About
135
Publications
34,370
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,170
Citations
Introduction
Publications
Publications (135)
Living systems are capable on the one hand of eliciting a coordinated response to changing environments (also known as adaptation), and on the other hand, they are capable of reproducing themselves. Notably, adaptation to environmental change requires the monitoring of the surroundings, while reproduction requires monitoring oneself. These two task...
While classical models of transcriptional regulation focus on transcription factors binding at promoters, gene expression is also influenced by chromosome organization. Understanding this spatial regulation strongly benefits from integrated and quantitative spatial analyses of genome-scale data such as RNA-Seq and ChIP-Seq. We introduce Genome Regu...
DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation ind...
DNA supercoiling acts as a global transcriptional regulator in bacteria, but the promoter sequence or structural determinants controlling its effect remain unclear. It was previously proposed to modulate the torsional angle between the −10 and −35 hexamers, and thereby regulate the formation of the closed-complex depending on the length of the ‘spa...
This is the first transcriptomic map of a Dickeya species. It may therefore significantly contribute to further progress in the field of phytopathogenicity.
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control o...
DNA supercoiling acts as a global transcriptional regulator in bacteria, but the promoter sequence or structural determinants controlling its effect remain unclear. It was previously proposed to modulate the torsional angle between the -10 and -35 hexamers, and thereby regulate the formation of the closed-complex depending on the length of the 'spa...
Carbon Catabolite Repression (CCR) plays a key role in many physiological and adaptive responses in a broad range of microorganisms that are commonly associated with eukaryotic hosts. When a mixture of different carbon sources is available, CCR, a global regulatory mechanism, inhibits the expression and activity of cellular processes to utilize sec...
The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. While previous studies...
RecA plays a central role in DNA repair and is a main actor involved in recombination and activation of the SOS response. It is also used in the context of biotechnological applications in recombinase polymerase isothermal amplification (RPA). In this work, we studied the biological properties of seven RecA variants, in particular their recombinoge...
DNA supercoiling acts as a global transcriptional regulator that contributes to the rapid transcriptional response of bacteria to many environmental changes. Although a large fraction of promoters from phylogenetically distant species respond to superhelical variations, the sequence or structural determinants of this behavior remain elusive. Here,...
Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investiga...
DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation ind...
The catabolism of pectin from the plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii . In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce a massive pectinolytic activity during the maceration phase. While previous s...
Nucleoid associated proteins (NAPs) are a class of highly abundant DNA binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilising higher-order nucleoprotein complexes in the ba...
Dickeya dadantii is an important pathogenic bacterium that infects a number of crops including potato and chicory. While extensive works have been carried out on the control of the transcription of its genes encoding the main virulence functions, little information is available on the post-transcriptional regulation of these functions. We investiga...
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topol-ogy and binding effects of nucleoid-associated proteins transducing the environmental signals to the...
A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added produ...
DNA supercoiling acts as a global transcriptional regulator, which contributes to the rapid transcriptional response of bacteria to many environmental changes. Although a large fraction of promoters from distant species respond to superhelical variations, the sequence or structural determinants of this behaviour remain elusive. Here, we propose the...
Dickeya dadantii is a phytopathogenic bacterium that causes soft rot in a wide range of plant hosts worldwide and a model organism for studying gene regulation during the pathogenic process. The present study provides a comprehensive and annotated transcriptomic map of D. dadantii obtained by a computational method combining three independent trans...
Bacterial pathogenic growth requires a swift coordination of pathogenicity functions with various kinds of environmental stresses encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to th...
A rapid and sensitive High Performance Liquid Chromatography (HPLC) method with photometric and fluorescence detection is developed for routine analysis of 2-Keto-3-deoxy-gluconate (KDG), a catabolite product of pectin and alginate. These polysaccharides are primary-based compounds for biofuel production and for generation of high-value-added produ...
Nucleoid associated proteins (NAPs) are a class of highly abundant DNA binding proteins in bacteria and archaea. While the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding to the bacterial chromosome and stabilising higher-order nucleoprot...
In this study, we investigated the diversity of AAB from fermenting cocoa and the production of acetic acid in response to various environmental conditions. Ribosomal 16S gene sequence analysis and PCR-RFLP showed a restricted microbiota mainly composed of Acetobacter pasteurianus, Acetobacter tropicalis and Acetobacter okinawensis sp., consistentl...
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomi...
Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and...
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulate...
Small non-coding RNAs (sRNAs) regulate numerous cellular processes in all domains of life. Several approaches have been developed to identify them from RNA-seq data, which are efficient for eukaryotic sRNAs but remain inaccurate for the longer and highly structured bacterial sRNAs. We present APERO, a new algorithm to detect small transcripts from...
DNA supercoiling acts as a global transcriptional regulator in bacteria, that plays an important role in adapting their expression programme to environmental changes, but for which no quantitative or even qualitative regulatory model is available. Here, we focus on spatial supercoiling heterogeneities caused by the transcription process itself, whi...
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep‐branching specie...
Originality-Significance statement
Although the reach of large-scale comparative studies has spread exponentially over the years, the phytopathogenic Dickeya group remains overlooked. In this work, we sequence the complete genome of Dickeya aquatica type strain, a species isolated from water that was first assumed to be non-phytopathogenic. We show...
DNA supercoiling acts as a global transcriptional regulator in bacteria, that plays an important role in adapting their expression programme to environmental changes, but for which no quantitative or even qualitative regulatory model is available. Here, we focus on spatial supercoiling heterogeneities caused by the transcription process itself, whi...
In the quest for a sustainable economy of the earth resources and for renewable sources of energy, a promising avenue is to exploit the vast quantity of polysaccharide molecules contained in green wastes.
To that end, the decomposition of pectin appears to be an interesting target because this polymeric carbohydrate is abundant in many fruit pulps...
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecu...
Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes...
Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material.
lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their
exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Rib...
Structural differentiation of bacterial chromatin depends on cooperative binding of abundant nucleoid-associated proteins at numerous genomic DNA sites and stabilization of distinct long-range nucleoprotein structures. Histone-like nucleoid-structuring protein (H-NS) is an abundant DNA-bridging, nucleoid-associated protein that binds to an AT rich...
Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have...
After a gene duplication event, the resulting paralogous genes frequently acquire distinct expression profiles, roles and/or functions but the underlying mechanisms are poorly understood. While transcription start site (TSS) turnover, i.e. the repositioning of the TSS during evolution, is widespread in eukaryotes, it is less documented in Bacteria....
In bacteria, important genes are often controlled at the transcriptional level by several factors, forming a complex and intertwined web of interactions. Yet, transcriptional regulators are often studied separately and little information is available concerning their interactions. In this work, we dissect the regulation of the major virulence gene...
The pectinolytic _Dickeya_ spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the _Dickeya_ genus was initially restricted to tropical and subtropical areas, two _Dickeya_ species (_D. dianthicola_ and _D. solani_) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused...
Dickeya species are soft rot disease-causing bacterial plant pathogens and an emerging agricultural threat in Europe. Environmental modulation of gene expression is critical for Dickeya dadantii pathogenesis. While the bacterium uses various environmental cues to distinguish between its habitats, an intricate transcriptional control system coordina...
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to production of pectate lyases (Pels) that can destroy plant cell walls. Previously, we found that nucleoid-associated protein (NAP) H-NS is a key regulator of pel gene expression. The primary binding sites of this NAP have been det...
Colonization factors (CFs) mediate early adhesion of Enterotoxigenic Escherichia coli (ETEC) in the small intestine. Environmental signals including bile, glucose, and contact with epithelial cells have previously been shown to modulate CF expression in a strain dependent manner. To identify novel components modulating CF surface expression, 20 com...
Unlabelled:
Iron availability functions as an environmental cue for enteropathogenic bacteria, signaling arrival within the human host. As enterotoxigenic Escherichia coli (ETEC) is a major cause of human diarrhea, the effect of iron on ETEC virulence factors was evaluated here. ETEC pathogenicity is directly linked to production of fimbrial colon...
Bacteria are the most ancient and abundant organisms on the earth. Whereas bacterial organisms served as first cellular model systems for explorations of genetic control by approaches of molecular biology, our understanding of bacterial gene regulatory mechanisms is still far from complete. Yet, deep insights into genetic regulation are urgently re...
Recent studies strongly suggest that the gene expression sustaining both normal and pathogenic bacterial growth is governed by the structural dynamics of the chromosome. However, the mechanistic device coordinating the chromosomal configuration with selective expression of the adaptive traits remains largely unknown. We used a holistic approach exp...
The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adju...
Pathogenic bacteria have to cope with adverse conditions, such as the host environment and host defense reactions. To adapt quickly to environmental changes, pathogens have developed complex regulatory networks that ensure adequate expression of their virulence genes. Recent evidence suggests that Fis, an abundant nucleoid-associated protein transi...
The pectinolytic Dickeya spp. are soft-rot Gram-negative bacteria that cause severe disease in a wide range of plant species. In recent years, there has been an increase in the damage caused by Dickeya in potato crops in Europe. Soft-rot symptoms are due to the production and secretion of degradative enzymes that destroy the plant cell wall. Howeve...
Bacteria are colonizers of various environments and host organisms, and they are often subjected to drastic temperature variations. Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that destroy plant cell walls. The production of Pels is c...
Dickeya dadantii is a plant pathogen that secretes cell wall-degrading enzymes (CWDE) that are responsible for soft-rot symptoms. Virulence genes are expressed in a concerted manner and culminate when bacterial multiplication slows. We identify a 25 kb vfm cluster required for D. dadantii CWDE production and pathogenesis. The vfm cluster encodes pr...
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we sh...
Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates.
Using bacterial...
Primers used for RT-PCR of potato soft-rot pathogens.
(DOC)
Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of
pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Her...
Expression profiles of the 49 genes selected for their expression stabilities in 32 growth conditions and the expression profiles of ffh, recA, rpoA and rpoB. Gene expression levels are measured from microarray analyses and are presented as logarithmic values. The first 32 conditions are those measured in exponential phase and the last 32 condition...