Wenxi Liu

Wenxi Liu
Fuzhou University · Department of Computer Science and Technology

About

58
Publications
8,706
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,854
Citations
Citations since 2017
48 Research Items
1751 Citations
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500
20172018201920202021202220230100200300400500

Publications

Publications (58)
Article
Integrating low-level edge features has been proven to be effective in preserving clear boundaries of salient objects. However, the locality of edge features makes it difficult to capture globally salient edges, leading to distraction in the final predictions. To address this problem, we propose to produce distraction-free edge features by incorpor...
Preprint
Full-text available
HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to expensive sensors and time-consuming computation. Camera-based methods usually need to perform road segmentation and view transformation separately, which often causes distortion and missing content. To push the limits of the technology, we present a nov...
Preprint
Crowd image is arguably one of the most laborious data to annotate. In this paper, we devote to reduce the massive demand of densely labeled crowd data, and propose a novel weakly-supervised setting, in which we leverage the binary ranking of two images with high-contrast crowd counts as training guidance. To enable training under this new setting,...
Preprint
Full-text available
Ultra-high resolution image segmentation has raised increasing interests in recent years due to its realistic applications. In this paper, we innovate the widely used high-resolution image segmentation pipeline, in which an ultra-high resolution image is partitioned into regular patches for local segmentation and then the local results are merged i...
Chapter
Navigation in dense crowds is a well-known open problem in robotics with many challenges in mapping, localization, and planning. Traditional solutions consider dense pedestrians as passive/active moving obstacles that are the cause of all troubles: they negatively affect the sensing of static scene landmarks and must be actively avoided for safety....
Article
Synthesizing high dynamic range (HDR) images from multiple low-dynamic range (LDR) exposures in dynamic scenes is challenging. There are two major problems caused by the large motions of foreground objects. One is the severe misalignment among the LDR images. The other is the missing content due to the over-/under-saturated regions caused by the mo...
Preprint
Navigation in dense crowds is a well-known open problem in robotics with many challenges in mapping, localization, and planning. Traditional solutions consider dense pedestrians as passive/active moving obstacles that are the cause of all troubles: they negatively affect the sensing of static scene landmarks and must be actively avoided for safety....
Article
In this paper, we introduce a novel yet challenging research problem, interactive crowd video generation, committed to producing diverse and continuous crowd video, and relieving the difficulty of insufficient annotated real-world datasets in crowd analysis. Our goal is to recursively generate realistic future crowd video frames given few context f...
Chapter
We propose an unsupervised learning framework with the pretext task of finding dense correspondences between point cloud shapes from the same category based on the cycle-consistency formulation. In order to learn discriminative pointwise features from point cloud data, we incorporate in the formulation a regularization term based on Sinkhorn normal...
Article
Existing video salient object detection (VSOD) methods focus on exploring either short-term or long-term temporal information. However, temporal information is exploited in a global frame-level or regular grid structure, neglecting interframe structural dependencies. In this paper, we propose to learn long-term structural dependencies with a struct...
Preprint
In the era of big data, a large number of text data generated by the Internet has given birth to a variety of text representation methods. In natural language processing (NLP), text representation transforms text into vectors that can be processed by computer without losing the original semantic information. However, these methods are difficult to...
Preprint
We propose an unsupervised learning framework with the pretext task of finding dense correspondences between point cloud shapes from the same category based on the cycle-consistency formulation. In order to learn discriminative pointwise features from point cloud data, we incorporate in the formulation a regularization term based on Sinkhorn normal...
Preprint
Synthesizing high dynamic range (HDR) images from multiple low-dynamic range (LDR) exposures in dynamic scenes is challenging. There are two major problems caused by the large motions of foreground objects. One is the severe misalignment among the LDR images. The other is the missing content due to the over-/under-saturated regions caused by the mo...
Preprint
In recent years, with the progress of deep learning technologies, crowd counting has been rapidly developed. In this work, we propose a simple yet effective crowd counting framework that is able to achieve the state-of-the-art performance on various crowded scenes. In particular, we first introduce a perspective-aware density map generation method...
Preprint
Full-text available
In recent years, vision-based crowd analysis has been studied extensively due to its practical applications in real world. In this paper, we formulate a novel crowd analysis problem, in which we aim to predict the crowd distribution in the near future given sequential frames of a crowd video without any identity annotations. Studying this research...
Article
Developing a safe and efficient collision-avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generates its paths with limited observation of other robots’ states and intentions. Prior distributed multi-robot collision-avoidance systems often require frequent inter-robot communication or agent-level f...
Article
Full-text available
Crowd counting is challenging due to unconstrained imaging factors, e.g., background clutters, non-uniform distribution of people, large scale and perspective variations. Dealing with these problems using deep neural networks requires rich prior knowledge and multi-scale contextual representations. In this paper, we propose a Cross-stage Refinement...
Article
Data representation learning is one of the most important problems in machine learning. Unsupervised representation learning becomes meritorious as it has no necessity of label information with observed data. Due to the highly time-consuming learning of deep-learning models, there are many machine-learning models directly adapting well-trained deep...
Article
Supervoxel segmentation algorithm has been applied as a preprocessing step for many vision tasks. However, existing supervoxel segmentation algorithms cannot generate hierarchical supervoxel segmentation well preserving the spatiotemporal boundaries in real time, which prevents the downstream applications from accurate and efficient processing. In...
Article
Mobile devices usually mount a depth sensor to resolve ill-posed problems, like salient object detection on cluttered background. The main barrier of exploring RGBD data is to handle the information from two different modalities. To cope with this problem, in this paper, we propose a boundary-aware cross-modal fusion network for RGBD salient object...
Article
Full-text available
In this paper, we propose a novel deep convolutional neural network (DCNN) for removing snowflakes from light field (LF) images. We observe that snowflakes in LF images always interrupt slopes in background scenes in epipolar plane images (EPIs), which means that snowflakes may be easily detected in EPIs. Our method takes 3D EPI volumes (i.e., stac...
Preprint
Deep reinforcement learning has great potential to acquire complex, adaptive behaviors for autonomous agents automatically. However, the underlying neural network polices have not been widely deployed in real-world applications, especially in these safety-critical tasks (e.g., autonomous driving). One of the reasons is that the learned policy canno...
Article
In this paper, we propose a novel method to generate stereoscopic images from light-field images with the intended depth range and simultaneously perform image super-resolution. Subject to the small baseline of neighboring subaperture views and low spatial resolution of light-field images captured using compact commercial light-field cameras, the d...
Article
Full-text available
In this paper, we study the problem of low-rank tensor completion with the purpose of recovering a low-rank tensor from a tensor with partial observed items. To date, there are several different definitions of tensor ranks.We focus the study on the low tubal rank tensor completion task. Previous works solve the low tubal rank tensor completion/reco...
Preprint
Full-text available
In this paper, we propose a novel iterative multi-task framework to complete the segmentation mask of an occluded vehicle and recover the appearance of its invisible parts. In particular, to improve the quality of the segmentation completion, we present two coupled discriminators and introduce an auxiliary 3D model pool for sampling authentic silho...
Article
Probabilistic Graphical Models (PGMs) are important and active research areas in machine learning and artificial intelligence. The well-known representatives of PGMs include Restricted Boltzmann Machines (RBMs), Deep Belief Networks (DBNs), Deep Boltzmann Machines (DBMs), and their variants. These PGMs open a new dimension of machine learning and d...
Article
In this paper, we propose an approach to estimate and quantify the degree of extraversion for crowd motion based on individual trajectories. Extraversion is a typical personality that is often observed in human behaviors. We present a composite motion descriptor, which integrates the basic motion information and social metrics, to describe the extr...
Article
The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Networks (CNNs). Existing tracking-by-detection based methods, however, fail to track objects with severe appearance variations. This is because the traditional convolutional operation is performed on fixed grids, and thus may not b...
Article
With the advances in commercial light field cameras, light field image processing has attracted considerable attention from researchers. In this paper, we propose a novel method for generating stereoscopic images from a light field image pair with flexible control over the convergence of the virtual stereo cameras. We have developed a light field i...
Preprint
Detection and segmentation of the hippocampal structures in volumetric brain images is a challenging problem in the area of medical imaging. In this paper, we propose a two-stage 3D fully convolutional neural network that efficiently detects and segments the hippocampal structures. In particular, our approach first localizes the hippocampus from th...
Article
Our goal is to navigate a mobile robot to navigate through environments with dense crowds, e.g., shopping malls, canteens, train stations, or airport terminals. In these challenging environments, existing approaches suffer from two common problems: the robot may get frozen and cannot make any progress toward its goal, or it may get lost due to seve...
Preprint
Full-text available
We aim to enable a mobile robot to navigate through environments with dense crowds, e.g., shopping malls, canteens, train stations, or airport terminals. In these challenging environments, existing approaches suffer from two common problems: the robot may get frozen and cannot make any progress toward its goal, or it may get lost due to severe occl...
Preprint
Full-text available
In recent years, crowd analysis is important for applications such as smart cities, intelligent transportation system, customer behavior prediction, and visual surveillance. Understanding the characteristics of the individual motion in a crowd can be beneficial for social event detection and abnormal detection, but it has rarely been studied. In th...
Preprint
Full-text available
The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Network (CNN). Existing methods, however, fail to track objects with severe appearance variations. This is because the traditional convolutional operation is performed on fixed grids, and thus may not be able to find the correct res...
Preprint
In this paper, we present a decentralized sensor-level collision avoidance policy for multi-robot systems, which shows promising results in practical applications. In particular, our policy directly maps raw sensor measurements to an agent's steering commands in terms of the movement velocity. As a first step toward reducing the performance gap bet...
Article
Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local...
Article
High-speed, low-latency obstacle avoidance that is insensitive to sensor noise is essential for enabling multiple decentralized robots to function reliably in cluttered and dynamic environments. While other distributed multi-agent collision avoidance systems exist, these systems require online geometric optimization where tedious parameter tuning a...
Article
In this paper, we present an approach that utilizes multiple exemplar agent-based motion models (AMMs) to extract motion features (representing crowd behaviors) from the captured crowd trajectories. In the exemplar-based framework, we propose an iterative optimization algorithm to measure the correlation between any exemplar AMM and the trajectory...
Article
In this paper, we present a novel method to recognize the types of crowd movement from crowd trajectories using agent-based motion models (AMMs). Our idea is to apply a number of AMMs, referred to as exemplar-AMMs, to describe the crowd movement. Specifically, we propose an optimization framework that filters out the unknown noise in the crowd traj...
Article
Existing computational models for salient object detection primarily rely on hand-crafted features, which are only able to capture low-level contrast information. In this paper, we learn the hierarchical contrast features by formulating salient object detection as a binary labeling problem using deep learning techniques. A novel superpixelwise conv...
Article
With recent advances in distributed virtual worlds, online users have access to larger and more immersive virtual environments. Sometimes the number of users in virtual worlds is not large enough to make the virtual world realistic. In our paper, we present a crowd simulation algorithm that allows a large number of virtual agents to navigate around...
Article
Full-text available
We present a multiple-person tracking algorithm, based on combining particle filters and RVO, an agent-based crowd model that infers collision-free velocities so as to predict pedestrian's motion. In addition to position and velocity, our tracking algorithm can estimate the internal goals (desired destination or desired velocity) of the tracked ped...
Article
Full-text available
We introduce a novel method to predict pedestrian trajectories using agent-based velocity-space reasoning for improved human-robot interaction. This formulation models the trajectory of each moving pedestrian in a robot's environ-ment using velocity obstacles and learns the simulation parameters based on tracked data. The resulting motion model for...
Article
Full-text available
We present an information-theoretic method to measure the similarity between a given set of observed, real-world data and visual simulation technique for aggregate crowd motions of a complex system consisting of many individual agents. This metric uses a two-step process to quantify a simulator's ability to reproduce the collective behaviors of the...
Conference Paper
We present a new algorithm to simulate a variety of crowd behaviors using the Discrete Choice Model (DCM). DCM has been widely studied in econometrics to examine and predict customers' or households' choices. Our DCM formulation can simulate virtual agents' goal selection and we highlight our algorithm by simulating heterogeneous crowd behaviors: e...
Article
Full-text available
Dynamic external and internal articulator motions are integrated into a low-cost data-driven three-dimensional talking head in this paper. External and internal articulations are defined and calibrated from the video streams and the videofluoroscopy to a generic 3D talking head model. Three different deformation modes in relation to pronunciation...

Network

Cited By

Projects