
Wladek Minor- PhD
- Professor at University of Virginia
Wladek Minor
- PhD
- Professor at University of Virginia
About
395
Publications
60,455
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
79,845
Citations
Introduction
Current institution
Publications
Publications (395)
Tryptophan is the largest amino acid found in proteins, with multiple functional roles. Its side-chain is made up of the hydrophobic indole moiety, with two groups acting as donors in hydrogen bonds: the Nε-H group, which is a potent donor in canonical hydrogen bonds; and a polarized Cδ1-H group, capable of forming weaker, non-canonical hydrogen bo...
Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural, catalytic, or regulatory roles. Modeling transition metal ions, especially in transient, reversible, and concentration-dependent regulatory sites, remains challenging. We present PinMyMetal (PMM)...
A global analysis of protein crystal structures in the Protein Data Bank (PDB) using a newly developed computational approach reveals many pairs with (nearly) identical main-chain coordinates. Such cases are identified and analyzed, showing that duplication is possible since the PDB does not currently have tools or mechanisms that would detect pote...
Introduction:
Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (...
The absence of solvent molecules in high-resolution protein crystal structure models deposited in the Protein Data Bank (PDB) contradicts the fact that, for proteins crystallized from aqueous media, water molecules are always expected to bind to the protein surface, as well as to some sites in the protein interior. An analysis of the contents of th...
Understanding the functions of metal ions in biological systems is crucial for many aspects of research, including deciphering their roles in diseases and potential therapeutic use. Structural information about the molecular or atomic details of these interactions, generated by methods like X-ray crystallography, cryo-electron microscopy, or nuclei...
Identifying and characterizing metal-binding sites (MBS) within macromolecular structures is imperative for elucidating their biological functions. CheckMyMetal (CMM) is a web based tool that facilitates the interactive validation of MBS in structures determined through X-ray crystallography and cryo-electron microscopy (cryo-EM). Recent updates t...
Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the N ɛ —H group, which is a potent donor in canonical hydrogen bonds, and a polarized C δ1 —H group, which is capable of forming weaker, non...
Zinc is required for virtually all biological processes. In plasma, Zn²⁺ is predominantly transported by human serum albumin (HSA), which possesses two Zn²⁺-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with seven structurally characterized FA-binding sites (named FA1-FA7) known. FA binding in...
Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural (4-residue predominate), catalytic (3-residue predominate), or regulatory (2-residue predominate) roles. Computational tools for modeling metal ions in protein structures, especially for transient...
Clostridioides difficile causes life-threatening gastrointestinal infections. It is a high-risk pathogen due to a lack of effective treatments, antimicrobial resistance, and a poorly conserved genomic core. Herein, we report 30 X-ray structures from a structure genomics pipeline spanning 13 years, representing 10.2% of the X-ray structures for this...
Introduction:
Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystall...
Over the course of the pandemic caused by SARS-CoV-2, structural biologists have worked hand in hand with groups developing vaccines and treatments. However, relying solely on in vitro and clinical studies may be insufficient to guide vaccination and treatment developments, and other healthcare policies during virus mutations or peaks in infections...
Serum albumin-Co2+ interactions are of clinical importance. They play a role in mediating the physiological effects associated with cobalt toxicity and are central to the albumin cobalt binding (ACB) assay for diagnosis of myocardial ischemia. To further understand these processes, a deeper understanding of albumin-Co2+ interactions is required. He...
The overall quality of the experimentally determined structures contained in the PDB is exceptionally high, mainly due to the continuous improvement of model building and structural validation programs. Improving reproducibility on a large scale requires expanding the concept of validation in structural biology and all other disciplines to include...
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extend...
Metal ions bound to macromolecules play an integral role in many cellular processes. They can directly participate in catalytic mechanisms or be essential for the structural integrity of proteins and nucleic acids. However, their unique nature in macromolecules can make them difficult to model and refine, and a substantial portion of metal ions in...
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extend...
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and are useful find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized membrane-associated domain and exte...
Serum albumin is a circulatory transport protein that has a highly conserved sequence and structure across mammalian organisms. Its ligand-binding properties are of importance as albumin regulates the pharmacokinetics of many drugs. Due to the high degree of structural conservation between mammalian albumins, nonhuman albumins such as bovine serum...
The Chromosome Passenger Complex (CPC) generates chromosome autonomous signals that regulate mitotic events critical for genome stability. Tip60 is a lysine acetyltransferase that is a tumor suppressor and is targeted for proteasomal degradation by oncogenic papilloma viruses. Mitotic regulation requires the localization of the CPC to inner centrom...
The homodimeric β-lactoglobulin belongs to the lipocalin family of proteins that transport a wide range of hydrophobic molecules and can be modified by mutagenesis to develop specificity for novel groups of ligands. In this work, new lactoglobulin variants, FAF (I56F/L39A/M107F) and FAW (I56F/L39A/M107W), were produced and their interactions with t...
Herein we present the newest version of the HKL‐3000 system that integrates data collection, data reduction, phasing, model building, refinement, and validation. The system significantly accelerates the process of structure determination and has proven its high value for the determination of very high‐quality structures. The heuristic for choosing...
Metal binding sites, antigen epitopes and drug binding sites are the hotspots in viral proteins that control how viruses interact with their hosts. virusMED (virusMetal binding sites, Epitopes and Drug binding sites) is a rich internet application based on a database of atomic interactions around hotspots in 7041 experimentally determined viral pro...
This 75th birthday tribute to our Editorial Board member Alexander Wlodawer recounts his decades‐long service to the community of structural biology researchers. His former and current colleagues tell the story of his upbringing and education, followed by an account of his dedication to quality and rigor in crystallography and structural science. T...
Structure-guided drug design depends on the correct identification of ligands in crystal structures of protein complexes. However, the interpretation of the electron density maps is challenging and often burdened with confirmation bias. Ligand identification can be aided by automatic methods such as CheckMyBlob, a machine learning algorithm that le...
Ketoprofen is a popular non-steroidal anti-inflammatory drug (NSAID) transported in the bloodstream mainly by serum albumin (SA). Ketoprofen is known to have multiple side effects and interactions with hundreds of other drugs, which might be related to its vascular transport by SA. Our work reveals that ketoprofen binds to a different subset of dru...
Enzymes in the Gcn5-related N-acetyltransferase (GNAT) superfamily are widespread and critically involved in multiple cellular processes ranging from antibiotic resistance to histone modification. While acetyl transfer is the most widely catalyzed reaction, recent studies have revealed that these enzymes are also capable of performing succinylation...
As part of the global mobilization to combat the present pandemic, almost 100 000 COVID-19-related papers have been published and nearly a thousand models of macromolecules encoded by SARS-CoV-2 have been deposited in the Protein Data Bank within less than a year. The avalanche of new structural data has given rise to multiple resources dedicated t...
Intense X-rays available at powerful synchrotron beamlines provide macromolecular crystallographers with an incomparable tool for investigating biological phenomena on an atomic scale. The resulting insights into the mechanism’s underlying biological processes have played an essential role and shaped biomedical sciences during the last 30 years, co...
Our understanding of life is based upon the interpretation of macromolecular structures and their dynamics. Almost 90% of currently known macromolecular models originated from electron density maps constructed using X-ray diffraction images. Even though diffraction images are critical for structure determination, due to their vast amounts and noisy...
The COVID‐19 pandemic has triggered numerous scientific activities aimed at understanding the SARS‐CoV‐2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X‐ray, cryo‐EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To...
Efficient and comprehensive data management is an indispensable component of modern scientific research and requires effective tools for all but the most trivial experiments. The LabDB system developed and used in our laboratory was originally designed to track the progress of a structure determination pipeline in several large National Institutes...
Dexamethasone, a widely used corticosteroid, has recently been reported as the first drug to increase the survival chances of patients with severe COVID-19. Therapeutic agents, including dexamethasone, are mostly transported through the body by binding to serum albumin. Here, the first structure of serum albumin in complex with dexamethasone is rep...
Protein tyrosine phosphatase 4A3 (PTP4A3) is frequently overexpressed in human solid tumors and hematological malignancies and is associated with tumor cell invasion, metastasis, and a poor patient prognosis. Several potent, selective, and allosteric small molecule inhibitors of PTP4A3 were recently identified. A lead compound in the series, JMS-05...
Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2’ position of kanamycin B is transformed into a keto grou...
Dexamethasone, a widely used corticosteroid, has recently been reported as the first drug to increase the survival chances of patients with severe COVID-19. Therapeutic agents, including dexamethasone, are mostly transported through the body by binding to serum albumin. Herein, we report the first structure of serum albumin in complex with dexameth...
A bright spot in the SARS‐CoV‐2 (CoV‐2) coronavirus pandemic has been the immediate mobilization of the biomedical community, working to develop treatments and vaccines for COVID‐19. Rational drug design against emerging threats depends on well‐established methodology, mainly utilizing X‐ray crystallography, to provide accurate structure models of...
Every day, hundreds of millions of people worldwide take non-steroidal anti-inflammatory drugs (NSAIDs), often in conjunction with multiple other medications. In the bloodstream, NSAIDs are mostly bound to serum albumin (SA). We report the crystal structures of equine serum albumin complexed with four NSAIDs (ibuprofen, ketoprofen, etodolac, and na...
Protein degradation by aminopeptidases is involved in bacterial responses to stress. Escherichia coli produces two metal‐dependent M17 family leucine aminopeptidases (LAPs), aminopeptidase A (PepA) and aminopeptidase B (PepB). Several structures have been solved for PepA as well as other bacterial M17 peptidases. Herein, we report the first structu...
Crystallographic models of biological macromolecules have been ranked using the quality criteria associated with them in the Protein Data Bank (PDB). The outcomes of this quality analysis have been correlated with time and with the journals that published papers based on those models. The results show that the overall quality of PDB structures has...
Hyoscyamine 6β-hydroxylase (H6H) is a bifunctional non-heme 2-oxoglutarate/Fe2+-dependent dioxygenase that catalyzes the two final steps in the biosynthesis of scopolamine. Based on high resolution crystal structures of H6H from Datura metel, detailed information on substrate binding was obtained that provided insights into the onset of the enzymat...
This chapter presents a modern approach to the structure validation process. It argues that validation is a continuous process that starts with macromolecular material preparation and ends when the last biomedical experiment in structure‐function studies is performed. Many factors from multiple steps of the crystallographic structure determination...
Tyrosine biosynthesis via the shikimate pathway is absent in humans and other animals, making it an attractive target for next‐generation antibiotics, which is increasingly important due to the looming proliferation of multidrug‐resistant pathogens. Tyrosine biosynthesis is also of commercial importance for the environmentally friendly production o...
It has been increasingly recognized that preservation and public accessibility of primary experimental data are cornerstones necessary for the reproducibility of empirical sciences. In the field of molecular crystallography, many journals now recommend that authors of manuscripts presenting a new crystal structure should deposit their primary exper...
In the Special Issue on Tools for Protein Science in 2018, we presented Molstack: a concept of a cloud‐based platform for sharing electron density maps and their interpretations. Molstack is a web platform that allows the interactive visualization of density maps through the simultaneous presentation of multiple datasets and models in a way that al...
Following publication of the original article [1], we have been notified that some important information was omitted by the authors from the Competing interests section. The declaration should read as below.
In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refineme...
The de novo pyrimidine biosynthesis pathway is essential for the proliferation of many pathogens. One of the pathway enzymes, dihydroorotase (DHO), catalyzes the reversible interconversion of N-carbamoyl-l-aspartate to 4,5-dihydroorotate. The substantial difference between bacterial and mammalian DHOs makes it a promising drug target for disrupting...
The policy of IUCr Journals on diffraction data is defined.
The policy of IUCr Journals on diffraction data is defined.
The policy of IUCr Journals on diffraction data is defined.
The policy of IUCr Journals on diffraction data is defined.
Serum albumin is the most abundant protein in mammalian blood plasma and is responsible for the transport of metals, drugs, and various metabolites, including hormones. We report the first albumin structure in complex with testosterone, the primary male sex hormone. Testosterone is bound in two sites, neither of which overlaps with the previously s...
Background
The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversi...
Deeper exploration of uncharacterized Gcn5-related N-acetyltransferases has the potential to expand our knowledge of the types of molecules that can be acylated by this important superfamily of enzymes and may offer new opportunities for biotechnological applications. While determining native or biologically relevant in vivo functions of uncharacte...
Refinement of macromolecular X-ray crystal structures involves using complex software with hundreds of different settings. The complexity of underlying concepts and the sheer amount of instructions may make it difficult for less experienced crystallographers to achieve optimal results in their refinements. This tutorial review offers guidelines for...
Mutations in the human protein DJ-1 cause early onset of Parkinson's disease. A reactive cysteine residue (Cys106) of DJ-1 is crucial for its protective function, although the underlying mechanisms are unclear. Here we show that a fraction of bacterially expressed polyhistidine-tagged human DJ-1 could not be eluted from a Ni-nitrilotriacetate (Ni-N...
β-Lactamases are hydrolytic enzymes capable of opening the β-lactam ring of antibiotics such as penicillin, thus endowing the bacteria that produce them with antibiotic resistance. Of particular medical concern are metallo-β-lactamases (MBLs), with an active site built around coordinated Zn cations. MBLs are pan-reactive enzymes that can break down...
Motivation:
The correct identification of ligands in crystal structures of protein complexes is the cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead investigators into modeling fictitious compounds without solid support from the electron density maps. Ligand identification can be aided by automatic methods...
Vibrio cholerae, the causative pathogen of the life‐threatening infection cholera, encodes two copies of β‐ketoacyl‐ACP synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1...
Metals have crucial roles in many physiological, pathological, toxicological, pharmaceutical, and diagnostic processes. Proper handling of metal-containing macromolecule samples for structural studies is not trivial, and failure to handle them properly is often a source of irreproducibility caused by issues such as pH changes, incorporation of unex...
The D-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers, gene duplications, and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2H...