Temporal Difference Learning of N -Tuple Networks for the Game 2048

Marcin Szubert Wojciech Jaśkowski

Institute of Computing Science

POZNAN UNIVERSITY OF TECHNOLOGY

August 27, 2014

Game of 2048

Rules

- single-player, nondeterministic
- 4×4 board
- actions: left, right, up, down
- merging: score the sum
- every move: 2 or 4 in random position
- goal: construct tile 2048
http://gabrielecirulli.github.io/2048

				2048			2048 by Gsbriele ****				
$\begin{aligned} & 2048 \\ & \substack{\text { giow } \\ \text { nese } \\ \ldots \ldots .} \end{aligned}$		2048		\square		$\begin{aligned} & 2048 \\ & 2048 \\ & \text { Phonelister } \\ & \text { ***** } \end{aligned}$				$204 \frac{\mathrm{~m}}{8}$ 2	
			$\begin{aligned} & 2048 \\ & \substack{208 \\ \text { anemen } \\ \ldots . . .} \end{aligned}$		$\begin{aligned} & 204 \\ & \substack{208 \\ \ldots . . . \\ \hline} \end{aligned}$			$\frac{204}{2 a s}$	$\begin{gathered} 2048 \\ \text { THRRES } \\ \text { nagame } \\ \ldots . . . \end{gathered}$		
	$\underbrace{2048}$	$\begin{gathered} 2048 \\ \frac{248}{248} \\ \ldots . . \end{gathered}$	$\begin{aligned} & 2048 \\ & \underset{20}{209} \\ & \ldots . . . \\ & \hline \end{aligned}$		$\begin{array}{\|cc\|} \hline 2 & 4 \\ \hline 8 & 16 \\ \hline & 209 \\ \hline \\ \ldots . . . \\ \hline \end{array}$		2048				$\begin{aligned} & 2048 \text { color Matc } \\ & \text { farmatio } \\ & \text { \#\#\#* } \end{aligned}$
20	ค...	2048	$2 \mid 0$			¢-9	-		*		

Motivation \& Goal

Motivation

- Popularity:
- 4 mln visitors in the first weekend
- 3000 man-years in 3 weeks
- Easy to learn but not trivial to master \rightarrow ideal test bed for $\mathrm{Cl} / \mathrm{Al}$
- No previous studies

Goal

- Learning without expert knowledge and without search

2048 as Markov Decision Process (MDP)

2048 as MDP

- S - states: board positions,
- A - actions: legal moves,
- $R(s, a)$ - reward: score obtained by action a in state s
- $P\left(s, a, s^{\prime \prime}\right)$ - stochastic transition function, probability of transition to state $s^{\prime \prime}$ in result of taking action a in state s. Defined implicitely by the game rules.

Value-based Agent

Value function

$$
V: S \rightarrow \mathbb{R}
$$

$V(s)$ - expected number of points the agent will get from state s till the end of the game.

Making moves with V

$$
\pi(s)=\underset{a \in A(s)}{\operatorname{argmax}}\left[R(s, a)+\sum_{s^{\prime \prime} \in S} P\left(s, a, s^{\prime \prime}\right) V\left(s^{\prime \prime}\right)\right]
$$

TD-state Learning

Learning of V

- After a move the agents gets a new experience $\left\langle s, a, r, s^{\prime \prime}\right\rangle$
- Modify V in response to the experience by Sutton's TD(0) update rule:

$$
V(s) \leftarrow V(s)+\alpha\left(r+V\left(s^{\prime \prime}\right)-V(s)\right)
$$

α - learning rate

General Idea

- Reconcile neighboring states $V(s)$ and $V\left(s^{\prime \prime}\right)$, so that (ideally, in the long run) Bellman equaltion holds:

$$
V(s)=\max _{a \in A(s)}\left(R(s, a)+\sum_{s^{\prime \prime} \in S} P\left(s, a, s^{\prime \prime}\right) V\left(s^{\prime \prime}\right)\right)
$$

Afterstates

States vs. Afterstates

State Value Function

Move selection:

$$
\pi(s) \leftarrow \underset{a \in A(s)}{\operatorname{argmax}}\left(R(s, a)+\sum_{s^{\prime \prime} \in S} P\left(s, a, s^{\prime \prime}\right) V\left(s^{\prime \prime}\right)\right)
$$

Learning:

$$
V(s) \leftarrow V(s)+\alpha\left(r+V\left(s^{\prime \prime}\right)-V(s)\right)
$$

States vs. Afterstates

State Value Function

Move selection:

$$
\pi(s) \leftarrow \underset{a \in A(s)}{\operatorname{argmax}}\left(R(s, a)+\sum_{s^{\prime \prime} \in S} P\left(s, a, s^{\prime \prime}\right) V\left(s^{\prime \prime}\right)\right)
$$

Learning:

$$
V(s) \leftarrow V(s)+\alpha\left(r+V\left(s^{\prime \prime}\right)-V(s)\right)
$$

Afterstate Value Function

Move selection:

$$
\pi(s) \leftarrow \underset{a \in A(s)}{\operatorname{argmax}}\left(R(s, a)+V\left(s^{\prime}\right)\right)
$$

Learning:

$$
V\left(s^{\prime}\right) \leftarrow V\left(s^{\prime}\right)+\alpha\left(r_{\text {next }}+V\left(s_{\text {next }}\right)-V\left(s^{\prime}\right)\right)
$$

$r_{\text {next }}, s_{\text {next }}$ are obtained by taking an action from $s^{\prime \prime}$ according to the current policy.

Value Function Approximation with N-tuple Networks

2048 has ca. 10^{21} states \rightarrow function approximator

64	$\boldsymbol{0}^{0}$	8
128	$2 \boldsymbol{\emptyset}^{1}$	2
2	$8 \boldsymbol{0}^{2}$	2
128	0^{3}	

0123	weight
0000	3.04
0001	-3.90
0002	-2.14
\vdots	\vdots
0010	5.89
\vdots	\vdots
$\mathbf{0 1 3 0}$	$\mathbf{- 2 . 0 1}$
\vdots	\vdots

Network response:

$$
f(s)=\sum_{i=1}^{m} f_{i}(s)=\sum_{i=1}^{m} \operatorname{LUT}_{i}\left[\operatorname{index}\left(s_{l o c_{i 1}}, \ldots, s_{l o c_{i n_{i}}}\right)\right]
$$

Buro, Michael, "From Simple Features to Sophisticated Evaluation Functions", 1999
Lucas, Simon M., "Learning to Play Othello with N-tuple Systems", 2007

Experimental Setup

Settings

- Systematic N-Tuple Network with 17 tuples of size $4 \rightarrow$ 860625 weights.
- TD-state, TD-afterstate, Q-learning
- 0.5 mln training games

Comparison of Learning Methods

Algorithm	Best winning rate	Best total score	CPU time [s]
Q-LEARNING	0.4980 ± 0.0078	20504.6 ± 163.5	3136.8 ± 61.7
TD-STATE	0.8672 ± 0.0122	48929.6 ± 702.5	24334.7 ± 405.7
TD-AFTERSTATE	0.9062 ± 0.0051	51320.9 ± 358.4	7967.5 ± 165.3

Experiment: Improving the Winning Rate

Settings

- TD-afterstate with $\alpha=0.0025$
- two tuples of size 4 and two of size 6 (22 882500 weights)
- exploiting the board symmetry
- 1 mln training games

Results: Improving the Winning Rate to 98%

Winning rate
 - "Small": $\approx 91 \%$
 - "Large": $\approx 98 \%$

You next goal is to get to the 32768 tile!

Conclusions

Summary

- 2048: new interesting challenge for $\mathbf{A I} / \mathbf{C I}$ with simple rules and highly popular, quick to play (20 ms for one game)
- Learned a very quick agent, win ratio nearly 98% at 1-ply:
- afterstate value function - for environments where the agent can simulate the immediate effects of its moves, but it is difficult to obtain the entire state transition.
- n-tuple network - evidence of scalability (22 mln weights)

Conclusions

Summary

- 2048: new interesting challenge for $\mathbf{A I} / \mathbf{C I}$ with simple rules and highly popular, quick to play (20 ms for one game)
- Learned a very quick agent, win ratio nearly 98% at 1 -ply:
- afterstate value function - for environments where the agent can simulate the immediate effects of its moves, but it is difficult to obtain the entire state transition.
- n-tuple network - evidence of scalability (22 mln weights)

Open questions

- What is the expected score of the optimal policy? Currently [99 916, 3932 100)
- Highest possible winning rate for 2048, 4096, 8192, 16384, 32768,...?

Results: Optimizing the Learning Rate

	Wearning rate		
	Q-LEARNING	TD-sTATE	TD-AFTERSTATE
0.0010	0.1672 ± 0.0262	0.8622 ± 0.0059	0.8821 ± 0.0068
0.0025	0.4796 ± 0.0058	$\mathbf{0 . 8 6 7 2} \pm \mathbf{0 . 0 1 2 2}$	$\mathbf{0 . 9 0 6 2} \pm \mathbf{0 . 0 0 5 1}$
0.0050	$\mathbf{0 . 4 9 8 0} \pm \mathbf{0 . 0 0 7 8}$	0.8660 ± 0.0120	0.8952 ± 0.0089
0.0075	0.4658 ± 0.0090	0.8253 ± 0.0131	0.8867 ± 0.0077
0.0100	0.4438 ± 0.0103	0.8083 ± 0.0170	0.8601 ± 0.0090

Winning rate of learning agents after 0.5 mln training games with 95% confidence interval.

Game engine

1: function Play Game
2: \quad score $\leftarrow 0$
3: $\quad s \leftarrow$ Initialize Game State
4: while \neg Is Terminal $\operatorname{State}(s)$ do
5: $\quad a \leftarrow \operatorname{argmax}_{a^{\prime} \in A(s)} \operatorname{Evaluate}\left(s, a^{\prime}\right)$
6: $\quad r, s^{\prime}, s^{\prime \prime} \leftarrow \operatorname{Make} \operatorname{Move}(s, a)$
7: if Learning Enabled then
8:
9: \quad score \leftarrow score $+r$
10: $\quad s \leftarrow s^{\prime \prime}$
11: return score
12: function $\operatorname{Make} \operatorname{Move}(s, a)$
13: $\quad s^{\prime}, r \leftarrow \operatorname{Compute} \operatorname{Afterstate}(s, a)$
14: $\quad s^{\prime \prime} \leftarrow \operatorname{AdD}$ Random Tile $\left(s^{\prime}\right)$
15: return $\left(r, s^{\prime}, s^{\prime \prime}\right)$

Q-Learning

1: function $\operatorname{Evaluate}(s, a)$
2: return $V_{a}(s)$
3:
4: function Learn Evaluation $\left(s, a, r, s^{\prime}, s^{\prime \prime}\right)$
5: $\quad v_{\text {next }} \leftarrow \max _{a^{\prime} \in A\left(s^{\prime \prime}\right)} V_{a^{\prime}}\left(s^{\prime \prime}\right)$
6: $\quad V_{a}(s) \leftarrow V_{a}(s)+\alpha\left(r+v_{\text {next }}-V_{a}(s)\right)$
Figure: The action evaluation function and Q-learning.

State Value Function TD-learning

1: function $\operatorname{Evaluate}(s, a)$
2: $\quad s^{\prime}, r \leftarrow \operatorname{Compute} \operatorname{Afterstate}(s, a)$
3: $\quad S^{\prime \prime} \leftarrow$ All Possible Next $\operatorname{States}\left(s^{\prime}\right)$
4: \quad return $r+\sum_{s^{\prime \prime} \in S^{\prime \prime}} P\left(s, a, s^{\prime \prime}\right) V\left(s^{\prime \prime}\right)$
5:
6: function Learn Evaluation($\left.s, a, r, s^{\prime}, s^{\prime \prime}\right)$
7: $\quad V(s) \leftarrow V(s)+\alpha\left(r+V\left(s^{\prime \prime}\right)-V(s)\right)$
Figure: The state evaluation function and TD(0).

Afterstate Value Function TD-learning

1: function $\operatorname{Evaluate}(s, a)$
2: $\quad s^{\prime}, r \leftarrow \operatorname{Compute} \operatorname{Afterstate}(s, a)$
3: return $r+V\left(s^{\prime}\right)$
4:
5: function Learn Evaluation($s, a, r, s^{\prime}, s^{\prime \prime}$)
6: $\quad a_{n e x t} \leftarrow \operatorname{argmax}_{a^{\prime} \in A\left(s^{\prime \prime}\right)} \operatorname{Evaluate}\left(s^{\prime \prime}, a^{\prime}\right)$
7: $\quad s_{\text {next }}^{\prime}, r_{\text {next }} \leftarrow \operatorname{Compute} \operatorname{Afterstate}\left(s^{\prime \prime}, a_{\text {next }}\right)$
8: $\quad V\left(s^{\prime}\right) \leftarrow V\left(s^{\prime}\right)+\alpha\left(r_{\text {next }}+V\left(s_{\text {next }}^{\prime}\right)-V\left(s^{\prime}\right)\right)$
Figure: The afterstate evaluation function and a dedicated variant of the TD(0) algorithm.

