Winnie E Svendsen

Winnie E Svendsen
Technical University of Denmark | DTU · Department of Micro- and Nanotechnology

About

177
Publications
75,709
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,982
Citations
Introduction
Additional affiliations
September 2002 - present
Technical University of Denmark
Position
  • Professor (Associate)

Publications

Publications (177)
Article
Full-text available
This work explores the use of ZIF-8, a metal–organic framework (MOF) material, for its use in the optical detection of volatile organic compounds (VOCs) in Fabry–Pérot and surface plasmon resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and show response times as low as 30 s under VOC-saturated atmospheres, a...
Preprint
Full-text available
Nanomechanical resonators can serve as ultrasensitive, miniaturized force probes. While vertical structures like nanopillars are ideal for this purpose, transducing their motion is challenging. Pillar-based photonic crystals (PhCs) offer a potential solution by integrating optical transduction within the pillars. However, achieving high-quality PhC...
Article
Disposable screen-printed gold electrodes (SPAuEs) are used for the development of numerous immunosensors owing to their ease of modification with biorecognition molecules. A major limitation in the development of SPAuEs based biosensors is the single-use of the electrodes leading to higher costs for sensor development, whereas multiple measurement...
Article
Full-text available
This paper presents a novel microfluidic chip for upconcentration of sub–100 nm nanoparticles in a flow using electrical forces generated by a DC or AC field. Two electrode designs were optimized using COMSOL Multiphysics and tested using particles with sizes as low as 47 nm. We show how inclined electrodes with a zig-zag three-tooth configuration...
Article
Full-text available
Microfluidic biochips have been in the scientific spotlight for over two decades, and although technologically advanced, they still struggle to deliver on the promise for ubiquitous miniaturization and automation for the biomedical sector. One of the most significant challenges hindering the technology transfer is the lack of standardization and th...
Article
Full-text available
A graphical user interface (GUI) with Tkinter was created in Python to facilitate data analysis for electrochemical techniques in cyclic voltammetry and electrochemical impedance. The GUI lets the user select a technique, measurement(s), and eventually customize the plots.
Article
Full-text available
The ongoing COVID-19 pandemic has shown the importance of having analytical devices that allow a simple, fast, and robust detection of pathogens which cause epidemics and pandemics. The information these devices can collect is crucial for health authorities to make effective decisions to contain the disease's advance. The World Health Organization...
Article
Full-text available
Bacteria detection, counting and analysis is of great importance in several fields. When viability plays a major role in decision making, the counting of colony-forming units grown on agar plates remains the gold standard. However, because plate counts depend on the growth of the bacteria, it is a slow procedure and only works with culturable speci...
Article
Full-text available
Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyo...
Article
Full-text available
Primary brain cells cultured on flat surfaces, i.e., in a two-dimensional fashion, have a long history of use as an experimental model system in neuroscience research. However, it is questionable to which extent these cultured brain cells resemble their in vivo counterparts. Mainly, it has been claimed that the non-oxidative glucose metabolism refl...
Article
Pyocyanin is a virulence factor solely produced by the pathogen Pseudomonas aeruginosa. Pyocyanin is also a redox active molecule that can be directly detected by electrochemical sensing. A nanograss (NG) based sensor for sensitive quantification of pyocyanin in sputum samples from cystic fibrosis (CF) patients is presented here. The NG sensors wer...
Chapter
As a result of biological sciences becoming more quantitative together with the growing economical and societal challenges of improving our health care system, we have witnessed an increasing interest in developing new technologies for the biomedical field. Cyber-medical systems are the fusion of computational and medical technologies aimed to supp...
Article
Cubosomes and hexosomes are emerging platforms for drug and nutraceutical delivery applications. In addition to common high- and low-energy batch emulsification methods for the preparation of these nano-self-assemblies, it is important to introduce suitable microfluidic devices with a precision control of the flow parameters for their continuous pr...
Article
Full-text available
Bentazone is one of the most problematic pesticides polluting groundwater resources. It is on the list of pesticides that are mandatory to analyze at water work controls. The current pesticide measuring approach includes manual water sampling and time-consuming chromatographical quantification of the bentazone content at centralized laboratories. H...
Conference Paper
The micro flow cytometer presented here is a combination of a set of coplanar electrodes and a microfluidic channel to test cell viability based on Single-cell Electrical Impedance Spectroscopy analysis. The device was tested both with a control and with a treated HeLa cells suspension. Impedance signals acquired were filtered and processed to obta...
Poster
Full-text available
The device presented is a combination of a coplanar electrodes and a microfluidic device to test an on-set viability assessment monitoring technology based on Single-cell Electrical Impedance Spectroscopy analysis. This type of label-free technique allows the possibility to detect the cell viability based on their intrinsic electrical properties, o...
Conference Paper
The micro flow cytometer presented here is a combination of a set of coplanar electrodes and a microfluidic channel to test cell viability based on Single-cell Electrical Impedance Spectroscopy analysis. The device was tested both with a control and with a treated HeLa cells suspension. Impedance signals acquired were filtered and processed to obta...
Article
Full-text available
Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking...
Data
Table S1. Analytical values for available ions in the water sample. Data provided by Mineral Water A/S, Denmark. Parameter Value Units Calcium <40 mg/L Magnesium <15 mg/L Sodium <12 mg/L Bicarbonates <150 mg/L Sulfate <5 mg/L Nitrate <1 mg/L Potassium <5 mg/L Chloride <13 mg/L pH 7-7.6-Figure S1. Amperometric measurements using the optimized potent...
Article
Full-text available
Glyphosate (Gly) is one of the most problematic pesticides that repeatedly appears in drinking water. Continuous on-site detection of Gly in water supplies can provide an early warning in incidents of contamination, before the pesticide reaches the drinking water. Here, we report the first direct detection of Gly in tap water with electrochemical s...
Article
Full-text available
Candidemia and invasive candidiasis is a cause of high mortality and morbidity rates among hospitalized patients worldwide. The occurrence of the infections increases due to the complexity of the patients and overuse of the antifungal therapy. The current Candida detection method includes blood culturing which is a lengthy procedure and thus delays...
Presentation
Full-text available
Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively....
Article
Full-text available
Pyocyanin is a toxin produced by Pseudomonas aeruginosa. Here we describe a novel paper-based electrochemical sensor for pyocyanin detection, manufactured with a simple and inexpensive approach based on electrode printing on paper. The resulting sensors constitute an effective electrochemical method to quantify pyocyanin in bacterial cultures witho...
Data
Experimental data. Experimental data on the calibration, sensor comparison and PAO1 growth. (XLSX)
Article
Full-text available
Next-generation genome sequencing machines and Point-of-Care (PoC) in vitro diagnostics devices are precursors of an emerging class of Cyber-Physical Systems (CPS), one that harnesses biomolecular-scale mechanisms to enable novel “wet-technology” applications in medicine, biotechnology, and environmental science. Although many such applications exi...
Article
Full-text available
Although Silicon Nanowire biological Field-Effect Transistors (SiNW-bioFETs) have steadily demonstrated their ability to detect biological markers at ultra-low concentration, they have not yet translated into routine diagnostics applications. One of the challenges inherent to the technology is that it requires an instrumentation capable of recoveri...
Poster
Full-text available
There is an increasing demand for continuous monitoring of substances released in the environment. With today’s portable accurate microelectronics and modern electrochemical detection methods, electrochemical measurements are the ideal candidate for contaminant detection. Currently, the focus is to detect Glyphosate by using voltammetric techniques...
Conference Paper
Full-text available
Scalability is a design principle often valued for the engineering of complex systems. Scalability is the ability of a system to change the current value of one of its specification parameters. Although targeted frameworks are available for the evaluation of scalability for specific digital systems, methodologies enabling scalability analysis of mu...
Article
Full-text available
The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For...
Article
Full-text available
Silicon nanowire (SiNW) field effect transistor based biosensors have already been proven to be a promising tool to detect biomolecules. However, the most commonly used fabrication techniques involve expensive Silicon-On-Insulator (SOI) wafers, E-beam lithography and ion-implantation steps. In the work presented here, a top down approach to fabrica...
Article
Full-text available
Aim: Pseudomonas aeruginosa is a pathogen that is prevalent in serious infections in compromised patients worldwide. A unique virulence factor of this bacterium is the redox-active molecule pyocyanin, which is a potential biomarker for the identification of P. aeruginosa infections. Here we report a direct, selective and rapid detection technique...
Conference Paper
Full-text available
Lab-on-Chip technologies offer great opportunities for the democratization of in-vitro medical diagnostics to the consumer-market. Despite the limitations set by the strict instrumentation and control requirements of certain families of these devices, new solutions are emerging. Smartphones now routinely demonstrate their potential as an interface...
Article
Full-text available
Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real tim...
Chapter
Biological building blocks such as peptides or proteins are able to self-organize into nanostructures with particular properties. There are several possibilities for their use in varying applications such as drug delivery, biosensing, clean-room fabrication methods, and tissue engineering. These biological nanostructures have recently been utilized...
Book
Full-text available
This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an...
Article
Full-text available
The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment of tubing (such as polytetrafluoroethylene tubing) se...
Article
Nanoparticles based on non-pathogenic viruses have opened up a novel sector in nanotechnology. Viral nanoparticles based on plant viruses have clear advantages over any synthetic nanoparticles as they are biocompatible and biodegradable self-assembled and can be produced inexpensively on a large scale. From several such under-development platforms,...
Article
Full-text available
Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented. The positive effect of continuous flow of growth medi...
Conference Paper
Full-text available
In this paper we demonstrate a novel culturing system for brain slices and neuronal cells, which can control the concentration of nutrients and the waste removal from the culture by adjusting the fluid flow within the device. The entire system can be placed in an incubator. The system has been tested successfully with brain slices and PC12 cells. T...
Chapter
Biological building blocks such as peptides or proteins are able to self-organize into nanostructures with particular properties. There are several possibilities for their use in varying applications such as drug delivery, biosensing, clean-room fabrication methods, and tissue engineering. These biological nanostructures have recently been utilized...
Article
Based on a modified version of standard chips for fast differential scanning calorimetry, DSC of liquid samples has been performed at temperature scan rates of up to 1000 �C/s. This paper describes experimental results with the protein lysozyme, bovine serum, and olive oil. The heating and cooling rate of the sensor is measured for temperature scan...
Article
Full-text available
The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, ha...
Article
Full-text available
Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experiments, even when the microfluidic disc is spinning at h...
Article
Full-text available
This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode la...
Chapter
Flow in microsystems behaves very different than flow on the macroscale, i.e., the flow we are used to in our everyday life. The most obvious difference is that the chaotic turbulent flow we most often observe, e.g., rivers flowing or tap water running does not appear on the microscale. Here, the flow is more smooth and most often what we call lami...
Article
This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through E-beam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems and characterisation of the electrodes through cyclic volt...
Article
Full-text available
Down scaling of microfluidic cell culture and detection devices for electrochemical monitoring is mostly focused on the miniaturization of the microfluidic chips which are often designed for specific applications and therefore they lack functional flexibility. We present a compact microfluidic cell culture and electrochemical analysis platform with...
Article
Full-text available
This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity of the membrane provides optimal culturing conditions...
Article
Full-text available
This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cell...
Article
Full-text available
Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The surface analysis of PNT-FA indicated the presence of FA...
Article
Full-text available
In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in cl...
Article
Full-text available
Metaphase chromosome spreading is the most crucial step required for successful karyotyping and FISH analysis. These two techniques are routinely used in cytogenetics to assess the chromosome abnormalities. The spreading process has been studied for years but it is still considered an art more than a science. The chromosome spreading greatly depend...
Conference Paper
Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors (FET) is presented here. The FET is gated by the hybri...
Article
A new method for measuring specific protein concentrations in solutions has been developed. The technique makes use of the Coulter effect for detecting and sizing of micro-scaled objects suspended in a buffer fluid. The method is completely label-free as it is only based on the electrical readout when a suspension of microscopic beads flows over a...
Book
Self-assembled nanostructures based on peptides and proteins have been investigated and presented as biomaterials with an impressive potential for a broad range of applications such as microfabrication, biosensing platforms, drug delivery systems, bioelectronics and tissue reparation. Through self-assembly peptides can give rise to a range of well-...
Article
Full-text available
A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was d...