
Temporal Difference Learning of N-Tuple Networks
for the Game 2048

Marcin Szubert Wojciech Jaśkowski

Institute of Computing Science

August 27, 2014



Game of 2048

Rules
single-player, nondeterministic

4× 4 board

actions: left, right, up, down

merging: score the sum

every move: 2 or 4 in random
position

goal: construct tile 2048

http://gabrielecirulli.github.io/2048

TDL of N-Tuple Networks for Game 2048 2 / 15 Szubert & Jaśkowski

http://gabrielecirulli.github.io/2048/


Search Results of ”2048” in Android Store

TDL of N-Tuple Networks for Game 2048 3 / 15 Szubert & Jaśkowski



Motivation & Goal

Motivation
Popularity:

4mln visitors in the first weekend
3000 man-years in 3 weeks

Easy to learn but not trivial to master → ideal test bed for CI/AI

No previous studies

Goal
Learning without expert knowledge and without search

TDL of N-Tuple Networks for Game 2048 4 / 15 Szubert & Jaśkowski



2048 as Markov Decision Process (MDP)

2048 as MDP
S — states: board positions,

A — actions: legal moves,

R(s, a) — reward: score obtained by action a in state s

P(s, a, s ′′) — stochastic transition function, probability of
transition to state s ′′ in result of taking action a in state s.
Defined implicitely by the game rules.

TDL of N-Tuple Networks for Game 2048 5 / 15 Szubert & Jaśkowski



Value-based Agent

Value function
V : S → R

V (s) — expected number of points the agent will get from state s till
the end of the game.

Making moves with V

π(s) = argmax
a∈A(s)

[
R(s, a) +

∑
s ′′∈S

P(s, a, s ′′)V (s ′′)

]
.

TDL of N-Tuple Networks for Game 2048 6 / 15 Szubert & Jaśkowski



TD-state Learning

Learning of V
After a move the agents gets a new experience 〈s, a, r , s ′′〉
Modify V in response to the experience by Sutton’s TD(0) update
rule:

V (s)← V (s) + α(r + V (s ′′) − V (s))

α — learning rate

General Idea
Reconcile neighboring states V (s) and V (s ′′), so that (ideally, in
the long run) Bellman equaltion holds:

V (s) = max
a∈A(s)

(
R(s, a) +

∑
s ′′∈S

P(s, a, s ′′)V (s ′′)

)

TDL of N-Tuple Networks for Game 2048 7 / 15 Szubert & Jaśkowski



Afterstates

s0, r = Compute Afterstate(s, a = right)

r = 40

s00 =s0 =s =

s00 = Add Random Tile(s0)

TDL of N-Tuple Networks for Game 2048 8 / 15 Szubert & Jaśkowski



States vs. Afterstates

State Value Function
Move selection:

π(s)← argmax
a∈A(s)

(
R(s, a) +

∑
s ′′∈S

P(s, a, s ′′)V (s ′′)

)
Learning:

V (s)← V (s) + α(r + V (s ′′) − V (s))

Afterstate Value Function
Move selection:

π(s)← argmax
a∈A(s)

(
R(s, a) + V

(
s ′
))

Learning:

V (s ′)← V (s ′) + α(rnext + V (snext) − V (s ′))

rnext , snext are obtained by taking an action from s ′′ according to the current
policy.

TDL of N-Tuple Networks for Game 2048 9 / 15 Szubert & Jaśkowski



States vs. Afterstates

State Value Function
Move selection:

π(s)← argmax
a∈A(s)

(
R(s, a) +

∑
s ′′∈S

P(s, a, s ′′)V (s ′′)

)
Learning:

V (s)← V (s) + α(r + V (s ′′) − V (s))

Afterstate Value Function
Move selection:

π(s)← argmax
a∈A(s)

(
R(s, a) + V

(
s ′
))

Learning:

V (s ′)← V (s ′) + α(rnext + V (snext) − V (s ′))

rnext , snext are obtained by taking an action from s ′′ according to the current
policy.

TDL of N-Tuple Networks for Game 2048 9 / 15 Szubert & Jaśkowski



Value Function Approximation with N-tuple Networks

2048 has ca. 1021 states → function approximator

2

8

64

128

2

128

4

2

2

8
0

1

2

3

0123 weight

0000 3.04
0001 −3.90
0002 −2.14
...

...
0010 5.89
...

...
0130 -2.01
...

...

Network response:

f (s) =
m∑
i=1

fi (s) =
m∑
i=1

LUTi

[
index

(
sloci1 , . . . , slocini

)]
Buro, Michael, ”From Simple Features to Sophisticated Evaluation Functions”, 1999

Lucas, Simon M., ”Learning to Play Othello with N-tuple Systems”, 2007

TDL of N-Tuple Networks for Game 2048 10 / 15 Szubert & Jaśkowski



Experimental Setup

Settings
Systematic N-Tuple Network
with 17 tuples of size 4 →
860 625 weights.

TD-state, TD-afterstate,
Q-learning

0.5 mln training games

TDL of N-Tuple Networks for Game 2048 11 / 15 Szubert & Jaśkowski



Comparison of Learning Methods

Q−LEARNING TD−STATE TD−AFTERSTATE

0.0

0.2

0.4

0.6

0.8

0

10 000

20 000

30 000

40 000

50 000

W
inning  rate

Total  score

0 125 250 375 500 0 125 250 375 500 0 125 250 375 500

Training games (x 1000)

learning rate (α) 0.0010      0.0025      0.0050      0.0075      0.0100      

TDL of N-Tuple Networks for Game 2048 12 / 15 Szubert & Jaśkowski



Experiment: Improving the Winning Rate

Settings
TD-afterstate with α = 0.0025

two tuples of size 4 and two of
size 6 (22 882 500 weights)

exploiting the board symmetry

1 mln training games

TDL of N-Tuple Networks for Game 2048 13 / 15 Szubert & Jaśkowski



Results: Improving the Winning Rate to 98%

0.0

0.2

0.4

0.6

0.8

1.0

0

20 000

40 000

60 000

80 000

100 000

W
inning  rate

Total  score

0 200 400 600 800 1000

Training games (x 1000)

2x3 & 1x4 symmetric network

2x2 & 1x4 standard network

Winning rate
”Small”: ≈ 91%

”Large”: ≈ 98%

TDL of N-Tuple Networks for Game 2048 14 / 15 Szubert & Jaśkowski



Conclusions

Summary
2048: new interesting challenge for AI/CI with simple rules and
highly popular, quick to play (20ms for one game)

Learned a very quick agent, win ratio nearly 98% at 1-ply:
afterstate value function — for environments where the agent can
simulate the immediate effects of its moves, but it is difficult to
obtain the entire state transition.
n-tuple network — evidence of scalability (22 mln weights)

Open questions
What is the expected score of the optimal policy? Currently
[99 916, 3 932 100)

Highest possible winning rate for 2048, 4096, 8192, 16384,
32768,. . . ?

TDL of N-Tuple Networks for Game 2048 15 / 15 Szubert & Jaśkowski



Conclusions

Summary
2048: new interesting challenge for AI/CI with simple rules and
highly popular, quick to play (20ms for one game)

Learned a very quick agent, win ratio nearly 98% at 1-ply:
afterstate value function — for environments where the agent can
simulate the immediate effects of its moves, but it is difficult to
obtain the entire state transition.
n-tuple network — evidence of scalability (22 mln weights)

Open questions
What is the expected score of the optimal policy? Currently
[99 916, 3 932 100)

Highest possible winning rate for 2048, 4096, 8192, 16384,
32768,. . . ?

TDL of N-Tuple Networks for Game 2048 15 / 15 Szubert & Jaśkowski



Results: Optimizing the Learning Rate

Winning rate of learning agents after 0.5 mln training games with 95%
confidence interval.

TDL of N-Tuple Networks for Game 2048 16 / 15 Szubert & Jaśkowski



Game engine

1: function Play Game
2: score ← 0
3: s ← Initialize Game State
4: while ¬Is Terminal State(s) do
5: a← argmaxa ′∈A(s)Evaluate(s, a

′)

6: r , s ′, s ′′ ←Make Move(s, a)
7: if Learning Enabled then
8: Learn Evaluation(s, a, r , s ′, s ′′)

9: score ← score + r

10: s ← s ′′

11: return score
12: function Make Move(s, a)
13: s ′, r ← Compute Afterstate(s, a)
14: s ′′ ← Add Random Tile(s ′)
15: return (r , s ′, s ′′)

Figure: A pseudocode of a game engine with moves selected according to the
evaluation function. If learning is enabled, the evaluation function is adjusted
after each move.

TDL of N-Tuple Networks for Game 2048 17 / 15 Szubert & Jaśkowski



Q-Learning

1: function Evaluate(s, a)
2: return Va(s)

3:

4: function Learn Evaluation(s, a, r , s ′, s ′′)
5: vnext ← maxa ′∈A(s ′′) Va ′(s ′′)

6: Va(s)← Va(s) + α(r + vnext − Va(s))

Figure: The action evaluation function and Q-learning.

TDL of N-Tuple Networks for Game 2048 18 / 15 Szubert & Jaśkowski



State Value Function TD-learning

1: function Evaluate(s, a)
2: s ′, r ← Compute Afterstate(s, a)
3: S ′′ ← All Possible Next States(s ′)
4: return r +

∑
s ′′∈S ′′ P(s, a, s ′′)V (s ′′)

5:

6: function Learn Evaluation(s, a, r , s ′, s ′′)
7: V (s)← V (s) + α(r + V (s ′′) − V (s))

Figure: The state evaluation function and TD(0).

TDL of N-Tuple Networks for Game 2048 19 / 15 Szubert & Jaśkowski



Afterstate Value Function TD-learning

1: function Evaluate(s, a)
2: s ′, r ← Compute Afterstate(s, a)
3: return r + V (s ′)

4:

5: function Learn Evaluation(s, a, r , s ′, s ′′)
6: anext ← argmaxa ′∈A(s ′′)Evaluate(s

′′, a ′)

7: s ′next , rnext ← Compute Afterstate(s ′′, anext)
8: V (s ′)← V (s ′) + α(rnext + V (s ′next) − V (s ′))

Figure: The afterstate evaluation function and a dedicated variant of the
TD(0) algorithm.

TDL of N-Tuple Networks for Game 2048 20 / 15 Szubert & Jaśkowski


	Game 2048
	TDL
	Improving the Winning Rate
	Summary
	Appendix

