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Recent studies have linked human gut microbes to obesity and inflammatory bowel disease, but
consistent signals have been difficult to identify. Here we test for indicator taxa and general features
of the microbiota that are generally consistent across studies of obesity and of IBD, focusing on stud-
ies involving high-throughput sequencing of the 16S rRNA gene (which we could process using a
common computational pipeline). We find that IBD has a consistent signature across studies and
allows high classification accuracy of IBD from non-IBD subjects, but that although subjects can
be classified as lean or obese within each individual study with statistically significant accuracy,
consistent with the ability of the microbiota to experimentally transfer this phenotype, signatures
of obesity are not consistent between studies even when the data are analyzed with consistent
methods. The results suggest that correlations between microbes and clinical conditions with differ-
ent effect sizes (e.g. the large effect size of IBD versus the small effect size of obesity) may require
different cohort selection and analysis strategies.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/3.0/).
1. Introduction

Recent advances in our ability to characterize the gut microbi-
ota have led to tremendous interest in identifying organisms asso-
ciated with different human diseases. Two general categories of
disease that have attracted widespread interest are obesity, diabe-
tes and metabolic syndrome, and inflammatory bowel disease
including Crohn’s disease and ulcerative colitis. In both cases, sig-
nificant associations with disease have been reported by different
studies. However, conflicting signals have been seen in the taxa
associated with each disorder (as described in more detail below).

A major issue with comparing the results of different studies of
the gut microbiota is that technical differences, including differ-
ences in DNA extraction protocols, PCR primers, etc. can often out-
weigh biological differences in the samples, especially when
biological effect sizes are small [1]. Even computational differ-
ences, including which taxonomy database is used and which tax-
onomy assignment algorithm is used, can have surprisingly large
effects [2]. These issues can be partially overcome for 16S rRNA
amplicon studies by downloading all the relevant data and analyz-
ing them with consistent methods [1].

Accordingly, for studies of obesity and IBD, we utilized recent
studies identifying microbial association with disease using ampli-
con sequencing, and analyzed the raw sequence data using a
consistent set of methods to test whether these diseases, widely
reported as having associations with the human gut microbiome,
harbored consistent signatures associated with disease.

2. Methods

To test which trends at the broad phylogenetic level or at finer
taxonomic resolution were consistent across 16S amplicon survey
studies, we performed a meta-analysis of high-throughput ampli-
con sequencing studies. We processed demultiplexed data (i.e.
sequences already assigned to their samples by barcode, down-
loaded from each study from the QIIME database, http://www.
microbio.me/qiime/) using QIIME 1.8.0. Mapping files containing
clinical information were also downloaded from the QIIME data-
base. Samples lacking BMI or IBD data were filtered out, and BMI
data were binned into categories of normal or obese based upon
CDC BMI criteria (http://www.cdc.gov/healthyweight/assessing/
bmi/adult_bmi/index.html). The data were clustered at 97% iden-
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Table 2
Studies used for BMI component of meta-analysis.

Study Sequencing
platform

Observations

Zupancic [25] 454 Lack of correlations to BMI,
however, certain taxa were
positively (e.g. B. ovatus, R.
torques) or negatively (e.g. F.
prausnitzii, Clostridium
glycolicum) correlated to
metabolic syndrome traits

Turnbaugh [8] 454 Reduced diversity in obese
microbiome, shift to higher
Firmicutes abundance in obese
subjects

Human Microbiome
Project [44]

454 Modest association of oral
Pseudomonadaceae with BMI,
not associations reported with
gut microbiome

Wu [28] 454 Oscillibacter genus negatively
correlated to BMI,
Veillonellaceae positively
correlated to BMI. Long-term
diet shaped the Prevotella (high
fiber) versus Bacteroides (high
fat) abundances in the subjects

Yatsunenko [45] Illumina
HiSeq

Reported results did not discuss
BMI, although diet-specific
metabolism differences were
detected across populations
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tity against the Greengenes database (August 2013 release)
[3]using UCLUST [4] v1.2.22q, discarding reads that failed to match
the reference sequences, which is referred to as a ‘‘closed refer-
ence’’ approach to clustering. Taxonomies came directly from the
reference database based upon the identity of the reference
sequence clustered against. The 97% OTUs phylogenetic tree sup-
plied with Greengenes was used for UniFrac [5] metrics. OTU tables
were rarefied at 1000 sequences per sample for beta diversity (Uni-
Frac), Kruskal–Wallis tests, and supervised learning. Unrarefied
tables were repeatedly (�10) subsampled at 1000 sequences per
sample for alpha diversity metrics (Observed Species, Shannon,
and Phylogenetic Diversity). Data were not rarefied for taxonomic
abundance comparisons (ratios of Firmicutes:Bacteroidetes), but
low-abundance (<1000 sequences per sample) samples were fil-
tered out to remove samples with questionable PCR or sequencing
yields. The reason for taking the closed-reference approach is due
to the various PCR primers used in different studies, which covered
different regions of the 16S amplicon, so sequences from the same
16S gene would fall into different clusters because of the lack of
overlap in the sequences if data were clustered de novo.

3. Results

3.1. Microbes associated with obesity

Obesity, and its related comorbidities, is a globally prevalent
issue, and is expected to affect over half a billion people by 2030
[6]. Although microbes are by no means the sole factor in the obes-
ity epidemic, alterations in the gut microbiota have been observed
in obese humans [7,8], microbial differences have been reported to
classify people as lean or obese with �90% accuracy [9,10], and in
mouse models the obesity phenotype is partially transmissible via
transmitting the microbes [11,12], establishing that microbes can
contribute to obesity. However, the nature of the microbial
changes associated with obesity is less clear, unlike the more obvi-
ous differences that are present in the case of IBD. Conflicting
reports exist regarding broad, phyla-level shifts in obese human
guts. Many studies show an increased ratio of Firmicutes:Bacteroi-
detes [8,13–19] although some other studies show no trend, or
even the opposite trend [20–24]. However these studies vary in
their methodology for sequencing and quantifying taxa (including
amplicon sequencing, qPCR, rtPCR, PhyloChip, and HITChip). These
Table 1
Reported taxon enrichment and depletion in the obese gut as reported in prior
studies.

Abundance shifts in obese guts Citation

Taxa Increased Decreased

Actinobacteria
Bifidobacterium (genus) + [23]
Bifidobacterium animalis + [46]

Euryarchaeota
Methanobrevibacter smithii + + [22,23]

Firmicutes
Oscillospira (sp) + [24]
Clostridium cluster XIVa + [18]
Roseburia intestinalis + [18,24]
Eubacterium rectale + [15,24]
Faecalibacterium prausnitzii + [16,18]
Lactobacillus (genus) + [13,47]
Lactobacillus casei/paracasei + [46]
Lactobacillus reuteri + [46]

Bacteroidetes
Bacteroides (genus) + [15,22]
Bacteroides vulgates + [13,18]
Bacteroides uniforms + [18]
Alistipes (genus) + [18]
studies have shown significant (and occasionally contradictory)
enrichment for more specific taxa (Table 1). The sequencing data
utilized in this study are the subset of studies with high-through-
put amplicon sequencing data, and these are summarized in
Table 2.

The relative abundance of dominant gut taxa in each study is
shown in Fig. 1. Variation on a per-study basis is considerable even
at the phylum level. To address the question of whether the Firmi-
cutes:Bacteroidetes ratio increase is significantly associated with
obesity, we compared the means of the ratios for subjects with
normal versus obese BMI (BMI category is determined using crite-
ria from the Centers for Disease Control). These ratios are shown in
Fig. 2.

In all studies except one [25], there is a trend showing an
increase in the ratio of Firmicutes:Bacteroidetes in obese over
lean subjects. However, no significant differences overall between
obese and lean categories were found using Wilcoxon rank-sum
tests in R 3.1.0 [26], nor was the difference in Firmicutes:Bacteroi-
detes ratio statistically significant using Fisher’s Method for com-
bining multiple independent tests of a hypothesis [27]. Because
several studies [8,25,28] used the same PCR primers yet had oppo-
site trends between lean and obese subjects in their respective
Fig. 1. Relative abundance of phylum-level gut microbial taxa. Studies listed below
are Zupancic [25], Wu [28], Human microbiome project [44], Turnbaugh [8], and
Yatsunenko [45].



Fig. 2. Ratios of Firmicutes:Bacteroidetes in normal versus obese BMI subjects. Means of ratios for each study/BMI category are shown. Error bars are standard error of the
mean. The Turnbaugh study includes a number of samples with extremely low Bacteroidetes, leading to large standard error values.

Study Observed species plot for normal and obese individuals p-value 

Zupancic 0.015 

Wu 0.95 

HMP 0.955 

Turnbaugh 0.812 

Yatsunenko 0.848 

Fig. 3. Alpha diversity (observed species) across studies. Metric is observed species (counts of unique OTUs). Sequence depth is 1000 sequences per sample, and subsampling
was performed 10 times. P-values were calculated by using a Monte Carlo simulation with 999 permutations.
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populations, primer bias cannot drive the differences in observed
Firmicutes:Bacteroidetes ratio or in the overall taxa summaries in
Fig. 1. Differences in sample handling and extraction, or differences
among the populations studied, could account for the contradic-
tory observations. In any case, the ratio changes between normal
and obese individuals are not statistically significant overall and



Study Observed species plot for normal and obese individuals p-value 

Zupancic 0.054 

Wu 0.575 

HMP 0.905 

Turnbaugh 0.750 

Yatsunenko 0.836 

Fig. 4. Alpha diversity (Shannon) across studies. Metric is Shannon (abundance and evenness). Sequence depth is 1000 sequences per sample, and subsampling was
performed 10 times. P-values were calculated by using a Monte Carlo simulation with 999 permutations.

4226 W.A. Walters et al. / FEBS Letters 588 (2014) 4223–4233
therefore should not be considered a general feature distinguishing
normal and obese human gut microbiota across populations.

Obese individuals have also been reported to have less diverse
gut microbiota than normal weight individuals [8,10]. Differences
are shown in Figs. 3 and 4 below for observed species (count of
unique species) and the Shannon metric [29], a measure of species
abundance and evenness, for each of the studies.

As Figs. 3 and 4 show, there is no consistent alpha diversity
trend across 16S amplicon surveys of human BMI, and only one
study showed significant differences with the observed species
metric. In addition to the OTU-level alpha diversity calculations,
significance was tested with taxonomic levels from phylum to spe-
cies across each study with the Shannon and observed species
metric. Only the phylum level Wu et al. data have a significant dif-
ference (P-value 0.039) with the Shannon metric. Turnbaugh et al.
[8] detected increased phylogenetic diversity (QIIME’s PD_whole_
tree metric) in lean samples versus obese samples. The closed-
reference data generated during this analysis did not yield
significantly different alpha diversity with the phylogenetic diver-
sity metric, although the Turnbaugh data processed in a de novo
fashion (pick_otus script with default settings, using UCLUST
v1.2.22q, followed by alignment of representative sequences with
PyNast 1.2, filtering, and phylogenetic tree construction with Fast-
Tree 2.1.3, all using default QIIME parameters) shows a significant
difference in diversity, replicating the observation of Turnbaugh
et al. (2009), as shown in Fig. 5. The observed species and Shannon
metric did not yield significant differences with the de novo pro-
cessed data (not shown).

These results indicate that the overall diversity of the commu-
nity, at least by 16S amplicon surveys, does not generally distin-
guish communities when closed-reference OTU picking is
employed (requiring sequences to match what is already in the
sequence database), although the difference seen in the de novo
approach could indicate that novel taxa, not represented in the ref-
erence database, may differentiate these communities. Addition-
ally, overall genomic content, as observed by Le Chatelier et al.
[10], but not by Turnbaugh et al. [8], could still be more diverse
in lean communities due to genomic variation that is not detected
using the 16S amplicon survey approach.

Clustering of the data showed no trend based upon BMI (the
data clustered strongly by study, but no trends were observed
within each study according to BMI). The PCoA plot (using
unweighted UniFrac distances) in Fig. 6 shows clustering colored
by study and by normal/obese BMI categories (BMI categories
not significantly different via PERMANOVA test). These results
indicate that per-study effects are much larger than the biological
effects separating lean from obese individuals, and point to a need
to control for variation among studies.

Next, differences between taxa (examining all taxonomic levels
from phylum down to species) within the studies were tested



Clustering 
Method 

Phylogenetic Diversity (PD_whole_tree) p-value 

Closed-
reference

0.282 

0.016 De novo

Fig. 5. Alpha diversity (PD) for Turnbaugh et al. data [8] across clustering methods.
Metric is phylogenetic diversity (a measure of branch length of the phylogenetic
tree occupied by the sequences present in the samples). Sequence depth is 1000
sequences per sample, and subsampling was performed 10 times. P-values were
calculated by using a Monte Carlo simulation with 999 permutations.

Fig. 6. Clustering of BMI samples with unweighted UniFrac. Shape/color: study/BMI
category; purple square: Zupancic normal; brown triangle: Zupancic obese; orange
square: Turnbaugh normal; pink triangle: Turnbaugh obese; red circle: Wu normal;
yellow diamond: Wu obese; dark blue circle: HMP normal; light blue triangle: HMP
obese; green triangle: Yatsunenko normal; grey circle: Yatsunenko obese.
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using a Kruskal–Wallis test. These are shown in Table 3. The deple-
tion of Faecalibacterium prausnitzii in the gut microbiota of obese
individuals is consistent with prior studies. The species of
Megasphaera that is increased in obese subjects is unknown, but
it may fill the same niche in the obese gut as the short-chain fatty
acid producers Eubacterium and Roseburia (fermenting excess car-
bohydrates into fatty acids absorbed by the host) [30] that were
previously observed to be increased in obese human fecal microbi-
ota (Table 1). There is a slight, but significant depletion of an
unclassified OTU (Clostridiaceae family) for obese subjects in the
Yatsunenko study. The nearest NCBI blast matches of cultured taxa
include members of Clostridium cluster XI, which do not have uni-
fied metabolic properties. The failure to replicate the prior results
may be due to actual population differences or alternative detec-
tion/quantification methods (e.g. amplicon sequencing versus
qPCR) yielding different results.

Application of supervised learning (a form of machine learning
where each sample is placed into a category that is used to create a
training data set) with the random forest algorithm [31], i.e. deci-
sion trees based upon features, such as abundance of particular
taxa, were used to build a model for placement of samples into cat-
egories for each study (across multiple levels of taxa, from phylum
to the OTU level) for the normal and obese BMI categories. These
had limited predictive power over random guessing (data not
shown) using the QIIME supervised_learning.py script with default
settings. Previous work [9] showed that one was able to classify the
samples from the Turnbaugh dataset [8] into lean or obese subjects
with the highest accuracies when clustering was done at lower
thresholds than the standard 97% OTU threshold (the optimal
threshold was �82%). To replicate this approach, we clustered
the demultiplexed sequence data using the pick_otus.py script
utilizing UCLUST [4] v1.2.22q as the algorithm, and specified an
identity of clustering of 0.600–0.995 in 0.05% increments, which
is a finer gradation but includes the original percent identities uti-
lized by Knights [9]. These analyses revealed that the current
implementation of supervised learning in QIIME has an important
limitation for datasets which have categories whose composition
are highly similar, such as lean and obese humans: the classifier
is quite sensitive to disparities in the sample sizes, as shown below.
The Turnbaugh data were evenly sampled at 1000 sequences per
sample, and processed with QIIME’s supervised_learning.py
(which uses random forests as its method) using 10� cross-fold
validation for error estimation. Predicted error ratios are shown
below in Fig. 7, which show far better results for an even subset
of the data matching the samples utilized originally by Knights
(61 lean samples and 61 obese samples, identified in Appendix
A), and marginally better results for a random subset (30 lean
versus 30 obese samples randomly chosen 10� for each percent
identity, with the average error ratio plotted) versus the entirety
of the data (61 lean samples versus 196 obese samples).

To handle uneven sample abundances with data that are highly
similar, such as in the obese versus lean human fecal 16S sequence,
and still generate models that can accurate classify samples into
categories, we used the receiver operator characteristic (ROC)
curve approach. This approach uses an area under the curve
(AUC) calculation to optimize feature (in this case OTU) selection,
which maximizes sensitivity and specificity for categorization of
samples into lean and obese groups. The commands are listed in
Appendix B (the R scripts are provided as Supplementary files).
In contrast to the results in Fig. 7, when ROC-based optimization
was used, the entire Turnbaugh dataset can be classified with over
80% accuracy at a range of OTU thresholds, as shown in Fig. 8. A
ROC AUC value of 0.5 is no better than random guess, and 1.0 cor-
responds to perfect sensitivity and specificity. The OTU threshold
identities that resulted in the best classification ranged from
77.5% to 98.0%.

Application of the ROC-based supervised learning approach to
the closed-reference 97% OTUs across each BMI study resulted in
classification that was better than random, although only



Table 3
Significant taxa associated with BMI via Kruskal–Wallis test. FDR multiple comparison correction used. Only taxa with at least 0.5% relative abundance in at least one of the BMI
categories were included.

Study Taxa Obese mean Normal mean P-value

Zupancic Faecalibacterium prausnitzii 0.031914894 0.0447 0.023
Turnbaugh Megasphaera (sp) 0.006372549 3.13 � 10�5 0.004
Yatsunenko Clostridiaceae 0.00214 0.005011236 0.022

Table 4
Receiver operator characteristic curve values for 97% closed-reference OTUs by study.
Values listed are average values of 5� repeated ROC analyses, using random forest
method, with 10-fold cross validation.

Study ROC AUC values Standard deviation

Turnbaugh 0.7250379 0.1488683
Amish 0.6077041 0.1103585
HMP 0.6656818 0.1295004
Wu 0.8623333 0.1638126
Yatsunenko 0.6259477 0.1033857
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Fig. 7. Comparison of supervised learning error ratios to clustering identity of data.
Samples matching those used in Knights et al. [9] replicated the improved
classifications relative to random guessing (value of 1) for lean and obese subjects
in the Turnbaugh [8] study, and are shown as the red line. The average error ratio
for a random subsample of 30 obese and lean samples (10� sample at each percent
identity, average ratio is shown) is depicted in blue. The purple line shows the
classification error ratio when all samples (61 lean versus 196 obese samples),
which is essentially no better than random guess for any clustering identity. The
sequences were clustered using a de novo approach for each percent identity listed.
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marginally in some cases. The ROC values are listed in Table 4, and
the confusion matrices for each study are shown in Table S1.

Taken together, examination of the broad taxonomic shifts (e.g.
the Firmicutes:Bacteroidetes ratios), alpha diversity of communi-
ties, clustering of obese versus lean individuals, and shifts of taxa
within communities, suggests that there are only weak and, for
the most part, non-significant associations of particular taxa or
overall diversity with the obese human gut that hold true across
different studies. However, using supervised learning with receiver
operator curves to maximize sensitivity and specificity, one can
categorize subjects according to lean and obese states with in some
cases considerable accuracy, indicating that there are features
present that discriminate between the lean and obese human fecal
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each clustering identity was calculated by the averaging the 5� repeated (with 10-fold c
guess, while 1.0 indicates perfect sensitivity and specificity. The sequences were cluster
microbiota within each study but that are not consistent across dif-
ferent studies. As these features are not detected by other signifi-
cance tests, this indicates that numerous small differences are
present in the communities, rather than large differences in a
few microbial taxa.

The methodologies for sample handling, extraction, PCR ampli-
fication, and sequencing technologies could all contribute to the
differences observed between studies (Figs. 1 and 2). However,
any prior observed differences due to algorithms or reference dat-
abases have been eliminated in this analysis. It is clear that the
obesity phenotype is transmissible via microbes [12,32] and hence
there exist real differences between these microbial communities
that confer physiologically relevant effects. The actual differences,
if detectable with 16S surveys, are likely to be found with indicator
taxa, such as F. prausnitzii, or alternatively, by measurements of
minute changes over the community.

3.2. Microbes associated with IBD

Inflammatory bowel disease (IBD), which includes Crohn’s
Disease and Ulcerative Colitis [33], has clearer reported taxonomic
shifts than obesity, including a depletion of Firmicutes and
Bacteroides and enrichment in Proteobacteria and Actinobacteria
0.8 0.85 0.9 0.95 1 

ovo Clustered Sequences

haracterstic Curve 
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jects. The average ROC area under the curve value (using random forest method) for
ross-validation) optimized ROC values. A 0.5 value indicates no better than random
ed using a de novo approach for each percent identity listed.



Table 5
Studies used for IBD component of meta-analysis.

Study Sequencing platform Observations

Papa [37] 454 The authors observed decreased diversity in IBD patients, depletion in Firmicutes, increased
Proteobacteria and Actinobacteria in IBD subjects

Momozawa [38] 454 The purpose of study was to examine the differences between the microbiome of intestinal biopsies and
stool and how extraction techniques altered the microbiome. A subset of subjects, with IBD, were present
and used for this meta-analysis, but no conclusions regarding IBD itself were reported in this study

Morgan [39] 454 The authors observed decreased Firmicutes abundance and increase Proteobacteria abundance in IBD
subjects

Willing [40] 454 The authors found differences among categories of IBD (e.g. ulcerative colitis and ileal Crohn’s disease)
versus healthy controls. The smallest differences were observed in ulcerative colitis, and the largest in
small intestinal forms of IBD

Lamendella (unpublished) Illumina MiSeq This study is a Swedish cohort, with longitudinal stool samples along with flare-up and remission data
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[34]. Epithelial-associated microbes of the small and large intestine
are different than fecal microbiota [35,36], and are more likely to
be key players in the etiology of IBD because of their more direct
interaction with the affected tissues and the mucosal immune sys-
tem. Despite the disparity in the fecal and epithelial-associated
microbiota, detectable changes in fecal microbiota are still present
in individuals with IBD [37]. This raises two clinically important
questions: can particular forms of IBD be diagnosed from fecal
samples alone (and avoid invasive medical procedures), and are
such potential diagnostics consistent across populations studied
(i.e., what dataset, if any, can be used to test an incoming sample
from a random individual and have reasonably high accuracy in
predicting if the subject has a particular form of IBD)? To address
these questions, we examined studies of IBD based on human fecal
16S high-throughput sequencing surveys [37–40] plus a study of a
Swedish cohort led by Gina Lamendella that is currently unpub-
lished (summarized in Table 5). These data were processed with
QIIME 1.8.0, using the same software packages/settings with the
closed-reference approach described in Methods above, except
for the even sampling depth used for beta diversity, Kruskal–Wallis
tests, and supervised learning, which was 1004 sequences per
sample.

These resulting taxonomic distributions for the three variants
of IBD (UC = ulcerative colitis, CCD = colonic Crohn’s disease,
ICD = ileal Crohn’s disease) and healthy controls (HC) are shown
in Fig. 9, and match the expected enrichment (Actinobacteria, Pro-
teobacteria) and depletion (Bacteroidetes, Firmicutes) previously
observed.

Clustering of healthy controls versus IBD samples are signifi-
cantly different with a P-value < 0.050 with PERMANOVA tests of
unweighted UniFrac distances. These PCoA plots are shown in
Fig. 10. A study effect is also apparent, which is seen in other PCoA
Fig. 9. Phylum-level taxa plots for IBD subjects versus healthy controls Seven most a
Crohn’s disease, ICD = ileal Crohn’s disease. Error bars indicate standard error of the me
axes (not shown). The small intestinal Crohn’s disease samples
clustered the most distinctly from the healthy controls, and there
was substantially more overlap between healthy subjects and
ulcerative colitis samples, which again reflects previous observa-
tions including a recent large cross-cohort analysis [41].

Next, the significant taxa associated with IBD states were tested
using the Kruskal–Wallis test. These taxa are listed in Table 6.
These taxa appear generally consistent with prior observations of
enrichment, although there is a interesting result of increased Bifi-
dobacterium adolescentis and Lactobacillus in ICD and CCD samples,
as these taxa have been used to treat chemically induced colitis
[42]. Most of the prior studies recorded decreases in the overall
abundance of the Bacteroidetes phylum, which was observed in
this analysis as well (Fig. 9), although these were not detected as
significantly different at the phylum level with Kruskal–Wallis
tests.

Mycobacterium avium subspecies paratuberculosis has been
implicated in IBD [43]. Two subjects in this analysis had detectable
Mycobacterium sequences, but these were exceedingly rare (19 out
of 496038 sequences in a subject with ileal Crohn’s disease, and 1
out of 252119 sequences in a subject with ulcerative colitis). The
PCR primers used are a perfect match for M. avium, and hence
should have amplified this taxon. If Mycobacterium species are
present in these IBD patients, they are not detectable in the feces
of the subjects. Case studies of fecal microbiota transplant treat-
ment of recalcitrant IBD show a sizable success rate [46], indicating
a causal role for gut microbiota in causing or exacerbating the
symptoms of IBD. The microbes may be shifted to a state of dysbi-
osis by various factors (e.g. antibiotic usage or host immune sys-
tem) in the IBD subjects. Depletion of certain commensal taxa
(Akkermansia muciniphila, F. prausnitzii, Bacteroides uniforms) in
IBD (trend is different according to disease type) could be respon-
bundant phyla shown. HC = healthy controls, UC = ulcerative colitis, CCD = colonic
an.
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Fig. 10. PCoA plots of healthy controls versus subjects with IBD. Distances were calculated with unweighted UniFrac. (A) HC vs UC samples, (B) HC vs CCD samples, (C) HC vs
ICD samples. Distances between healthy controls and all IBD categories are significantly different (P-value < 0.050 with PERMANOVA tests (999 permutations). Data were
evenly sampled at 1004 sequences per sample.
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sible for causing inappropriate immune responses in the host
[47–49], as well as opening up niches for occupation by invasive
or pro-inflammatory species. Increased Proteobacteria and Fuso-
bacteria (and a related decrease of less oxygen tolerate taxa, such
as many of the Firmicutes) could be due to increased available oxy-
gen in the intestinal lumen of subjects with IBD. These increased
oxygen-tolerant taxa have the potential to produce pro-inflamma-
tory responses in the host through flagellin or lipopolysaccharides
[50,51]. Bifidobacterium may be increased in abundance due to oxy-
gen tolerance relative to other taxa [52]. Previous proteomic data
suggests that certain opportunistic Bacteroides sp. pathogens are
increased in IBD subjects, at the expense of Prevotella species,
which could explain the shifts within Bacteroidetes in our observa-
tions [53].

Alpha diversity between IBD categories was also consistent
with prior observations (i.e. lower in subjects with IBD relative to
healthy controls), and is shown in Fig. 11.

3.3. Predicted disease states via fecal sequencing

The question of whether the combined IBD microbiota data can
provide an accurate training dataset for predicting disease states
was tested using supervised learning (with the same ROC based
approach described above for BMI samples). All levels of taxonomy
(phylum to species) were tested, with 10-fold cross validation for
error rate prediction. The species level table performed best for
almost all comparisons between healthy controls and individual
disease states and all disease states combined, which are shown
in Table 7, with one exception-the family level had a slightly higher
AUC ROC value (only 0.00326 higher) for healthy controls versus
ICD samples, but this is much smaller than the accuracy that would
be lost for each of the other categories when using the family level
versus the species level. When all four classes of samples are com-
bined, the supervised learning accuracy drops (68.6%). The confu-
sion matrix for the combined four class data is shown in Table S2.

These tests indicate that the combined inflammatory bowel dis-
ease sequence sets are accurate at placing individuals into an IBD/
healthy category. These tests could therefore serve as a comple-
ment to other, non-invasive diagnoses of symptoms (serological
markers, bowel movement frequency, bloody diarrhea, rectal
lesions, and a variety of non-gastrointestinal tract symptoms,
which by themselves also suffer from a lack of sensitivity/specific-
ity in diagnoses) and minimize risks (e.g. nosocomial infections) to
patients. The AUC ROC approach requires a two class comparison,
so applications of this would be most optimal for an initial diagno-
sis to determine if the subject likely has IBD or not, or to comple-
ment other diagnostics that suggest a particular IBD type.

4. Conclusions

Our meta-analyses show that studies of inflammatory bowel
disease reveal clear, consistent differences between healthy and



Table 6
Taxa associated with IBD. + or � indicates that taxa were significantly enriched or
depleted relative to healthy controls with a Kruskal–Wallis test and Bonferroni
multiple comparisons correction. Only taxa that were present in at least 0.5% of one of
the categories (HC, UC, CCD, or ICD) were included. Data were rarefied to 1004
sequences per sample. The ‘Matches Study’’ column includes a reference with
consistent observations to the abundance results reported in this study.

Taxonomy UC CCD ICD Matches study

Actinobacteria + + [34,37,40]
Bifidobacterium (sp) + + [40]
Bifidobacterium adolescentis + +

Bacteroidetes
Bacteroides eggerthii �
Parabacteroides distasonis �
Parabacteroides (sp) � �
Bacteroides uniformis �
Bacteroides (sp) + +
Paraprevotella (sp) +
Prevotella (sp) � � � [40]
Prevotella copri � �
Rikenellaceae �
Barnesiellaceae (unknown genus) �

Firmicutes � [37,39]
Faecalibacterium prausnitzii � + � [34,40]
Oscillospira (sp) � �
Clostridiales (unknown family) � [37,41]
Clostridium (sp) � � �
Roseburia (sp) � [39,40]
Lachnospiraceae (unknown genus) � [34]
Coprococcus (sp) � [37]
Ruminococcus gnavus +
Ruminococcus (sp) � � [37,39]
Lachnospira (sp) � [34,37]
Blautia (sp) +
Blautia producta +
Dialister (sp) +
Veillonella dispar + [40]
Phascolarctobacterium (sp) � � [39]
Lactobacillus (sp) + [37,40]

Fusobacteria + [41]
Fusobacterium (sp) + [41]

Gamma-Proteobacteria + [34,37,39–41]
Enterobacteriaceae + [37,39–41]

Verrucomicrobia � �
Akkermansia muciniphila �

Table 7
Predicting IBD state via supervised learning. Values listed are average values of 5�
repeated ROC analyses, using random forest method, with 10-fold cross validation.
Healthy controls versus each individual category of disease are shown as well as
healthy controls versus all IBD categories combined. A ROC AUC value of 0.5 is no
better than random guess, whereas 1.0 indicates perfect specificity and sensitivity.

Categories compared ROC AUC
value

ROC AUC
stdev

Healthy controls versus ulcerative colitis 0.92258803 0.04239816
Healthy controls versus colonic Crohn’s

disease
0.87879176 0.07375804

Healthy controls versus ileal Crohn’s disease 0.96996245 0.0378
Healthy controls versus all IBD categories 0.92404109 0.04297096

Fig. 11. Alpha diversity for IBD subjects and healthy controls. Y-axis indicates
observed species value. Healthy control samples are significantly different from all
inflammatory bowel disease categories with a P-value of <0.05 (Monte Carlo
permutation test, permutations = 999). The samples were repeatedly sampled
(10�) at 1000 sequences/sample.
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diseased individuals that replicate across studies and where the
biological effects between clinical states exceed per-study effects.
In contrast, the differences between obese and lean individuals,
even though these differences can be transmitted to recipient
gnotobiotic mice [32], are much less consistent. The ratio of
Firmicutes:Bacteroidetes is not a consistent feature distinguishing
lean from obese human microbiota generally, and previous studies
did not find this pattern consistently when comparing human
obese and lean fecal 16S data. However, in these previous studies,
assessment of taxon abundance was not performed consistently
with respect the clustering and taxonomic assignment of
sequences between studies. The approach to clustering and quality
control (i.e., ‘‘closed reference’’) used here is a conservative one, as
it limits the potential for sequencing noise and chimeras to
interfere with the results at the cost of perhaps discarding real,
novel reads. However, as human-associated microbiota have been
sequenced with considerable coverage, and the most up to date
Greengenes reference database was used, the potential for large
numbers of novel reads being discarded is minimal. As shown in
the gnotobiotic mouse transplant systems, microbes can have an
impact on obesity, so the limited significant differences observed
in the taxa (Kruskal–Wallis tests) are surprising. It is possible that
the differences between the lean and obese microbiota are present
in the pan-genome of the microbes (not detectable by amplicon
sequencing), that low-abundance taxa in the fecal samples are col-
onizing other locations in the colon (e.g. the proximal colon or the
cecum) of the recipient animals and driving the differences
observed in the hosts’ physiology, and hence are not apparent in
the fecal communities of the human subjects being studied, or that
the differences may be multiple, small shifts in the community that
escape detection with significance tests, but when combined can
differentiate lean and obese communities with an approach like
supervised learning.

To determine whether a consistent pattern was observable
across multiple studies with IBD and normal versus obese individ-
uals, all available datasets were reprocessed using the latest refer-
ence 16S rRNA gene database. For clinical utility, such as
evaluating a particular form of Crohn’s disease, a taxonomic signa-
ture needs to be consistent across populations. In the BMI data
analysis, there was no significant signal in the Firmicutes:Bacteroi-
detes ratio or in overall diversity of the samples to differentiate
obese and normal weight subjects. Indicator taxa were found
within studies to be significant, although these were not found to
be consistently significant across studies (a trait also frequently
seen with host genetic markers in GWAS). The taxa found to be sig-
nificantly different in the BMI analyses may be linked to increased
inflammation in individuals with high BMI (decreased F. pra-
usnitzii) or increased extraction of energy from dietary polysaccha-
rides (Megasphaera sp). A large number of significant shifts were
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detected in IBD subjects, which may be related to a dysregulated
immune system or altered environment (luminal oxygen content
or antibiotics). Judicious use of supervised learning, optimized to
maximize sensitivity and minimize noise, can be used to distin-
guish lean and obese individuals with some degree of accuracy.
The inflammatory bowel disease studies showed clearer patterns:
many taxa are significantly enriched or depleted in subjects with
IBD, significantly reduced overall diversity is present in subjects
with inflammatory bowel disease, and significant differences are
detecting when clustering IBD samples and healthy controls. Using
the combined IBD data as a training set, a reasonably accurate
assignment of subjects between healthy and particular IBD state
is possible, but would need to complement other diagnostics in a
clinical setting.
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