

To address these concerns, Crossley et al. introduced the

Berkeley Analog Generator (BAG) framework and advocated

for a generator-centric design approach [9]. The crux of this

approach is that instead of designing one circuit instance, the

designer should capture their methodology as an executable

circuit generator that consists of parameterized procedures

which can produce schematic, layout, and verification test-

benches from input specifications. With these generators, de-

signers can incorporate fully automated design iteration loops

on accurate post-layout simulation data in their design pro-

cedure. More importantly, such generators can easily produce

many circuit instances for similar applications with different

specifications, which promotes design reuse and simplifies

complex system design.

Two shortcomings limited the reuseability of generators

written in the original version of BAG. First, testbenches

generated by BAG expected fixed pin interfaces to the device-

under-test. This prevents testbench generators from being

shared between similar circuits and leads to duplicated code,

which is difficult to maintain and debug. Second, layout

generators were written by relying on Synopsys’ PyCell API

[10], which unfortunately is not broadly available for recent

technology nodes, thus hindering application of BAG in state-

of-the-art technologies.

In this paper, we present BAG2, an evolved and updated

version of BAG that enables development of process-portable

circuit generators. We implemented a universal AMS cir-

cuit verification framework enabled by BAG2’s schematic

generation API, and incorporated this methodology into the

generator-based design flow. We also developed two new

layout generation engines, XBase and Laygo, both of which

interface with BAG2 to provide process-independent layout

APIs for designers to program layout generators. Using BAG,

XBase, and Laygo, we have realized complete time-interleaved

SAR ADC and SerDes transceiver frontend generators, and

produced verified instances using these generators that were

taped out in TSMC 16nm. Furthermore, we demonstrate layout

process portability by generating various circuit blocks in

TSMC 28nm, TSMC 16nm, GLOBALFOUNDRIES 45nm RF

SOI, ST 28nm FD-SOI, and GLOBALFOUNDRIES 22nm

FDX processes; all of these instances are produced using a

single code-base for the methodology combined with process-

(a) Schematic generator. (b) Schematic template.

(c) Layout Generator (XBase).
(d) Generated Layout.

(e) Design script.

(f) Simulated result.

Fig. 1: Generator design flow example.

specific primitives.

The rest of the paper is organized as follows. Section II

reviews the generator-based design flow using the differential

amplifier as a driving example, and Section III then describes

the universal AMS circuit verification framework. Section IV

presents an overview of the key principles that enable process-

portable layout generation. Section IV-A presents the XBase

layout engine, which provides various classes and functions

for writing passive and analog circuit generators based on

parameterized primitives. Section IV-B describes the Laygo

layout engine, which is an alternative to XBase that relies on

hand-designed layout primitives, and is thus better suited for

creating compact custom circuits.

Section V describes generators developed with these layout

engines and summarizes our process portability experiments.

Finally, we conclude and discuss future work in Section VI.

II. GENERATOR DESIGN FLOW

In this section, we walk through an example design process

that could be captured within a differential amplifier generator

to provide an overview of the BAG2 framework. First, similar

to traditional circuit design, the designer creates a normal

schematic of the circuit, as shown in Figure 1b. This schematic

serves as a template for the schematic generator, and BAG2

will create new circuit instances by copying and modifying

this template. Compared to a purely netlist-based approach,

(a) Verification framework UML diagram. (b) Measurement configuration.

(c) DUT wrapper. (d) AC analysis testbench.

Fig. 2: Verification framework example.

this allows BAG2 to generate human-readable schematics that

integrate well into the traditional manual design flow. After the

schematic template is created, the designer chooses the input

parameters of the corresponding schematic generator. These

parameters are usually low-level structural parameters (such

as transistor dimensions) instead of high-level specifications,

as this allows for the reuse of the same schematic generator

for different high-level design specifications. With the input

parameters of the schematic generator determined, the designer

implements the schematic generation routine in a Python class

(Figure 1a), which calls various BAG2 functions to transform

the schematic template into a specific circuit instance. In

addition to modifying device dimensions, BAG2 provides an

API for adding or modifying pins, instances, and instance

connections. This allows the designer to freely modify the

underlying circuit structure, such as adding cascode transistors,

creating variable array structures, and so on.

After the schematic generator is implemented, the designer

develops the corresponding layout generator using either

XBase or Laygo (Figure 1c), described in Section IV-A and

Section IV-B, respectively. The inputs to the layout generator

are generally a super-set of the inputs to the schematic

generator, as layout parameters such as aspect ratio and signal

wire width/spacing are not necessary for schematic generation.

After the layout generator is complete, a designer can use

BAG2 to generate schematic and layout instances with various

parameter combinations and verify that the generators produce

DRC and LVS clean layouts (Figure 1d).

Next, the designer codes the design procedure into a design

script (Figure 1e) that takes in top-level specifications and

computes parameters for the schematic and layout generator.

Typically, the design procedure uses design equations along

with a pre-characterized technology database to compute an

initial starting point (such as the gm/ID sizing methodology

[11]), then iterates on post-extraction simulation results to

account for layout parasitics and converge to the final solution.

To run simulations and get circuit performance from sim-

ulation data, the designer simply specifies the measurement

parameters in a configuration file (Figure 2b), and passes this

configuration file to the universal verification framework. The

verification framework will then setup testbenches, simulate

given circuit instances, and report circuit performance (Fig-

ure 1f). The implementation of the verification framework is

described in Section III.

Using this design flow, especially if the designer avoids

hard-coding parameters in the design script and various gener-

ators, the design process of any circuit block can be easily re-

peated to achieve optimal performance (or at least performance

in line with what the designer themselves would achieve if they

repeated the same methodology) with different specifications

or in another technology node. In Section V-A we present post-

layout extracted results of differential amplifiers generated

using this flow in various technologies.

III. UNIVERSAL VERIFICATION FRAMEWORK

In traditional analog circuit design, verification testbench

and simulation data processing are often tightly coupled to the

specific circuit and technology node, which limits testbench re-

usability and prevents development of a verification standard

for analog circuits. Previous work has addressed this problem

by defining clear interfaces between circuits and tests that

(a) XBase top-level UML diagram.

(b) AnalogBase after (i) draw base()
(ii) draw mos conn() (iii) connect wires().

Fig. 3: XBase class hierarchy and example layout.

operate on them, then building a hierarchical repository of

re-useable test components that enables the design of circuit-

independent tests [12]. We incorporated the same principle and

developed a universal verification framework using BAG2’s

schematic generation API. Figure 2a outlines the interfaces

between design script, verification framework, and various

generators.

We walk through the verification flow by continuing the dif-

ferential amplifier example in Section II. First, before invoking

the verification framework, the design script generates device-

under-test (DUT) wrapper schematics (Figure 2c) for each

testbench it is going to instantiate. The DUT wrapper serves

two main purposes. First, it transforms the DUT input/output

pin interface to a standard interface defined by the testbench.

In Figure 2c, it instantiates two ideal baluns to perform

differential-to-single-ended conversion, and adds various bias

voltage sources. Second, it provides proper loading to the

DUT, which can be capacitors, resistors, or even other circuit

instances.

After DUT wrappers are generated, the verification frame-

work instantiates one measurement manager for each mea-

surement specified in the configuration file (Figure 2b). Each

measurement manager instantiates and simulates one or more

testbenches, and post-processes simulation data to determine

circuit performance. In this example, the measurement man-

ager simply instantiates an AC analysis testbench and then

compute amplifier gain and bandwidth from the Bode plot.

After all measurements are finished, the results are reported

back to the design script, which are used to fine tune circuit

parameters if the circuit does not meet specifications.

With this approach, a universal verification standard can be

defined for all analog circuits. Complex verification procedures

simply need to be programmed once by experienced designers

and can be applied to all similar circuits.

Having provided an overview of the flow and verification

framework, since layout is the key bottleneck to address in

analog design productivity, we move on to our new layout

generation API that enables the development of truly process-

portable circuit generators.

IV. PROCESS-PORTABLE LAYOUT

There are two key insights behind our solution for process-

portable layout generators. First, despite vast differences in the

device geometry and design rules, the layout floorplan for a

circuit used in a given context/application almost always has

many largely invariant characteristics. Figure 3b shows a typ-

ical floorplan for an amplifier circuit. By using vertical wires

to connect transistor and substrate rows, the number of wires

naturally scales with number of fingers, thus minimizing in-

terconnect resistance and maximizing electromigration-limited

transistor current density. Therefore, by constructing a layout

API that allows designers to draw various common floorplans

and abstract away geometry details of the underlying devices,

generators written in this API can be process-portable.

Second, complex and un-intuitive multi-patterning design

rules have driven circuit and mask designers to enforce regular

routing grids even in custom layouts. Therefore, by enforcing

a routing grid system where both the width and spacing of the

wires are quantized, and wires on the same layer must travel

in the same direction (with adjacent layers having alternating

directions), we can ensure DRC correctness by simply ad-

justing the routing grid parameters. Most importantly, layout

generators written to draw all wires on routing grid can be

easily ported across different process nodes. As an added

benefit, for multi-patterned technology nodes where low-level

metals must be colored explicitly by the user, the coloring can

be automatically done based on the parity of the routing track

index.

In the next two sections, we present two specific layout

engines that implement these concepts.

A. XBase Overview

The top-level UML diagram for XBase is shown in Fig-

ure 3a. Python abstract base classes are used to encapsulate

common layout methods and separate process agnostic gener-

ators from process-specific primitives.

TemplateBase is the fundamental class that all layout

generators are based on. It defines two sets of APIs, one high-

level and one low-level, that designers call to create layout

geometries. The low-level API contains methods such as

add rect() and add via() that allow a designer to draw any

primitive geometry without any restrictions. These methods do

not guarantee DRC correctness, and therefore are mostly used

only to implement the primitives. The high-level API enforces

the gridded routing methodology, and contains methods such

as connect to track() and connect wires() that create

wires on the routing grid described by the RoutingGrid class.

Since they produce layouts that adhere to (adjustable) grids,

Layout generators written solely using methods in the high-

level API are highly process-portable. Finally, TemplateBase
defines an abstract method called draw layout(), which must

be implemented by its subclasses to create layout for the

specific circuits.

Each type of layout floorplan is implemented as an ab-

stract subclass of TemplateBase, which provide methods for

drawing the specific floorplan. AnalogBase is an abstract

class specialized in drawing layout floorplans for electromi-

gration constrained analog circuits, as described in Section IV.

AnalogBase provides the draw base() method, which draws

rows of transistors and substrate taps based on user supplied

parameters, such as number of fingers per row, number of

rows, number of horizontal routing tracks per row, etc. It also

defines draw mos conn() and connect to substrate(),
which connects transistors and substrate taps to the routing

grid. To create an amplifier generator with this floorplan

(represented by Amplifier class in Figure 3a), designers sim-

ply sub-class AnalogBase and implement the draw layout()
method by calling draw base() and other related methods

with proper parameters.

To enable process portability, abstract primitive classes are

used to separate process-specific layouts from AnalogBase.

These primitive classes define abstract methods that encapsu-

late all design rules relevant to the floorplan they support.

Methods in AnalogBase such as draw base() call these

functions and determine how to correctly assemble the primi-

tives together. As a result, by simply changing routing grid

parameters and implementations of these abstract primitive

classes, the designer can generate circuits in another process

technology using the same layout generator.

In addition to AnalogBase, XBase also provides support

for a number of layout styles, including ResArrayBase for

drawing resistor arrays, StdCellBase for black-boxing digital

standard cells, and custom function to create MOM capacitors

out of parallel wires (which are drawn on a special routing

grid to maximize capacitor). With these classes and functions,

many AMS circuit generators can be implemented.

B. Laygo Overview

Laygo stands for LAYout with Gridded Objects, and as the

name implies, it was developed for generating DRC clean-

by-construction layouts by placing layout elements on grids

and utilizing relative and symbolic information (rather than

Fig. 4: Laygo structure.

Fig. 5: Laygo generation example (a) relplace (b) route (c)

via.

hard-coded numbers) to place them. The main difference

between Laygo from XBase is that Laygo uses manually

designed, process-specific layout primitives that are not in

and of themselves programmable, but can hence be heavily

customized. In contrast, XBase uses abstract base classes

to support programmable primitives, which requires a larger

level of effort to realize the same degree of (process-specific)

customization but retain programmability while adhering to

the API.

Figure 4 shows the structure of the Laygo framework.

GridLayoutGenerator is the main class for layout generation.

Users create various layout geometries by calling functions

defined in GridLayoutGenerator, such as relplace() (for

instance placements), route() (for wire routing), and via() (for

via placement).

The relplace() function places instances (whose generic

parameters are stored in the TemplateDB object) based on

integer grid coordinates (within the placement grid) and rela-

tive information with neighboring structures (ref parameter

in Figure 5(a)). The GridDB object stores the placement

grid information (x, y resolution) for the placement operation.

Since the relplace() function uses an abstract grid as well

(a) Receiver frontend block diagram with 4-tap DFE.

(b) Transmitter frontend. (c) Receiver frontend.

(d) Receiver datapath with 4-tap DFE, 36μm by 26μm. (e) Receiver datapath with 6-tap DFE, 44μm by 26μm.

Fig. 6: SerDes frontend block diagram and layout photo.

as information about instances relative to each other, process

portability is easily achieved if all primitive templates are

designed to be aligned with the process-specific placement

grids. The route() function draws routing patterns on prede-

fined routing grids. Similar to the relplace() function, in order

to create wires without dealing with physical coordinates,

the route() function receives integer coordinates (within the

abstract routing grids) and/or target objects to connect to the

routing wires (Figure 5(b)). All integer routing coordinates are

converted to physical coordinates by combining the integer

values and routing grid information (pitches, widths). The

via() function places via objects, using a similar method with

the aforementioned functions (Figure 5(c)).

These three placement and routing functions compose the

core generator flow, but high-level functions that construct

more complex geometries (by combining the core functions)

are provided as well. It is important to note that although the

layout is gridded, the grids need not necessarily be uniform

within a given layer. For example, one may want to allow low-

level horizontal routing tracks to connect to the gate, source,

and drain of the transistors, which may not necessarily be

spaced uniformly. As shown in Figure 5), Laygo supports such

non-uniform grids (as long as the grid can be specified by

a finite list of repeating widths/spaces), which enables high

quality-of-results (by optimizing the grid values for a given

technology) while still abstracting the design rules.

All layout structures are stored in LayoutDB and exported

to LayoutIO, to create the final layout in OpenAccess or GDS

format.

V. RESULTS

Using BAG2, we have designed a number of generators

for various functional blocks, and exercised these generators

(a) GLOBALFOUNDRIES 45nm RF SOI. (b) TSMC 28nm. (c) TSMC 16nm.

Fig. 7: Generated differential amplifier in various processes. Images not to scale.

Fig. 8: Bode plot of differential amplifiers.

across multiple process technologies. Specifically, we have

implemented a SerDes frontend layout generator using XBase

(Figure 6). The generator supports a simple CML driver

as the transmitter, and a receiver datapath employing the

dynamic latch and charge integration topology [13], which

includes passive CTLE, FFE, and DFE, shown in Figure 6a.

All transistor sizes are programmable, as is the number of

DFE taps. Two instances of the receiver datapath with 4-

tap and 6-tap DFE are shown in Figure 6d and Figure 6e,

respectively. A CTLE/1-tap FFE/4-tap DFE instance produced

by this generator was taped out in TSMC’s 16nm FFC process;

this instance was verified in post-layout extracted simulations

to support 20 Gb/s. This generated Serdes frontend instance

occupies an area of 195μm by 110μm, including AC coupling

capacitors and ESD diodes.

We further developed a time-interleaved SAR ADC gen-

erator using both Laygo and XBase (Figure 9). The gener-

ator consists of clock distribution and calibration circuitry

(Laygo), frontend samplers (XBase), reference DACs and

buffers (XBase), SAR ADC cores (Laygo), and an output

retimer (XBase). The ADC top-level specifications are all

programmable, and an instance targeting 9.6 GS/s with 8-way

interleaving, 6 bits of ENOB with 9 physical output bits was

also taped out in TSMC’s 16nm FFC process. The total area

of the entire generated ADC instance is 500μm by 100μm.

A. Process Portability

To validate our claim of process portability, we ran the

differential amplifier generator presented in Section II (with

layout generators written in XBase) in GLOBALFOUNDRIES

RF SOI 45nm, TSMC 28nm, and TSMC 16nm. All of the

amplifiers are designed to drive a 100 fF capacitive load with

a target DC gain of 2, a target 3-dB bandwidth of 4 GHz,

and minimum power consumption. The generated layouts are

DRC-clean, shown in Figure 7, and the post-layout extraction

simulated Bode plots are shown in Figure 8. The final designs

have DC gains of 2.07, 2.22, and 2.17, and 3-db bandwidths of

4.12 GHz, 4.15 GHz, and 4.03 GHz. Despite vast differences

in design rules and underlying transistor device physics, the

generator was able to produce DRC/LVS clean circuits that

closely met the target specifications.

To demonstrate layout portability of more complex blocks,

Figure 9 shows the generated ADC core layout in TSMC

16nm, ST 28nm FD-SOI, and GLOBALFOUNDRIES 22nm

FDX processes. The ADC core consists of sense amplifiers,

capacitor banks, and SAR logic. The generated layouts are all

DRC and LVS clean without any manual modification.

VI. CONCLUSION

A substantial change in AMS circuit design and verification

flows is necessary to continue innovation beyond Moore’s law

scaling. In this paper we introduce BAG2 as a new framework

to support generator-based design flows, where designers

capture their knowledge in the form of executable generators

that can then be re-used to realize designs with varying

specifications and process technologies. BAG2 expands on our

previous work by including a universal verification framework

built with testbench generators, thus enabling improved reuse

and the potential introduction of a verification standard for

AMS circuits. BAG2 also includes two new layout generation

frameworks - XBase and Laygo - both of which explicitly

address process portability and the challenges associated with

advanced process technologies by enforcing (programmable)

(a) TISAR ADC core in TSMC 16nm.

(b) TISAR ADC core in ST 28nm FD-SOI. (c) TISAR ADC core in GLOBALFOUNDRIES 22nm FDX.

Fig. 9: TISAR ADC layout photos. Images not to scale.

gridding. To prove the viability of this approach, we imple-

mented multiple complex generators of a number of circuit

blocks - including a SerDes frontend and a time-inteleaved

SAR ADC - and taped out generated instances for these blocks

in TSMC’s 16nm FFC process. We further demonstrated

process portability by using the same generator code (but

process-specific primitives) to create DRC/LVS clean instances

in a variety of technology nodes (including bulk, FinFET, PD-

and FD-SOI) with widely varying rules and geometries.

We believe that these results show that a generator-based

design methodology is a viable path to enhance the productiv-

ity of AMS circuit design. Moving forward, beyond expanding

the library of available generators, we believe that complete

SOC generators will be developed by integrating BAG with

digital generator approaches, and in particular with hardware

construction languages such as Chisel [14]. BAG [15], XBase

[16], and Laygo [17] have all been released under open source

licenses, and preliminary documentation as well as tutorials

are currently available (as well as being under continuing and

active development).

ACKNOWLEDGMENT

This work was funded in part by the DARPA CRAFT

program (HR0011-16-C-0052), and the authors wish to ac-

knowledge the contributions of their collaborators on this

effort, Cadence Design Systems and Northrop Grumman

Corporation. The authors would like to further acknowledge

the sponsors, students, and faculty of the Berkeley Wireless

Research Center.

REFERENCES

[1] M. White. (2017) Are you (really) ready for your next
node? [Online]. Available: http://www.electronicdesign.com/eda/are-
you-really-ready-your-next-node

[2] M. del M. Hershenson, S. P. Boyd, and T. H. Lee, “Optimal design of a
CMOS op-amp via geometric programming,” in IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 20, no. 1, Jan. 2001, pp. 1–21.

[3] A. Vladimirescu, R. Zlatanovici, and P. Jespers, “Analog circuit synthesis
using standard EDA tools,” in IEEE International Symposium on Circuits
and Systems (ISCAS), May 2006, pp. 5239–5243.

[4] G. Zhang et al., “A synthesis flow toward fast parasitic closure for radio
frequency integrated circuits,” in Design Automation Conference (DAC),
Jun. 2004, pp. 155–158.

[5] L. E. Henrickson and E. S. Petrus, “Sytem and method for utilizing
meta-cells,” U.S. Patent 7 587 694B1, Sep. 8, 2009.

[6] Cadence Design Systems. (2016) Virtuoso Layout Suite GXL. [Online].
Available: https://www.cadence.com

[7] Synopsys. (2016) Custom Compiler. [Online]. Available:
https://www.synopsys.com

[8] R. A. Rutenbar, “Analog circuit and layout synthesis revisited,” invited
talk, at ACM Int’l Symposium on Physical Design, Mar. 2015. [Online].
Available: http://www.ispd.cc/slides/2015/keynote Rutenbar.pptx

[9] J. Crossley et al., “BAG: A designer-oriented integrated framework for
the development of AMS circuit generators,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, Nov. 2013,
pp. 74–81.

[10] S. Alassi and B. Winter, “PyCells for an open semiconductor industry,”
CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1607.00859

[11] F. Silveira, D. Flandre, and P. G. A. Jespers, “A gm/ID based method-
ology for the design of CMOS analog circuits and its application to
the synthesis of a silicon-on-insulator micropower OTA,” IEEE J. Solid-
State Circuits, vol. 31, no. 9, pp. 1314–1319, 1996.

[12] J. Mao, “CircuitBook: A framework for analog design reuse,” Ph.D.
dissertation, Stanford University, May 2013.

[13] J. Han et al., “Design techniques for a 60 Gb/s 173 mW wireline receiver
frontend in 65 nm CMOS technology,” IEEE J. Solid-State Circuits,
vol. 51, no. 4, pp. 871–880, April 2016.

[14] J. Bachrach et al., “Chisel: Constructing hardware in a Scala embedded
language,” in Design Automation Conference (DAC), San Francisco, CA,
USA, June 2012.

[15] Berkeley analog generator, main framework. [Online]. Available:
https://github.com/ucb-art/BAG framework

[16] Berkeley analog generator, XBase. [Online]. Available:
https://github.com/ucb-art/BAG2 TEMPLATES EC

[17] Berkeley analog generator, layout with gridded objects (Laygo).
[Online]. Available: https://github.com/ucb-art/laygo

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

