William Devane

William Devane
National University of Ireland, Galway | NUI Galway · Department of Pharmacology and Therapeutics

About

24
Publications
9,053
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,372
Citations

Publications

Publications (24)
Article
Full-text available
Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists...
Chapter
Since the isolation and structure elucidation of delta-9-THC by our group in 1964, numerous investigations have addressed the structure-activity relationships (SAR) in the cannabinoid series. The rules established in the 1970s have mostly withstood the erosion of time. However, the SAR rules as regards stereochemistry were developed much later. It...
Article
Anandamide (arachidonylethanolamide), 5,8,11,14-eicosatetraenamide, (N-2-hydroxyethyl), was tested for bronchodilator and anti-inflammatory activities. Conscious guinea pigs were given cumulative i.v. doses of anandamide (1.0, 3.0, and 10.0 mg/kg) to assess its effect on dynamic compliance (Cdyn), total pulmonary resistance (RL), tidal volume (VT)...
Article
Anandamide amidase is the hydrolytic enzyme responsible for the breakdown of anandamide, an endogenous cannabimimetic, to arachidonate and ethanolamine. Another enzymatic activity called anandamide synthase catalyzes the reverse reaction, that is the condensation of arachidonate and ethanolamine. Using a recently cloned rat fatty acid amidohydrolas...
Article
Anandamide amidase is the hydrolytic enzyme responsible for the breakdown of anandamide, an endogenous cannabimimetic, to arachidonate and ethanolamine. Another enzymatic activity called anandamide synthase catalyzes the reverse reaction, that is the condensation of arachidonate and ethanolamine. Using a recently cloned rat fatty acid amidohydrolas...
Article
Full-text available
Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation f...
Article
The recently discovered endogenous agonist for the cannabinoid receptor, anandamide (arachidonylethanolamide), can be formed enzymatically by the condensation of arachidonic acid with ethanolamine. 5Z,8Z,11Z-Eicosatrienoic acid (mead acid) has been found to substitute for arachidonic acid in the sn-2 position of phospholipids and accumulate during...
Article
Anandamide, an endogenous eicosanoid derivative (arachidonoylethanolamide), binds to the cannabinoid receptor, a member of the G protein-coupled superfamily. It also inhibits both adenylate cyclase and N-type calcium channel opening. The enzymatic synthesis of anandamide in bovine brain tissue was examined by incubating brain membranes with [14C]et...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
Anandamine (arachidonylethanolamide), an arachidonic acid derivative isolated from the porcine brain, displays binding characteristics indicative of an endogenous ligand for the cannabinoid receptor. The functional activity of anandamide was tested in vivo using behavioral and physiological paradigms in laboratory rodents. At IP doses from 2 to 20...
Article
Anandamide (arachidonyl ethanolamide) has been identified as an endogenous ligand of cannabinoid receptors on the basis of its ability to displace 3H-labeled synthetic cannabinoid in a binding assay. One well characterized cellular action of cannabinoids is inhibition of hormonally stimulated adenylyl cyclase. Another action of synthetic cannabinoi...
Article
Full-text available
Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several...
Article
Full-text available
Arachidonylethanolamide, an arachidonic acid derivative in porcine brain, was identified in a screen for endogenous ligands for the cannabinoid receptor. The structure of this compound, which has been named "anandamide," was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by synthesis. Anandamide inhibi...
Article
Two strategies for the design of therapeutically useful cannabinoids have been combined to produce compounds with greatly increased antiinflammatory activity and with a low potential for adverse side effects. Enantiomeric cannabinoids with a carboxylic acid group at position 7 and with an elongated and branched alkyl sidechain at position 5' have b...
Article
The 1,1-dimethylheptyl (DMH) homologue of 7-hydroxy-delta 6-tetrahydrocannabinol (3) is the most potent cannabimimetic substance reported so far. Hydrogenation of 3 leads to a mixture of the epimers of 5'-(1,1-dimethylheptyl)-7-hydroxyhexahydrocannabinol or to either the equatorial (7) or to the axial epimer (8), depending on the catalysts and cond...
Article
The present overview covers various aspects of research going on in the Cannabis field in the Department of Natural Products at the Hebrew University. In the first part we discuss, and try to explain, the reason for the absence of the term Cannabis (and possibly also opium) in the Old Testament. In the second part we bring evidence that, contrary t...
Article
The actions of the active principle of marihuana, delta 9-tetrahydrocannabinol, are mimicked by synthetic cannabinoid agonists showing high potency and enantio-selectivity in behavioral assays. These drugs have been used to characterize cannabinoid receptor binding, biochemistry and pharmacology, leading to a better understanding of the effects of...
Article
The mechanism by which cannabinoid compounds produce their effects in the rat brain was evaluated in this investigation. Cannabinoid receptors, quantitated by [3H]CP-55,940 binding, were found in greatest abundance in the rat cortex, cerebellum, hippocampus, and striatum, with smaller but significant binding also found in the hypothalamus, brainste...
Article
The determination and characterization of a cannabinoid receptor from brain are reported. A biologically active bicyclic cannabinoid analgetic CP-55,940 was tritium-labeled to high specific activity. Conditions for binding to rat brain P2 membranes and synaptosomes were established. The pH optimum was between 7 and 8, and specific binding could be...
Article
Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in N18TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the delta subtype were found on N18TG2 membranes using [3H]D-Ala2-D-Leu5-enkephalin. No mu or kappa receptors were detected us...
Article
Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in NI8TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the δ subtype were found on N18TG2 membranes using [3H]D-Ala2-D-Leu5-enkephalin. No δ or K receptors were detected using selec...

Network

Cited By