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Cunninghamia lanceolata is important forest tree species in southern China, and its successive plantations resulted
in degradation of soil fertility in pure stands, causing decline in forest productivity. How to improve productivity
in C. lanceolata pure stands is a tough task. Usage of mycorrhizal fungimight be a plausible access to the task. The
objective is to study the possibility of the endophytic fungus Serendipita indica (named formerly as Piriformospora
indica) in culture of C. lanceolata. Seeds were sowed in plastic pots with river sand. When seedlings had two true
leaves, hyphae suspension solution of S. indicawas added to near the roots of seedlings in each plastic pot. Such
potswith seedlingswere placed in a greenhouse andnormalmanagementwas carried out for the seedlings. Sym-
biosis effects on root development, nutrition uptake and allocation, and biomass accumulation of C. lanceolata
seedlings under low phosphate were investigated. The results showed that S. indica could symbiose with
C. lanceolata. The symbiosis did not result in significant changes in root systemarchitecture under lowphosphate,
but significantly increased nitrogen and phosphorus levels in leaves under low phosphate. Although the symbi-
osis did not significantly increased nitrogen allocation in leaves under low phosphate, it significantly increased
phosphorus allocation in leaves. The interaction between S. indica and C. lanceolata resulted in increase in total
biomass under low phosphate and changes in biomass allocation between shoots and roots. The results sug-
gested that S. indica helps host plants to absorb more nutrients under low phosphate and to allocate more nitro-
gen and phosphate to leaves, promoting plant growth; the fungus might be used in pure stands of C. lanceolata
because of its large-scaled axenic culture.

© 2018 Ecological Society of China. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Phosphate is a major macronutrient needed by plants for their de-
velopment, health, and productivity, but available phosphate is very
low in soil all over theworld becausemost phosphate in soil is insoluble
and unavailable forms, with an average of available phosphate of ~ 2
μmol·L−1 in the soil solutions, which is several orders of magnitude
lower than that in plant tissues (5–20 mM) [1]. In highly weathered
soils, sandy soils and alkaline soils, available phosphate levels are com-
monly b1 μmol·L−1, and even in the most fertile soils, available phos-
phate levels in soil solution rarely exceed 8 μmol·L−1 [2].
Furthermore, diffusion rate of phosphate is very slow in soil (10–12 to
10–15 m2·s−1) [3], thus there are often depletion zones of phosphate
around plant roots (i.e., rhizosphere) in phosphate-deficient soil. There-
fore, Plant growth and development is limited by the phosphate avail-
ability in most natural ecosystems.
).
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Plants have evolved to possess two distinct models to enhance ab-
sorption of phosphate from soil. The direct model is that plants use
their own phosphate transporters in roots and carry out changes in
root morphology, biochemistry, and physiology, especially great in-
crease in the numbers of lateral roots [4] and root hairs [5–7], secretion
of organic acids [8], and formation of cluster [9, 10] and dauciform roots
[11–14] under phosphate deficiency. The indirect model is that plants
symbiose with mycorrhizal fungi and other microorganisms [15–17].
In the symbiosis system, host plants provide the mycorrhizal fungi
with carbohydrates, and the latter helps their hosts to absorb nutrients,
especially phosphate.

Serendipita indica (formerly known as Piriformospora indica, [18]) is
endophytic fungus found in an arbuscular mycorrhizal fungal spore
from a low-nutrient desert soil in Rajasthan, India [19], and shows the
same functions as mycorrhizal fungi did, especially increase in nutrition
uptake and utilization [20–22]. S. indica has some unique properties,
such as artificial propagation by axenic cultures [23, 24] and broad
host plants, including Arabidopsis thaliana [25–32]. Usually, A. thaliana
is regarded as non-mycorrhizal [33–36]. Therefore, its properties will
ndica increased nutrition absorption and biomass accumulation in
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be very useful in sustainable agriculture and forestry, especially under
stress environment [37–39].

Cunninghamia lanceolata (Chinese fir) is an important commercial
tree species in southern China with large plantation area, however its
successive plantations resulted in degradation of soil fertility, causing
decline in forest productivity [40–45]. How to maintain soil fertility
and productivity in pure stands of C. lanceolata is a very important scien-
tific question to foresters in southern mountains. In recent decades,
some attempts have done tomaintain soil fertility in pure stands of Chi-
nese fir. After the vegetation change from evergreen broad-leaved
stands to pure plantations of Chinese fir, the microbial biomass carbon
and the quantities of culturable bacteria and actinomyces decrease,
and structure of microbial communities showed great changes in pure
plantations of Chinese fir, compared to evergreen broad-leaved stands
[46]. The total number of microbes in the in the second-rotation pure
stands of Chinese fir was less than that of the first-rotation pure stands
[47]. The change resulted in reduction in litter mineralization rates and
nutrition uptake in pure stands of Chinses fir. The application of
biofertilizers should be a good approach to increase litter decomposition
rates and nutrition uptake. For the aim, some rhizospherical microbes
were isolated and identified for Chinese fir, such as plant growth-
promoting rhizobacteria [48] and identification of mycorrhizal fungi
[49]. Few studies were involved to the effects of microbial inoculation
on survival rate and growth of seedlings of Chinesefir infield [50]. How-
ever, more detailed researches have not carried out, especially effects of
rhizospherical microbes on nutrition uptake and growth and develop-
ment of Chinese fir, and usage of biofertilizers has not carried out in
pure plantations of Chinese fir and seedlings nurseries. In the present
article, our aim is: (1) to investigate the effects of S. indica colonization
on growth, nutrition absorption and allocation of C. lanceolata seedlings
under different phosphate levels in order that the fungusmight be used
A B 

D E 

Fig. 1. S. indica infection and effects of S. indica infection on root systems of C. lanceolata seedlin
Arrows indicate the spores of S. indica in the cortex of roots, and the bar = 100 μm. B–E. Roo
respectively, and the bar = 0.5 cm.
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in pure stands of C. lanceolata to increase stand productivity; (2) to re-
veal the reason why S. indica promotes plant growth.

2. Materials and methods

2.1. Growth conditions of fungus and plant

Endophtic fungus Serendipita indica was obtained from profressor
Ralf Oelmüller in Friedrich-Schiller-University Jena, Germany. The
growth medium and growth condition of fungus were carried out ac-
cording to the description by Johnson et al. [51].

In order to investigate the effects of colonization of S. indica on root
system architecture of C. lanceolata seedlings, seeds were sterilized
using 0.1% (w/v) HgCl2 and sowed in plastic pots filled with river
sands of the same weight. The river sands were cleaned and sterilized
before they were placed in the plastic pots (high 10 cm and diameter
10 cm). The plastic pots were cultivated in a greenhouse (16 h ligh/
8 h dark, 25 °C).

2.2. Experimental design

After the seeds germinated and the seedlings had two true leaves,
3 mL of 10 g·L−1 hyphae suspension solution of S. indicawas added to
near the roots of seedlings in each plastic pot, and the control was
added the same volume of sterilized hyphae suspension solution. After
a week, four seedlings were selected in a plastic pot and other seedlings
were picked out for investigation on colonization of S. indica. Another
three days later, seedlings were provided with the same volume of MS
solutions with different phosphate levels every three days. There were
four treatmentways: high phosphate (1mmol·L−1) with S. indica colo-
nization (i.e., HP + P), high phosphate without S. indica colonization
C 

gs under different phosphate levels. A: S. indica infection in roots of C. lanceolata seedlings.
t architectures of the seedlings under the condition of HP + P, LP + P, HP − P, LP − P,
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Fig. 2. Effects of S. indica infection on root systems of C. lanceolata seedlings under different
phosphate levels. For the same root parameter, the bars with different letters show
significant differences (p b 0.05).
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(i.e., HP − P), low phosphate (5 μmol·L−1) with S. indica colonization
(i.e., LP + P), and low phosphate without S. indica colonization (i.e., LP
− P). 15 pots for each treatment and 60 seedlings in each treatment.
The seedlings were used for investigation on the effect of the endo-
phytic colonization on root system architecture under phosphate
deficiency.

In order to investigate the effects of the colonization of S. indica on
nutrition states of C. lanceolata seedlings, six month-old seedlings
were also planted in plastic pots filled with the cleaned and sterilized
river sands, each pot (high 20 cm and diameter 20 cm) with four seed-
lings. The pots were transported into a greenhouse immediately, and
were provided with 3 mL of 10 g·L−1 hyphae suspension solution of
S. indica after a week, the control was provided with 3 mL of sterilized
hyphae suspension solution with the concentration of 10 g·L−1. The
seedlings were provided with MS solutions with different phosphate
levels as mentioned above, 40 seedlings for each treatment, 10 pots
for each treatment.

All experimental materials were in a glasshouse for culture, and MS
solutions with different phosphate levels were provided each two days,
100 mL each time for a pot.
2.3. Staining of S. indica spores and micrograph

Twenty days after transplanting, few seedlings incubated by the fun-
gus were selected randomly, and their roots were separated from the
aerial parts and washed with tap water. These roots were put into 10%
KOH solution overnight and subsequently 1% HCl for 10 min. Roots
were stained in 0.05% trypan blue for 30 min and washed in distilled
water for 1 min. Finally the stained root was mounted on glass slide
with 50 μL GL solution and covered with glass cover [52], and
micrography was carried out (Nikon, DS-Ri2).
2.4. Root scanning, biomass determination, and allometric growth analysis

After treatment in eight months, thirty seedlings from seeds were
chosen randomly and excavated and washed with tap water. The
whole root systems were cut from the individual plant, and subse-
quently moisture was removed with absorbent paper. The resulting
dried roots were scanned on WinRhizo root scanner (Regent Instru-
ments, Quebec, Canada). Images from the scanner were processed by
using the software Image-Pro Plus (v.6.0, Media Cybernetics, USA),
and root system parameters (total root length, total root surface, total
root volume, and number of root tips)were obtained using the software
WinRhizo (V5.0, Regent Instruments, Quebec, Canada).

The individual root systems and their corresponding shoots were
sealed in the same envelopes and were dried in an air oven at 80 °C
for 24 h before weighing. The dried roots, stems, and leaves were left
for nutrition analyses as mentioned below.

Twelve seedlings with initial age of six months were randomly cho-
sen for allometric growth analysis. Allometric growth analysis was car-
ried out as described by Hunt [53].
2.5. Nutrition analyses

Eight months after hyphae suspension solution was added, three
seedlings with initial age of six months were randomly chosen, and
total nitrogen, phosphate, and potassium in their roots, stems, and
leaves were determined. Total potassium was determined by flame
AES, and total nitrogen and phosphorus were determined by spectro-
photometry as described [54].
ndica increased nutrition absorption and biomass accumulation in
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2.6. Statistical analysis

The data were analyzed by using one-way ANOVA (SPSS, version
17.0) to compare the differences in root system architecture, nutrition
uptake and allocation, and biomass accumulation, with means being
compared by LSD at the 5% level. Regression analysis was used allome-
tric growth.

3. Results

3.1. Endophytic colonization and changes in root system architecture

S. indica has a wide range of hosts, and it also colonized in the cortex
of the roots of C. lanceolata (Fig. 1A), and such colonization affected the
root system architecture (Fig. 1B–E).

Under high phosphate condition (1 mmol·L−1), total root length of
C. lanteolata seedlings did not significantly increased whether these
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seedlings were infected by S. indica or not (p N 0.05, Fig. 2A). In the col-
onized root systems, the total root length of seedlings under low phos-
phate treatment was significantly increased, compared with high
phosphate (p b 0.05, Fig. 2A). Under low phosphate, whether S. indica
colonized in roots of C. lanceolata seedlings or not, their total root length
did not change significantly (p N 0.05, Fig. 2A). The similar pattern was
also observed in total root surface area (Fig. 2B).

The total root volumes of seedlings treated with HP+ Pwere signif-
icantly higher than those treated with LP + P (p b 0.05, Fig. 2C), and
there were no significant differences between other treatments (p N

0.05, Fig. 2C). There were no significant changes in total root tip num-
bers among all the four treatments (p N 0.05, Fig. 2D).
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3.2. Effects of endophytic colonization on nutrient concentrations

S. indica colonization affected the concentrations of nitrogen, phos-
phate, and potassium in the roots, stems, and leaves of C. lanceolata
seedlings (Fig. 3). Under high phosphate treatment (1 mmol·L−1),
S. indica colonization significantly increased nitrogen levels in roots,
compared with the other three treatments (p b 0.05, Fig. 3A). Under
low phosphate treatment (5 μmol·L−1), the colonization did not affect
nitrogen levels in roots, compared with LP − P (p N 0.05, Fig. 3A).
Under high phosphate treatments, phosphorus level was greater in col-
onized roots than in the non-colonized, such changes also observed
under low phosphate treatments (p b 0.05, Fig. 3A). In addition, potas-
sium levels did not show significant changes in neither colonized nor
non-colonized roots under high phosphate treatments (p N 0.05,
Fig. 3A), but significantly differed under low phosphate (p b 0.05,
Fig. 3A), with greater concentration in colonized roots.

Colonization of S. indica did not significantly affect nitrogen levels in
stems under low phosphate treatment (p N 0.05, Fig. 3B), and nitrogen
levels in stems did not show differences between HP + P and LP + P
treatments (p N 0.05, Fig. 3B). Similarly, the colonization of S. indica
did not affect phosphorus levels in stems under low phosphate treat-
ment (Fig. 3B). There were no significant changes in potassium levels
in stems among all the four treatments (p N 0.05, Fig. 3B).

Under low phosphate treatment, the colonization of S. indica in-
creased significantly levels of nitrogen and phosphorus in leaves, com-
pared with seedlings without colonization (p b 0.05, Fig. 3C). In all the
four treatments, there only was a significant difference in potassium
levels in leaves between HP + P and LP− P (p b 0.05, Fig. 3C).

Nitrogen allocation among roots, stems, and leaves of the seedlings
did not show significant differences among all the four treatments
(p N 0.05, Fig. 4A). Although S. indica colonization resulted in 30.80% in-
crease in phosphorus allocation in leaves under low phosphate treat-
ment, compared to those in leaves of seedlings without colonization,
there was no significant difference between them(p N 0.05, Fig. 4A).
Phosphorus allocation in roots of seedlings under HP + P was signifi-
cantly higher than that in roots of seedlings under LP + P (p b 0.05,
Fig. 4B). Similar differences in phosphorus allocation in stems occurred
(Fig. 4B). Under low phosphate treatment, colonization of the fungus
significantly increased phosphate allocation in leaves (p b 0.05, Fig. 4B).

Potassium allocation in roots and stems did not show significant dif-
ferences among all the four treatments (p N 0.05, Fig. 4C), and there only
logW
s

0.8 1.0 1.2 1.4 1.6 1.8

Fig. 6. Effects of S. indica on allometric growth of C. lanceolata seedlings under different
phosphate levels. A: HP + P; B: HP− P; C: LP + P; D: LP − P.
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was significant difference in potassium allocation in leaves of seedlings
under HP− P and LP− P (p b 0.05, Fig. 4C).

3.3. Biomass accumulation and allometric growth

Colonization of S. indica did not significantly increased root and
shoot biomass accumulation (compared with un-colonization) under
low phosphate treatment (p N 0.05, Fig. 5), thus total biomass of seed-
lings under LP + P was not significantly higher than those of the seed-
lings under LP − P (p N 0.05, Fig. 5), although the colonization
increased total biomass accumulation.

Colonization of S. indica in roots of seedlings of C. lanceolata changed
allometric growth of seedlings (Fig. 6). Under high or lowphosphate, al-
lometric coefficient of the colonized seedlings (i.e., slope coefficient of
the linear equation) was less than that of non-colonized seedlings
(Fig. 6), suggesting the colonization of S. indica resulted in less biomass
allocation to roots.
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4. Discussion

Some previous studies showed that colonization of S. indica im-
proved plant growth and development [24, 32, 55–58], but the growth
promotion is not induced by mycelium-synthesized auxin [57]. It is of
significance to explore how colonization of S. indica promotes the
growth of host plants.

At first, colonization of S. indica affected root development such as
growth, which is known to be related to auxin concentration in root tis-
sues [59–61]. There are two important aspects in the relationship.
Firstly, auxin promotes colonization of roots by S. indica, which pro-
duces auxin, IAA [62, 63]. Although the growth of the host plant is not
stimulated by mycelium-synthesized auxin [57, 64], auxin and indole
derivatives are required for biotrophic colonization by S. indica [64]. Sec-
ondly, colonization by S. indica increases auxin levels in roots and pro-
motes root hair development and root growth. For example, the auxin
level in the Chinese cabbage roots infected by S. indica was twofold
higher compared to un-colonized controls [65]. This increased auxin
level resulted in the strong stimulation of root hair development (a
bushy root phenotype) [65]. Vadassery et al. [63] showed that free IAA
levels were highly reduced in Arabidopsis sur1–1 mutant (an auxin
overproducer) colonized by S. indica, while the conjugated IAA level
was increased. It was found that fresh weight of roots of both mutant
seedlings and wild type was increased upon colonization by S. indica
[63]. In the present study, colonization of roots of C. lanceolata seedlings
by S. indica significantly increased total root length and root surface
under low phosphate, compared to high phosphate (Fig. 2A, B). The in-
crease in total root length and root surface under low phosphate treat-
ments seems not to be related to colonization of S. indica, because
total root length and surface did not show significant changes under
such conditions (Fig. 1A, B). Therefore, phosphate signaling seems to
play a more important role in root system development under low
phosphate [66].

Next, colonization of S. indica promotes nutrition absorption and as-
similation. S. indica enhances the expression of the gene encoding ni-
trate reductase in roots of A. thaliana and also stimulates the
expression of the Arabidopsis nitrate reductase (Nia2) in transgenic to-
bacco seedlings [67]. In addition, colonization of S. indica in roots of to-
bacco seedlings caused 50.2% increase in the plant specific NADH-
dependent nitrate reductase activity in the roots, and also mediates ni-
trate uptake [67].

At the same time, S. indica promotes phosphate absorption of host
plants [20, 22, 68, 69, 83]. The fungus produces high amounts of phos-
phatase [70], and it can indirectly solubilize soil phosphorus-reserves
by interacting/communicating with diverse rhizobacteria, which have
inorganic phosphate-solubilizing capabilities by virtue of production
of a variety of organic acids and acid phosphatases [71–73]. For exam-
ple, co-inoculation of S. indicawith phosphate-solubilizing rhizobacteria
Pseudomonas striata resulted in enhanced phosphate uptake and phos-
phate content in host plant due to better establishment of phosphate-
solubilizing rhizobacteria in the mycorrhizaopshere [71]. Increased up-
take of phosphorus from the medium and phosphorus translocation to
the host and a sharp increase in phosphorus content in the shoot were
mediated by S. indica [69, 74]. Moreover, hyphae of S. indica help phos-
phate absorption. In S. indica, a high-affinity phosphate transporter
named PiPT, which is localized in the external hyphae, has been isolated
and identified [22]. The phosphate transporter plays a role in phosphate
transport to its host plants [20, 22, 83]. Expression of PiPT in fungal
mycelia depends on the availability of soluble phosphate in soil. Real-
time PCR analysis indicated that the PiPT gene is not expressed in
phosphate-rich conditions, but is highly expressed under phosphate-
deprived conditions [20].

These roles of colonization of S. indica in phosphate/nitrogen uptake
and assimilation can be used to explain why nitrogen and phosphate
levels in the leaves of C. lanceolata seedlings under low phosphate
(Fig. 3C) and high phosphate allocation in leaves (Fig. 4B). Increased
indica increased nutrition absorption and biomass accumulation in
Sinica (2018), https://doi.org/10.1016/j.chnaes.2018.06.005
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nitrogen and phosphate levels in leaves of C. lanceolata seedlings might
be the main reason that S. indica promotes plant growth under low
phosphate.

Under low phosphate condition, colonization of S. indica signifi-
cantly increased nitrogen and phosphate levels in leaves of
C. lanceolata seedlings (Fig. 3C), and phosphate can affect nitrogen allo-
cation to Rubisco [75].

The increased nitrogen levels in leaves promote photosynthesis. A
large part of leaf nitrogen is invested in photosynthetic apparatus,
i.e., chloroplasts. In mature rice leaves, about 80% of the total leaf nitro-
gen is allocated to chloroplasts [76] as is the case with other C3 plants
[77, 78]. Ribulose bisphosphate carboxylase oxygenase (Rubisco), the
most important enzyme in carbon fixation, occupies the most part of
soluble proteins in leaves [79–81], and phosphate can affect nitrogen al-
location to Rubisco [75].Therefore, it is speculated that the leaves with
high nitrogen and phosphate levels under low phosphate should have
high concentrations of Rubisco, increasing photosynthesis rate, because
photosynthesis rate is related to concentrations of nitrogen and Rubisco
in leaves [82]. The significant increase in nitrogen and phosphate levels
in the leaves of C. lanceolata seedlings might result in increment in pho-
tosynthesis rates, thus causing high biomass accumulation under low
phosphate (Fig. 5).

According to the results and the facts mentioned above, the reason
why colonization of S. indica promotes plant growth is outlined in Fig. 7.

Some details should bemore paid on in Fig. 7: (1) ammonium is one
of main nitrogen forms in soils, how about the effects of colonization of
the fungus on ammonium uptake and assimilation? (2) what are the ef-
fects of the colonization on root hair formation under low available
phosphate? (3) how about the activity and expression of phosphate
transporters in the hyphae of the fungus under low available phos-
phate? Therefore, more studies are needed to answer the questions.

Conclusion: (1) S. indica helps host plants to absorb more nutrients
under low phosphate and to allocate more nitrogen and phosphate to
leaves, promoting plant growth; (2) the fungus might be used in pure
stands of C. lanceolata because of its large-scaled axenic culture.
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