Supporting Information

Electronic Alteration on Oligothiophenes by o-Carborane: Electron Acceptor Character of o-Carborane in Oligothiophene Frameworks with Dicyano-Vinyl End-On Group

So-Yoen Kim,[†] Ah-Rang Lee,[‡]Guo Fan Jin,[†] Yang-Jin Cho,[†] Ho-Jin Son,^{†,*} Won-Sik Han,^{‡,*} Sang Ook Kang^{†,*}

⁺Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, South Korea. ^{*}Department of Chemistry, Seoul Women's University, Seoul 139-774, South Korea.

NMR spectra	S2–S22
ORTEP drawing of 1a	S23
ORTEP drawing of 2a	S24
Crystal data and structure refinement for 1a and 2a	S25
Absorption and PL spectra of 1a, 1b, and 1c	S26
Absorption and PL spectra of 2a, 2b, and 2c	S27
CVs of the 1 and 2	S28
Mataga–Lippert plots for CT emissions of 1b, 1c, and 2c	S29
Computational analysis and Selected energy levels, orbital contributions, and	\$30
oscillation strengths of 1a and 2a	350
Cartesian coordinates and energies for optimized structures	S31–S36
Selected MO plots and energies for 1b, 2b, 1c, and 2c	S37–S38
Diagram of calculated LUMO energy levels vs dihedral angles	S39
References	S40

NMR Spectra

Compound 5

Compound 6

Compound 1a

Compound 7

¹H NMR

Compound 9b

Compound 10b

Compound **1b**

Compound 9c

Compound **10c**

Compound 1c

1 H NMR

Compound 11

Compound 2a

¹H NMR

i.

Compound 12b

¹H NMR

¹³C NMR

S17

1

J

Compound 13b

¹H NMR

¹³C NMR

S18

Compound 2b

¹H NMR

¹³C NMR

S19

Compound 12c

Compound 13c

¹H NMR

Compound 2c

ppm

S22

ı.

Figure S1. ORTEP drawing of compound 1a with 30% probability for the thermal ellipsoids. Hydrogens were omitted for clarity.

Figure S2. ORTEP drawing of compound **2a** with 30% probability for the thermal ellipsoids. Hydrogens were omitted for clarity.

Identification code	1a	2a
Empirical formula	$C_{10}H_{14}B_{10}N_2S$	$C_{18}H_{16}B_{10}N_4S_2$
Formula weight	302.39	460.57
Temperature	293(2) K	293(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system, space group	monoclinic, $P2_1/c$	Monoclinic, C 2/c
Unit cell dimensions	<i>a</i> = 18.348(6) Å	a = 15.986(8) Å
	$b = 7.522(2) \text{ Å} \qquad \beta = 104.643(6)^{\circ}$	$b = 11.333(6)$ Å $\beta = 114.529(8)$ °
	c = 12.006(4) Å	c = 14.165(7) Å
Volume	1603.0(9) Å ³	2334(2) Å ³
Z, Calculated density	4, 1.253 Mg/m ³	4, 1.310 Mg/m ³
Absorption coefficient, μ	0.190 mm ⁻¹	0.244 mm ⁻¹
<i>F</i> (000)	616	936
Crystal size	$0.23 \times 0.15 \times 0.09 \text{ mm}$	$0.15 \times 0.13 \times 0.11 \text{ mm}$
θ range for data collection	1.15 to 28.40°	2.278 to 28.850°
Limiting indices	-24≤ <i>h</i> ≤24, -10≤ <i>k</i> ≤9, -16≤ <i>l</i> ≤16	-21≤ <i>h</i> ≤21, -14≤ <i>k</i> ≤15, -18≤ <i>l</i> ≤18
Reflections collected / unique	20624 / 3984 [<i>R</i> _{int} = 0.0871]	8144 / 2567 [<i>R</i> _{int} = 0.0440]
Completeness to $\theta = 28.40$	99.2 %	85.6 %
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	3984 / 0 / 208	2567 / 0 / 155
Goodness-of-fit on F^2	1.066	1.184
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0758, wR_2 = 0.2002$	$R_1 = 0.0932, wR_2 = 0.2462$
<i>R</i> indices (all data)	$R_1 = 0.1278, wR_2 = 0.2479$	$R_1 = 0.1313, wR_2 = 0.2616$
Largest diff. peak and hole	0.726 and -0.411 e. Å ³	0.504 and -0.578 e. Å 3

Table S1. Crystal data and structure refinement for 1a and 2a

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}||} \text{ (based on reflections with } F_{o}^{2} > 2\sigma F^{2}\text{)}, \ {}^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]]^{1/2}; \ w = 1/[\sigma^{2} + (F_{o}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]^{1/2}; \ w = 1/[\sigma^{2} + (F_{o}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]/\sum [w(F_$

Figure S3. Absorption and emission spectra of 1 in dichloromethane (DCM).

Figure S4. Absorption and emission spectra of 2 in DCM.

Figure S5. CVs of **DCVT1**, **DTC**, **1** and **2** (10^{-3} M substrate) in 0.10 M Bu₄NPF₆ in DCM with scan rate 100 mV s⁻¹.

Figure S6. Mataga–Lippert plots for CT emissions of 1b (black), 1c (blue) and 2c (red).

DFT Calculations. The ground-state geometries of **1a–1c** and **2a–2c** were optimized at the density function theory (DFT) level. The characterization of the low-lying excited singlet states relies on the time-dependent DFT (TD-DFT) calculation that is performed on the basis of the ground-state geometry by B3LYP^{S1} density functional theory (DFT), using a 6-31G(d,p)^{S2} basis set and no imaginary frequencies were found. All calculations were performed with the Gaussian 09 package.^{S3} Molecular orbital plots were made by using Chem3D Pro (version 10.0).

	Energy (cm ⁻¹)	Wavelength (nm)	Osc. Strength	Orbital contributions
	29540.26	338.5	0.779	HOMO \rightarrow LUMO (98%) and H-1 \rightarrow LUMO (2%)
1a	34270.73	291.8	0.036	H-1 \rightarrow LUMO (94%), HOMO \rightarrow LUMO (2%), and HOMO \rightarrow L+1 (2%)
	46613.52	214.5	0.0429	H-12 \rightarrow LUMO (15%), H-11 \rightarrow LUMO (75%), and H-9 \rightarrow L+2 (2%)
2a	25494.56	392.2	0.1396	$H-1 \rightarrow L+1 (12\%)$ and HOMO \rightarrow LUMO (88%)
	28776.45	347.5	0.4143	H-1 \rightarrow L+1 (85%), HOMO \rightarrow LUMO (11%), and H-2 \rightarrow LUMO (3%)
	29900.79	334.4	0.8843	H-1 → LUMO (41%), HOMO → L+1 (56%), and H-2 → L+1 (2%)
	33844.87	295.5	0.0221	$H-2 \rightarrow L+1 (96\%)$

Table	S2.	Selected	energy	levels,	orbital	contributions,	and	oscillation	strengths	of 1	a and 2a	a
-------	-----	----------	--------	---------	---------	----------------	-----	-------------	-----------	-------------	----------	---

CARTESIAN COORDINATES AND ENERGIES FOR OPTIMIZED STRUCTURES

1a

Energy: -1145.80102527 a.u.

S	-1.1207	0.3437	0.0434
Ν	-7.0722	-0.0944	-0.0520
Ν	-3.6080	2.6505	0.0340
В	2.1793	0.5909	-1.3566
Η	1.4142	0.6613	-2.2512
В	1.9880	1.4357	0.1990
Η	1.0798	2.1830	0.3198
В	2.3922	0.3085	1.5224
Η	1.7398	0.2977	2.5078
В	2.8342	-1.2529	0.7957
Η	2.4833	-2.3015	1.2055
В	4.2810	-1.0154	-0.2051
Η	4.9543	-1.9630	-0.4223
В	3.8843	0.1181	-1.5209
Н	4.2912	-0.0781	-2.6136
В	3.4420	1.6826	-0.7966
Η	3.6262	2.7040	-1.3668
В	3.5811	1.5122	0.9803
Η	3.8656	2.4271	1.6768
В	4.1001	-0.1601	1.3469
Н	4.7526	-0.4522	2.2912
В	4.7553	0.6950	-0.0829
Н	5.8934	1.0157	-0.1532
С	1.6274	-0.2320	0.0795
С	2.7342	-0.9677	-0.8987
Н	2.3478	-1.7862	-1.4921
С	0.2308	-0.7527	0.0540
С	-0.1782	-2.0700	0.0273
Н	0.5059	-2.9089	0.0418
С	-1.5804	-2.2057	-0.0036
Η	-2.0956	-3.1594	-0.0248
С	-2.2566	-0.9933	0.0041
С	-3.6844	-0.8894	-0.0134
Н	-4.1958	-1.8486	-0.0351
С	-4.4951	0.2132	-0.0093
С	-5.9175	0.0481	-0.0324
С	-4.0064	1.5568	0.0153

1b Energy: -1697.62291184 a.u.

S	0.9092	-1.0383	-0.0848
В	4.1934	-0.6792	1.2712
Н	3.4697	-1.0203	2.1377
В	4.1857	-1.3663	-0.3710
Н	3.4690	-2.2815	-0.5896
В	4.3220	-0.0395	-1.5550
Н	3.6810	-0.0654	-2.5477
В	4.4035	1.4875	-0.6508
Н	3.8292	2.4727	-0.9502
В	5.8735	1.4702	0.3455
Н	6.3194	2.5141	0.6773
В	5.7517	0.1373	1.5201
Н	6.1113	0.2949	2.6355
В	5.6640	-1.3948	0.6194
Н	6.0745	-2.4074	1.0769
В	5.7521	-1.0004	-1.1252
Н	6.2307	-1.7466	-1.9114
В	5.8814	0.7751	-1.2942
Н	6.4476	1.3094	-2.1870
В	6.7196	-0.0663	0.0445
Н	7.9012	-0.1308	0.1009
С	3.4590	0.1521	-0.0779
С	4.3821	1.0012	1.0005
Н	3.8246	1.6419	1.6714
С	1.9825	0.3373	-0.0249
С	1.2727	1.5112	0.0763
Н	1.7398	2.4873	0.1156
С	-0.1294	1.3190	0.1129
Н	-0.8403	2.1331	0.1957
С	-0.5035	-0.0080	0.0332
С	-1.8329	-0.5738	0.0302
S	-3.2393	0.4631	-0.0092
С	-2.1988	-1.9128	0.0558
С	-4.3226	-0.9219	0.0181
Н	-1.4803	-2.7234	0.0870
С	-3.5888	-2.1043	0.0481
С	-5.7469	-0.8758	0.0098
Н	-4.0651	-3.0782	0.0681
Н	-6.2208	-1.8543	0.0238
С	-6.6042	0.1957	-0.0125
С	-8.0177	-0.0266	-0.0159
С	-6.1688	1.5564	-0.0316
Ν	-9.1663	-0.2158	-0.0184
Ν	-5.8111	2.6647	-0.0464

1c Energy: -2249.4244680 a.u.

a	0 (050	0 7024	0 1 407
5	-2.6250	0.7234	-0.1407
В	-5.8790	1.0243	1.2104
Η	-5.0786	1.2995	2.0317
В	-5.8150	1.5804	-0.4796
Н	-4 9632	2 3415	-0.7865
R	-6 2187	0.2163	-1 5536
н	-5.6216	0.0596	-2 5614
R	6 5210	1 2042	0 5305
ы П	6 1275	22042	0.7671
П	-0.13/3	-2.2931	-0.7071
D	-7.9508	-0.8003	0.4909
H D	-8.5330	-1./928	0.91/9
В	-7.5425	0.5075	1.5603
H	-/.8811	0.4958	2.6933
В	-7.2297	1.9324	0.5426
Н	-7.4462	3.0307	0.9303
В	-7.4503	1.4349	-1.1636
Н	-7.8255	2.1934	-1.9931
В	-7.8818	-0.2999	-1.1912
Н	-8.5627	-0.7936	-2.0256
В	-8.5167	0.7668	0.0984
Н	-9.6676	1.0367	0.1781
С	-5.3438	-0.0146	-0.0886
С	-6.3594	-0.6130	1.0763
Н	-5.8908	-1.2904	1.7784
С	-3.9199	-0.4477	-0.0506
C	-3 4189	-1 7220	0.0713
H	-4 0454	-2.6030	0.1342
C	-2 0035	-1 7708	0.1012
с ц	1 1/10	2 6024	0.1027
II C	1 4070	0 5209	0.2030
C	-1.40/9	-0.3298	-0.0009
C C	-0.0013	-0.19/0	-0.0074
2	1.21/8	-1.4301	-0.0440
C	0.5954	1.0503	0.01/8
C	2.5212	-0.2785	-0.0127
H	0.0297	1.9/44	0.0483
C	2.0053	1.0050	0.0139
Н	2.6291	1.8914	0.0369
С	3.8980	-0.6987	-0.0140
S	5.1912	0.4798	-0.0022
С	4.4041	-1.9939	-0.0218
С	6.4134	-0.7863	-0.0057
Н	3.7740	-2.8755	-0.0286
С	5.8048	-2.0391	-0.0172
С	7.8235	-0.5942	0.0032
Н	6.3802	-2.9583	-0.0210
Н	8.3951	-1.5193	-0.0018
С	8.5685	0.5599	0.0178
С	9.9968	0.4808	0.0255
С	7.9979	1.8694	0.0268

11.1586 0.4070 0.0319 7.5308 2.9364 0.0344 Ν

Ν

2a Energy: -1959.37135122 a.u.

С	2.2550	-0.7297	0.4927
С	2.2550	0.7298	-0.4927
В	3.5985	-1.7007	0.0817
В	2.6950	0.8070	1.1682
В	2.6950	-0.8069	-1.1681
В	4.4609	0.8189	1.1943
В	3.5986	1.7008	-0.0816
В	3.5889	-0.6888	1.5476
В	5.0273	-0.7316	0.5031
В	4.4609	-0.8188	-1.1943
В	3.5890	0.6889	-1.5476
В	5.0273	0.7316	-0.5031
Н	3.4386	-2.8698	0.1460
Н	1.9370	-1.3137	-1.9158
Н	3.4389	1.1700	-2.6165
Н	5.0364	-1.3999	-2.0506
Н	6.0197	1.2635	-0.8707
Н	6 0197	-1 2635	0 8707
Н	3.4388	-1.1700	2.6165
Н	1 9370	1 3138	1 9158
Н	3 4 3 8 7	2 8698	-0 1460
н	5.0364	1 3999	2 0506
C	0.9551	1 2987	-0.9254
C	0.2016	1.2087	-2 1872
S	-0.0391	2 2459	0 1469
C	-0.0371	1 9000	-2 2002
н	0.868/	0.6676	-2.2772
C II	1 2172	2 5200	1 1 2 1 6
ч	1 /06/	1 0/7/	3 2004
n C	0.0551	1.9474	0.0254
C	0.9331	1 2086	0.9234
c c	0.4010	-1.2080	2.1072
с С	-0.0391	1 2002	2 2001
	-0.0195	-1.0990	2.2991
п	0.0005	-0.0074	2.9990
С u	-1.21/2	-2.5209	2 2002
п	-1.4003	-1.9472	0.0060
C	-2.4514	3.2097	-0.9900
	-2.9792	5.8929 2.2447	0.0920
н С	-5.0021	3.3447	-1.9183
C	-2.4314	-3.2097	0.9959
U U	-2.9791	-3.8930	-0.0920
Н	-3.0021	-3.3440	1.9183
	-4.2237	-4.5895	0.0303
N	-5.2355	-5.1555	0.1459
	-2.3812	-5.88/1	-1.3916
IN C	-1.8953	-3.8/40	-2.4496
	-2.3813	3.8869	1.391/
IN C	-1.8955	5.8/38	2.4496
C	-4.2238	4.5894	-0.0363

N -5.2356 5.1534 -0.1459

2b Energy: -3063.03110368 a.u.

С	2.9709	2.9270	-0.1883
С	3.8834	1.4865	0.3832
B	3.5740	4.3126	0.5936
B	4.1443	2.1380	-1.1858
B	3.4232	2.7600	1.4620
B	5 6108	3 1210	-1 0591
B	5 4955	1 6038	-0 1484
B	4 0232	3 9167	-1 0820
B	5 2641	4 4667	0.0683
B	4 8723	3 7544	1 6646
B	5 0338	1 9915	1.5262
B	6 1604	3 0478	0.6437
Н	2 7862	5 1 5 9 6	0.8369
Н	2.7002	2 5396	2 2476
Н	5 2604	1 2457	2.2470
Н	5.0822	4 3000	2.4140
н Н	7 3054	3 0877	0.9454
н Н	5 7568	5 5377	-0.0486
н Н	3 5 5 3 9	J.JJ77	-0.0480
и П	3.5555	1 5170	2 1124
и П	6.0314	0.5861	-2.1124 0.4210
П Ц	6 3 4 6 5	2 2168	-0.4210
II C	0.5405 3 1601	0.1003	-1.9620
C C	2 6 4 0 1	0.1995	0.5150
C C	2.0491	-0.3492	0.8272
S C	2.9010	-0.0093	-0.6372
	2.0920	-1.0343	1.4790
п	2.0809	0.1330	2.0237
	2.1820	-2.0840	0.1730
п	1.0303	-2.2203	2.2798
C	1.5498	2.7033	-0.5000
C	1.0528	2.0139	-1.8282
S	0.2682	2.8223	0.6283
C II	-0.3/88	2.5510	-1.8574
H	1.6541	2.5698	-2./135
C U	-0.9590	2.0520	-0.6067
H	-0.9534	2.4517	-2.//11
C	-2.3606	2.6269	-0.2559
C	-2.9510	2.9477	0.9599
5	-3.5/12	2.1490	-1.4141
C	-4.3501	2.8213	0.9650
H	-2.3816	3.2815	1.8196
C	-4.8/15	2.3989	-0.2537
H	-4.9648	3.0384	1.8284
C	1.7274	-3.3400	-0.3777
C	2.0447	-3.9056	-1.6049
S	0.6376	-4.3636	0.5266
C	1.4293	-5.1499	-1.8126
H	2.7170	-3.4398	-2.3157
С	0.6284	-5.5682	-0.7539

Н	1.5629	-5.7494	-2.7063
С	-6.2114	2.1495	-0.6849
С	-7.3825	2.2580	0.0234
Н	-6.3288	1.8277	-1.7164
С	-0.0849	-6.8029	-0.7436
С	-0.8985	-7.3534	0.2140
Н	0.0448	-7.3956	-1.6459
С	-1.5072	-8.6274	-0.0190
Ν	-1.9984	-9.6640	-0.2166
С	-1.1868	-6.7226	1.4634
Ν	-1.4195	-6.2047	2.4802
С	-7.4463	2.6653	1.3913
Ν	-7.4823	2.9997	2.5061
С	-8.6270	1.9549	-0.6145
Ν	-9.6358	1.7075	-1.1398

2c Energy: -4166.68213352 a.u.

С	0.8104	5.7030	0.4044	
С	-0.8090	5.7030	-0.4045	
В	1.6970	7.0462	-0.1419	
В	-0.6354	6.1331	1.2512	
В	0.6367	6.1331	-1.2513	
В	-0.6513	7.9029	1.2905	
В	-1.6956	7.0462	0.1418	
В	0.8926	7.0400	1.4453	
В	0.7915	8.4763	0.4009	
В	0.6527	7.9029	-1.2905	
В	-0.8912	7.0400	-1.4454	
В	-0.7902	8.4763	-0.4009	
Н	2.8651	6.8960	-0.2439	
Н	1.0502	5.3835	-2.0629	
Н	-1.5035	6.8956	-2.4463	
Н	1.1178	8.4771	-2.2167	
Н	-1.3649	9.4705	-0.6927	
Н	1.3663	9.4705	0.6927	
Н	1.5049	6.8955	2.4462	
Н	-1.0489	5.3836	2.0629	
Н	-2.8637	6.8961	0.2438	Η
Н	-1.1164	8.4771	2.2166	С
С	-1.4277	4.4078	-0.7504	С
С	-1.4214	3.7867	-1.9797	S
S	-2.3717	3.4866	0.4010	С
С	-2.1707	2.5886	-2.0121	Η
Н	-0.9071	4.1957	-2.8400	С
С	-2.7617	2.2775	-0.8022	Η
Н	-2.2917	1.9829	-2.9027	С
С	1.4290	4.4077	0.7504	С
С	1.4228	3.7869	1.9798	S
S	2.3725	3.4862	-0.4011	С
С	2.1719	2.5885	2.0122	Η
Н	0.9088	4.1960	2.8402	С
С	2.7626	2.2772	0.8022	Η
Н	2.2930	1.9830	2.9028	С
С	3.5907	1.1409	0.4679	С
С	4.4166	0.9597	-0.6264	Η
S	3.6405	-0.2664	1.5113	С
С	5.0917	-0.2792	-0.6277	С
Н	4.5497	1.7127	-1.3946	Η
С	4.7986	-1.0737	0.4667	С
Н	5.7917	-0.5760	-1.4005	Ν
С	-3.5902	1.1415	-0.4680	С
С	-4.4164	0.9607	0.6261	Ν
S	-3.6401	-0.2660	-1.5112	С
С	-5.0918	-0.2781	0.6275	Ν
Н	-4.5494	1.7138	1.3942	С
С	-4.7987	-1.0728	-0.4667	Ν

-5.7920	-0.5746	1.4002
-5.3068	-2.3798	-0.7950
-5.1206	-3.1093	-1.9638
-6.2954	-3.2635	0.3461
-5.7663	-4.3535	-1.9460
-4.5443	-2.7420	-2.8047
-6.4637	-4.6143	-0.7689
-5.7412	-5.0599	-2.7684
5.3064	-2.3808	0.7951
5.1203	-3.1101	1.9640
6.2945	-3.2649	-0.3461
5.7656	-4.3544	1.9462
4.5443	-2.7424	2.8050
6.4627	-4.6156	0.7691
5.7405	-5.0607	2.7688
7.1942	-5.8139	0.5341
7.9260	-6.2144	-0.5571
7.1614	-6.5208	1.3598
-7.1956	-5.8124	-0.5340
-7.9277	-6.2125	0.5571
-7.1629	-6.5193	-1.3596
8.5773	-7.4881	-0.5451
9.1039	-8.5262	-0.5273
8.0846	-5.4237	-1.7361
8.2120	-4.7776	-2.6969
-8.0864	-5.4216	1.7360
-8.2137	-4.7754	2.6968
-8.5794	-7.4860	0.5452
-9.1063	-8.5240	0.5274

Figure S7. TD-DFT calculation results for 1b and 2b. Energy levels and isodensity plots for HOMO-LUMOs are shown.

Figure S8. TD-DFT calculation results for 1c and 2c. Energy levels and isodensity plots for HOMO-LUMOs are shown.

Figure S9. Diagram of calculated LUMO energy levels vs dihedral angles of C–C bonds of the carborane cage with C–C bonds in the thiophene rings.

References

(S1) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648-5652. (b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. **1994**, 98, 11623-11627.

(S2) (a) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193-218. (b) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081-90.

(S3) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.;
Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;
Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,
A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,
A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz,
J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.