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Abstract — The research presented in this paper offers a way 

of supporting the security currently in place in critical 

infrastructures by using behavioural observation and big data 

analysis techniques to add to the Defence in Depth (DiD). As this 

work demonstrates, applying behavioural observation to critical 

infrastructure protection has effective results. Our design for 

Behavioural Observation for Critical Infrastructure Security 

Support (BOCISS) processes simulated critical infrastructure 

data to detect anomalies which constitute threats to the system. 

This is achieved using feature extraction and data classification. 

The data is provided by the development of a nuclear power 

plant simulation using Siemens Tecnomatix Plant Simulator and 

the programming language SimTalk. Using this simulation, 

extensive realistic data sets are constructed and collected, when 

the system is functioning as normal and during a cyber-attack 

scenario. The big data analysis techniques, classification results 

and an assessment of the outcomes is presented. 

Index Terms— Critical Infrastructure, Big Data, Behavioural 
Observation, Simulation, Data Classification 

1.  INTRODUCTION 

Critical infrastructures include sectors such as energy 
resources, finance, food and water distribution, health, 
manufacturing and e-government services [1]. Their service 
provision is often dispersed over large geographic areas [2]. In 
recent years, critical infrastructures have become increasingly 
dependent on ICT to facilitate communication. Consequently, 
this makes these systems more vulnerable and increases the 
threat of cyber-attack from different sources [3]. Our research, 
to date, involves the use of Behavioural Observation for 
Critical Infrastructure Security Support (BOCISS) [4]. Our 
observer system monitors an infrastructure’s behaviour and 
detects abnormalities, which are the result of a cyber-attack 
taking place. 

The system uses mathematical classification techniques to 
evaluate datasets and detect changes in behavioural patterns. 
By observing subtle changes in system behaviours, an 
additional level of support for critical infrastructure security is 
provided. The results achieved during the data classification 
process are encouraging. The data used in the evaluation of 
our system is produced by a simulation of a critical 

infrastructure. BOCISS analyses the data produced and 
identifies the behavioural patterns. 

In this paper, an overview of the BOCISS system design, 
big data classification techniques and the data processing 
methodology is presented. The results are presented in two 
stages. Firstly, a smaller feature set and data sample provides 
an insight into the classification performance. The second part 
of the approach involves a larger dataset with an increase in 
the number of features used. A discussion on the sets of 
results is also provided. 

2. DATA CONSTRUCTION 

BOCISS requires realistic critical infrastructure data. This is 
provided by the development of a nuclear power plant 
simulation using the Siemens Tecnomatix Plant Simulator and 
the programming language SimTalk. Using this simulation, 
realistic data is constructed and collected, when both 
functioning as normal and during a cyber-attack scenario. 
Figure 1 displays an overview of the whole system which is 
known as a pressurised water nuclear reactor [5]. 

 

Fig 1. Infrastructure Simulation 

Each of the mechanisms has a graphical icon to represent 
its function more clearly. They can also be expanded to detail 
their interconnectivity and the various components, which 
allow the system to operate. Each of the mechanisms are 
explained. 
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• The Water Source: The production of water is supplied by 
three sources including two infinite sources, representing 
a lake or ocean, and one water tower. The water requires 
filtering. It is, therefore, supplied to one large pipe, which 
is then sifted for impurities before being pumped into the 
Water Tanks. 

• The Two Water Tanks: Water produced by the water 
source is collected in two tanks. This effectively acts as a 
buffer and controls the water flow in the system. Two 
pumps are used to send water from the tanks to the 
Condenser. 

• The Condenser: One of the most complex mechanisms in 
the simulation is the condenser which consists of an 
interaction between two system loops. In the condenser, 
steam is cooled and converted to water and the water is 
subsequently sent to the reactor to be heated.  

• The Reactor: The intake of water is combined with heat 
from a nuclear reaction to produce steam in the reactor 
mechanism. The steam is sent to the generator mechanism 
via two steam pipes.  

• The Generator: Steam sent from the reactor rotates a 
turbine. Each unit of steam turns the turbine once and 
energy is produced. Excess steam is directed via a 
network of pipes to the condenser system for cooling. 

• Acid Tank and Emergency Coolant: In case of system 
failure, two storage tanks, one containing Boronic Acid 
and one containing emergency coolant, are in place. The 
emergency coolant is required in the case of a failure in 
the provision of water to the reactor. The Acid is needed 
for emergency situations such as core overload as a result 
of cascading system failure. 

Each component in the simulation has a corresponding 
observer, which extracts physical information about behaviour 
and constructs the data set required for the BOCISS 
evaluation. In order to have successful data classification, both 
normal behaviour data and attack data is needed and 
constructed in our simulation. The normal data set was 
constructed by running the simulation for a period of two 
simulated days with active sampling conducted at 4Hz (which 
is every 0.25 of a second). Therefore, the dataset generated 
consists of 732,000 records of data for each component. 

3. DATA ANALYSIS APPROACH 

The constructed data set is processed by our system which 
uses various mechanisms and data stores. (A full detailed 
account of the system can be found in [4]). The system 
connects directly to the network and registers itself and begins 
data collection in blocks. 

A. System Design 

Extracted network data is converted in the data manager 
and, depending on the mode of operation, is directed to the 
data store or for feature extraction. Features, initially sent to a 
temporary data store are used to create feature vectors and 
train classifiers to identify system behaviours. A system 

control governs the operations and interprets the classification 
results for the UI. The system design is displayed in Figure 2. 

 

Fig 2. BOCISS System Overview 

The use of a data manager enables BOCISS to act as a 
plug-in service. The data manager uses a data acquisition 
application (DAQ) and interprets the protocol-formatted data 
extracted from the network. A data acquisition application is 
constructed from a hardware component complete with a 
piece of software, which extracts data from a source. Two 
examples of protocol data formats include DNP3 and Modbus. 
Both are used if the critical infrastructure uses a SCADA 
system [6], [7]. The data manager converts it to raw data using 
the data acquisition application and sends it either to a 
database, which is able to store both normal and threat 
behaviour separately, or to a feature extraction process. 

 

B. Feature Extraction 

Features are aspects of the data, which allow for a 
representation of overall system behaviour [8]. In the training 
mode, features are extracted to form feature vectors for both 
normal and abnormal behaviour. The feature vectors are then 
stored in a temporary feature store until the data processing is 
complete. Once all the required data has been processed, a 
signal is sent to inform the temporary feature store to transfer 
its contents to the data classifiers. The features selected are 
unique for each critical infrastructure but they could include, 
for example, aspects such as: overall water volumes; steam 
output; energy creation; water tank levels or speed of water 
flow. They are constructed by cataloguing the data into 
designated representations of the dataset. 

C. Classifiers 

Feature vectors are constructed from the extracted features. 
The evaluation process uses supervised learning, by 
employing the feature vectors. The approach involves specific 
data classification techniques including: Uncorrelated Normal 
Density based Classifier (UDC), Quadratic Discriminant 
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Classifier (QDC), Linear Discriminant Classifier (LDC), 
Decision Tree (TREEC), and Parzen Classifier (PARZENC). 

Linear Discriminant Classifier (LDC), is a technique which 
works by sorting or dividing data into groups based on 
characteristics to create a classification [9]. A discriminant 
function is obtained by monotonic transformation of posterior 
probabilities [10]. In other words, it performs an ordered 
transformation of unknown quantities, which are separated by 
a linear vector. Quadratic Discriminant Classifier (QDC) 
works in a similar way to LDC by dividing the data into 
groups based on given characteristics. However, by using 
QDC the data is divided using a quadratic surface rather than 
a one-dimensional one. QDC makes no assumptions that 
covariance are alike. In other words, it assumes that the 
changing of two random variables will not be the same [11]. 

Uncorrelated Normal Density based Classifier (UDC) also 
operates comparably to the QDC classifier but computation of 
a quadratic classifier, between the classes in the dataset, is 
done by assuming normal densities with uncorrelated features. 
Quadratic Bayes takes decisions by assuming different normal 
distribution of data [12]. LDC, QDC and UDC are density 
based classifiers. Decision Tree (TREEC) is a classifier which 
uses decision rules to divide the classes of data [10]. It 
operates by using criterion functions (the sum of squared 
errors), stopping rules (criteria for appropriate number of 
splits in a decision tree) or pruning techniques (the removal of 
unwanted tree sections). Using decision tree is a particularly 
ideal choice of classifier because it is well-known as one of 
the most effective supervised classification techniques [11]. 
Parzen Classifier (PARZENC) functions by including aspects 
of the training data when the classifier is built up. It is a non-
linear classifier and it has the benefit that its parameters can 
be user supplied or optimised [10], [11]. 

4. INITIAL CLASSIFICATION 

Using the above classifiers, the goal of the initial classification 
process is to demonstrate the techniques for abnormal 
behaviour detection using five data classifiers. The features 
selected for input into the data classification algorithms are 
based on an evaluation of which extracted characteristics 
provide a true representation of our simulation’s behaviour. 
The features used, therefore, include aspects such as regular 
occurrences in system behaviour, and traits from individual 
components. 

The features selected represent characteristics of system 
behaviour [13]. The features include, for example, 128 
mechanism component features and 36 system component 
features. The system components are comprised of pipes or 
cables, which link the mechanisms together. The features are 
constructed by taking the maximum, minimum, mean and 
median values every hour from the data which is sampled at 
4Hz (4 times every second) for a 24 hour simulation.  

Each of the mechanism components provide a value 
produced by sampling the level of water, steam or energy 
passing through. This is also the case for the system 
components. 32 mechanism components provide 4 features 
each to form 128 features. The nine system components also 

provide 4 features each to produce 36 features. Using the 
features extracted from the two datasets for normal and attack 
behaviour records are created. These initial records of data are 
used for testing the classifiers’ ability to identify normal 
behaviour and, subsequently, recognise when normal 
behaviour is not occurring. In total, 12 feature vectors were 
used to train the classifiers consisting of 6 for normal 
behaviour and 6 for abnormal behaviour. 

Minimum, maximum, mean and median values were 
selected to form our initial feature vector records because each 
provides an ideal representation of the system behaviour. For 
example, when observing the minimum and maximum levels 
of water in a pipe or water tank, the constraints of normal 
behaviour can be specified. If the levels recorded are lower or 
higher than the expected minimum or maximum values then 
the system is not behaving as it should. In the same way, 
observing the mean levels of water steam or energy allows us 
to identify the normal behaviour constraints of selected critical 
components. Table 1 presents a sample of the initial record set, 
which consists of an evenly divided dataset randomly divided 
using MATLAB into a 50% training set, with the rest of the 
50% assigned to a test set. 

Table 1 Initial Data Set Sample 

 

The first six vectors, in blue, represent normal data, 
whereas, the red values represent abnormal data. Using the 
above data sample, the performance of each classifier is 
evaluated to assess the classification accuracy. In the 
following subsection, an evaluation of the results is presented. 

A. Initial Dataset Evaluation 

In order to obtain a more accurate assessment of which of 
the classifiers is most successful and consistent, the 
experiments were conducted 30 times. Statisticians identify 
that experiments conducted 30 times provide an adequate 
realistic average [14]. An overall evaluation of the 
classification algorithms is presented in Table 2 which 
displays the results of classification success, sensitivity and 
specificity with the mean value taken for 30 experiments.  

Table 2 Average Classifier Performance for Initial Dataset 

 

W2WTP median M ax min W3WS1 median Max min W4WP1 median

0 0 0 0 1 1 1 1 11 11

0 0 0 0 1 1 1 1 10.6 11

0 0 0 0 1 1 1 1 11 11

0 0 0 0 1 1 1 1 10.2 10

0 0 0 0 1 1 1 1 10.8 11

0 0 0 0 1 1 1 1 10.8 11

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0 0

14 14 14 14 1 1 1 1 11 11

14 14 14 14 1 1 1 1 11 11

Classifier Classification Success Sensitivity Specificity

LDC 62.78% 1 0.21

UDC 88.90% 1 0.82

QDC 50% 1 0

PARZENC 50% 1 0

TREEC 90.01% 1 0.8
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The results for sensitivities, which is the identification of 
normal behaviours, are high. The specificities, which is 
identification of abnormal behaviour, is mixed. Several of the 
classifiers are prone to generating false positive results, 
meaning abnormal behaviour values are grouped with normal 
behaviours. It is clear from the results that the classifiers are 
able to identify normal behaviour with high success, as 
displayed by the sensitivity results. However, all of the 
classifiers are prone to errors when detecting abnormal 
behaviours, with QDC and Parzenc failing to identify a single 
abnormal behaviour. 

B. Initial Results Visualisation 

In this subsection, a visualisation of the results is presented. 
Each diagram represents a sample of the outcomes and 
provides a visual demonstration of how the classifiers function. 
In each figure, the division of data into two groups for normal 
and abnormal behaviour is displayed. Firstly, Figure 5 shows 
the mapping of two classes on a scatter plot in a 2-D feature 
space for the Parzenc analysis. 

 

Fig. 5 Parzenc Plot 2 Features 

Feature 1, on the x-axis, refers to one of the dominant 
features and Feature 2, on the y-axis, refers to one of the lesser 
dominant features from the dataset. Two features were used in 
each visual representation to demonstrate how the classifiers 
function. The ellipses, displayed, refer to likelihood contours, 
where the points inside the ellipse are most likely to belong to 
that grouping. The blue ellipses consist of data that comes 
from the normal behaviour dataset and the red ones referring 
to threat behaviour data. Threat behaviour can be identified as 
a result of one grouping clearly standing out from the other. 
As the graph displays, Parzenc struggled to cluster the data 
into its correct grouping as the ellipses for normal behaviour 
values contour the red abnormal behaviour values. 

 

Fig. 6 Parzenc Plot 2 Features 3D 

Figure 6, again shows the Parzenc results by mapping them 
in 3-D, where the ellipses are displayed as spikes or curves in 
three dimension. Ideally two clear spikes should be visible to 
demonstrate two distinct data groupings. 

C.  Initial Summary of Results 

The initial results of the classification conducted using a 
small dataset, support our findings that data classification can 
be used to detect abnormal behaviour in critical infrastructures. 
Whilst the results show that anomalous behaviour can be 
identified with some success using our chosen classifiers, our 
initial dataset impacted the results. The ability to classify 
abnormal behaviour, was hampered by the fact that our dataset 
was too small to allow the classifiers to train themselves to a 
substantial level. The results will be expanded upon in the 
following section. We purposefully selected an abnormal 
dataset, which had a mix of substantial deviations from the 
normal behaviour as well as similar values. The results show 
that the classifiers where able to achieve a high success rate 
when identifying normal behaviours. 

5. BIG DATA ANALYSIS TECHNIQUES 

Building on the results from the initial data set evaluation, 
additional features are taken into consideration when 
classifying the larger dataset. Using a more substantial dataset, 
in this section we present a more conclusive evaluation of the 
selected classifiers. The dataset used in this section, has a 
large number of more subtle anomalies in the behavioural data 
in contrast with the initial dataset. 

A. Classification Evaluation 

A comparison of the classification success for each of the 
classifiers is presented in Table 4 below. Overall, the 
algorithms were able to accurately classify 96.653% of the 
dataset on average between them. 

Table 4 Classification Results 

 

The results presented are a significant improvement on the 
initial evaluation. LDC, QDC and UDC have mixed results; 
however, each also displays a significant ability to accurately 
classify behaviour. As previously, the classifiers are able to 
identify normal behaviour with high success with nearly all 
the errors occurring for the misclassification of abnormal 
behaviour. In the following subsection, we present a 
visualisation of the results, as well as, a discussion and a 
justification of the outcomes. 

B. Main Results Visualisation 

As with the initial classification, the visualised results 
presented represent a sample of the classification outcomes. 

Classifier Classification Success % Sensitivity Specificity

LDC 93.64 0.99957 0.874

UDC 99.759 1 0.995

QDC 89.868 1 0.798

PARZENC 100 1 1

TREEC 100 1 1
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Figure 7 displays a scatter plot of two classes in a 2-D feature 
space for the LDC analysis. For the purposes of visualising 
the results, two of the features from the set are plotted once 
more. 

The graph displays normal behaviour, represented by the 
blue cluster, and abnormal behaviour visible in the red cluster. 
The linear line generated by the LDC analysis displays the 
division between the two sets of data. Figure 7 displays one of 
the 30 experiments for LDC, which, on that occasion, 
obtained 100 % success. 

 

Fig. 7 LDC Analysis Graph 100% 

Figure 8 displays the same scatter plot, however, each of 
the classifiers’ approach for dividing the data are visible. For 
this particular experiment, all the nine classifier are able to 
divide the data into two distinct clusters accurately. The 
diagram displays a clear visualisation of the methodology for 
each classifier when dividing the data. As in the initial 
evaluation, a visualisation of the Parzenc classification is 
displayed in Figure 8. 

However, in this case, Parzenc classification achieved 
higher results. As before, the blue ellipses consist of data that 
comes from the normal behaviour dataset and the red ones 
referring to threat behaviour data. 

 

Fig. 8 Parzenc Evaluation 2 Features 

The ellipses for normal and abnormal behaviour values 
more accurately contour the correct data clusters than 
previously. This is again displayed in 3D, in Figure 9, where 
two distinct peaks created by the data groupings are visible. 
As with the initial evaluation, the results obtained support the 
findings that data classification can be used to detect abnormal 
behaviour in critical infrastructures. In light of this, in the 

following subsection, we present an assessment of the results 
obtained using the main dataset. 

 

Fig. 9 Parzenc Evaluation 2 Features 3D 

The classifiers are able to identify normal behaviour easily, 
with errors occurring for the classification of abnormal 
behaviour in the wrong cluster. However, the amount of 
misclassified data is relatively low. In the following 
subsection, a discussion on the results obtained in both of the 
evaluation stages is presented, along with a comparison of 
both. 

6.  DISCUSSION 

The success of the classifiers is a result of various key stages 
including, noise reduction and principal component analysis 
prior to the classifiers being applied. In this section, we 
present a discussion and justification of the results obtained 
during the evaluation process. 

A. Results Comparison 

One of the main observations is that the increased amount 
of data improved the results. This is reflected in the 
comparison between the initial results and the main supervised 
machine learning results. Figure 10 displays a visual 
comparison of the mean classification success of each of the 
classifiers combined between the first and second evaluation.  

 

Fig. 10 Results Comparison 

The blue bars represent the initial evaluation, whereas the 
red bars signify the main evaluation results. In the initial 
evaluation, the classifiers were able to classify 68.34% of the 
data accurately. This is lower than what would be ideal, for 
critical infrastructure security. In the case of critical 
infrastructures, it is important to achieve a high success rate. 
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Subsequently, in the second evaluation, the classifiers were 
able to achieve a much higher mean rate of 96.653% correctly 
classified data. 

Providing the classifiers with more data, allows the 
algorithms to be trained to an effective level. There is a 
notable improvement in the overall classification results. The 
results display a remarkable improvement, in particular for 
LDC, QDC, UDC and Parzenc between the initial and main 
evaluation process. 

B. Results Discussion 

The improvement in the classification results is impacted 
by two key differences in the approach. Firstly, an advanced 
feature extraction process enhanced the outcomes. Collecting 
more features, which provided a more comprehensive 
representation of system behaviours, allowed the data to be 
filtered before being processed by the classifiers. Secondly, 
having a larger dataset to train the classifiers produces results 
that are more accurate. As reflected by LDC, UDC and QDC 
in particular, which have been significantly improved upon. 

Initially, LDC, QDC and UDC performed less effectively. 
However, both were able to classify a significant proportion of 
the data accurately. The evaluation presented in this chapter 
demonstrates how normal behaviour can be identified in a 
system using data classification techniques. The results 
achieved were high and successful. Our evaluation is affected 
by; firstly, the quality of data used which had an impact on the 
results. Despite creating a simulation which replicates a 
critical infrastructure, the quality of data produced is inferior 
to a real-world nuclear power plant. The dataset generated is 
intended to demonstrate the ability of the classifiers to classify 
data into its correct groupings and identify when any given 
system behaviour is not as it should be.  

Secondly the high results were achieved through an 
efficient pre-processing of the data which removed noise and 
selected the most effective features for training the classifiers. 
It was also apparent that we ‘over attacked’ the system 
creating a mixture of large and more subtle anomalies in the 
data. The principal component analysis stage selected several 
of the features with large data anomalies for training the 
classifiers, in addition to the features with more subtle 
anomalies. 

Finally, the advantage of using supervised machine 
learning had an impact on the results we achieved. As 
previously discussed, the approach involved giving the 
classification algorithms the ‘right answer’ to enable them to 
operate self-sufficiently. By using this method, we are able to 
train the classifiers using features which are known to be 
effective for achieving high results. 

7. CONCLUSION AND FUTURE WORK 

Critical infrastructures are growing in size and importance 
every year as the population grows and puts increasing 
demand on the unseen services provided. Protecting these 
infrastructures is clearly a key issue. Improved support, as 
well as helping with cost efficiency as billions are spent on 
cyber security, has benefits for the well-being of people and 

helps with the evolution and improvement of security. As 
threats increase it becomes clear that security may lie away 
from conventional computer security techniques and an 
original approach to critical infrastructure protection is 
required.  

The research presented in this paper presents the 
effectiveness of BOCISS. The classification techniques used 
present a demonstration of how our system is able to support 
security by applying big data analysis techniques to 
identifying anomalous behaviour caused by cyber-attacks 
taking place. 

Future work will involve the adaptation of BOCISS to 
identify specific attacks, in addition to its current behavioural 
observation services. This will be done by recognising known 
behaviour changes, and what is causing them by drawing from 
system information stored in a database. This approach differs 
from signature-based detection as it looks at physical changes 
in component behaviour and uses them to identify attacks, 
which are known to cause those changes. Traditional 
signature-based detection identifies known data signatures, 
such as globally known viruses. 
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