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Previous studies on the interaction of collinear acoustic waves have been devoted to waves propagating

along pure modes directions of cubic crystals. In this paper, we show that the calculations can be

readily extended to all crystal point groups. Nonlinearity parameters characterizing the nonlinear

interactions are defined here. The effective third order elastic constants involved in the parameters

can be calculated by using the method presented in this paper. Our results are very useful for the study

of elastic nonlinearity of crystals with any given symmetry. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4865271]

I. INTRODUCTION

It is well known that interaction of collinear acoustic

waves will generate their harmonic waves and waves with the

sum and difference frequencies of the interacting waves. The

nonlinear effects have been used to determine the third and

higher order elastic constants of materials. Those higher order

constants characterize the anharmonicity of crystal lattice and

are important for understanding of many properties of crystals,

such as thermal transportation, temperature and pressure de-

pendence of second order elastic constants, attenuation of

high frequency phonons, etc.

The interactions of elastic waves and harmonic genera-

tions have been studied theoretically and experimentally.1–7

The third-order elastic constants (TOECs) and their tempera-

ture dependence of some cubic crystals have been determined

by using ultrasonic second harmonic generation technique.8,9

Anisotropic nonlinear elastic properties of an icosahedral qua-

sicrystal were also studied.10,11 Recently, the interactions of

shear waves have been calculated and observed for cubic and

other crystals although the interaction is prohibited for ho-

mogenous isotropic solids.12–17 Nevertheless, most of those

studies concentrate on longitudinal waves and isotropic solids

or cubic crystals to which many useful materials, especially

metals, belong to. It is known that many useful materials

developed in recent decades belong to crystal systems other

than cubic. For example, domain engineered PMN-PT single

crystals will have 2 mm, 4 mm, or 3 m macroscopic symme-

tries when poled along the direction other than their natural

polarization direction.18 Investigations on the elasticity nonli-

nearity of these new crystals are needed for high power appli-

cations but have not been done up to date.

Here, we attempt to expand previous theories on interac-

tions of collinear acoustic waves in cubic system to cover all

crystal point groups in order to facilitate further experiments

on crystals. First, the basic equations up to quadratic nonli-

nearity are given. It is known that among the 32 point

groups, 20 are piezoelectric. But in the present calculations,

only elastic nonlinearity has been taken into account. The

nonlinear interactions of collinear acoustic waves propagat-

ing along pure mode directions of crystals are examined,

which will simplify both the calculations and experiments.

Nonlinearity parameters characterizing the interactions are

defined. Some specific TOECs or their combinations will

appear in the nonlinearity parameters, so that we can use

these nonlinearity parameters to obtain the effective TOECs.

Finally, the calculated results for tetragonal crystals (point

group 422, 4 mm, �42 m, 4/mmm) are listed as an example to

demonstrate the procedure.

II. BASIC EQUATIONS

The basic equations involving interactions of collinear

acoustic waves have been given in the literature as briefly

described below.7,17 Referring to un-deformed state, the

stress equation of motion can be written as19

diMq0€uM ¼
@PJi

@aJ
: (1)

Here, q0 is the mass density of the crystal in its un-deformed

or natural state, diM is a Kronecker delta employing to trans-

late from the un-deformed state to deformed state or vice

versa, PJi is the first Piola-Kirchhoff stress tensor, which is a

two-point tensor, i.e., it represents the force per unit of area

of an internal plane in un-deformed state and measured in

the deformed state

PJi ¼
@xi

@aI

@u
@gIJ

: (2)

In Eq. (2), aJ and xj are the positions of the same material

particle before and after the deformation, u is the strain

energy density, which is invariant under allowed symmetry

operations and can be written as the function of the

Lagrangian strain tensor

u ¼ 1

2
cIJKLgIJgKL þ

1

6
cIJKLMNgIJgKLgMN þ � � � : (3)
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Here, the subscripts are written in capital letters to empha-

size that the quantities are evaluated in the un-deformed

state. The Lagrangian strain is defined as

gKL ¼
1

2
½uK;L þ uL;K þ uP;LuP;K�: (4)

Thus, up to quadratic nonlinearity, the Piola-Kirchhoff

stress tensor can be written as

PJi ¼ diI

�
cIJKLuK;L þ

�
1

2
cIJNLdMK þ cNJKLdIM

þ 1

2
cIJKLMN

�
uK;LuM;N

�
: (5)

Substituting the results into stress equation of motion,

the displacement equation of motion, up to quadratic nonli-

nearity, can be written as

q0€uI ¼ cIJKLuK;LJ þ ~cIJKLMNðuK;LJuM;N þ uK;LuM;NJÞ; (6a)

~cIJKLMN ¼
1

2
cIJNLdMK þ cNJKLdIM þ

1

2
cIJKLMN: (6b)

Here, the translation Kronecker delta is eliminated. (Note:

~cIJKLMN do not have the same symmetry as cIJKLMN .)

For calculation of plane wave propagation, it is often

convenient to select the coordinate system in such a way that

the direction of wave propagation is parallel to one axis of

the coordinate system. When the a-axis is selected as the

direction of wave propagation, the particle displacements are

only spatially dependent on coordinate a. In this case,
@u
@b ¼ @u

@c ¼ 0, Eqs. (6) can be rewritten as7,17

q0€uJ � cJ111u1;11 � cJ121u2;11 � cJ131u3;11

¼ fJðu1; u2; u3Þ; ðJ ¼ 1� 3Þ; (7)

where the a-axis is referred to as 1-axis. Here, coma in sub-

script means partial differential with respect to the spatial

coordinate following the comma:

fJ ¼ gJ1u1;11u1;1 þ gJ2u2;11u2;1 þ gJ3u3;11u3;1

þ gJ6ðu1;11u2;1 þ u1;1u2;11Þ þ gJ5ðu1;11u3;1 þ u1;1u3;11Þ
þ gJ4ðu2;11u3;1 þ u2;1u3;11Þ (8)

and

g11 ¼ ð3c11 þ c111Þ; g22 ¼ ð3c16 þ c666Þ; g33 ¼ ð3c15 þ c555Þ;
g12 ¼ g26 ¼ ðc11 þ c166Þ; g13 ¼ g35 ¼ ðc11 þ c155Þ;
g14 ¼ g25 ¼ g36 ¼ c156; g15 ¼ g31 ¼ ðc15 þ c115Þ;
g16 ¼ g21 ¼ ðc16 þ c116Þ;
g23 ¼ g34 ¼ ðc16 þ c556Þ; g24 ¼ g32 ¼ ðc15 þ c566Þ:

Instead of cIJ and cIJK in Eq. (7), the cIJ and cIJK are used to

emphasis those constants referred to the calculation coordi-

nates. Also abbreviated indices are used. Usually, the

right-hand-side of Eq. (7) is considered as a perturbation, the

nonlinear equations can be solved by successive approxima-

tion method, i.e., let

uI ¼ du
ðIÞ
I þ d2u

ðIIÞ
I þ � � � : (9)

Here, d � 1 indicates the order of magnitude of the succes-

sive terms in Eq. (9). Then, the first-order and second-order

approximate equations will be given by

q0

€u
ðIÞ
1

€u
ðIÞ
2

€u
ðIÞ
3

2
6664

3
7775�

c11 c16 c15

c16 c66 c56

c15 c56 c55

2
64

3
75

u
ðIÞ
1;11

u
ðIÞ
2;11

u
ðIÞ
3;11

2
6664

3
7775 ¼ 0; (10a)

q0

€u
ðIIÞ
1

€u
ðIIÞ
2

€u
ðIIÞ
3

2
6664

3
7775�

c11 c16 c15

c16 c66 c56

c15 c56 c55

2
64

3
75

u
ðIIÞ
1;11

u
ðIIÞ
2;11

u
ðIIÞ
3;11

2
6664

3
7775

¼
g11 g12 g13 g14 g15 g16

g21 g22 g23 g24 g25 g26

g31 g32 g33 g34 g35 g36

2
64

3
75

h1

h2

h3

h4

h5

h6

2
6666666664

3
7777777775
; (10b)

where gIJ is given by Eq. (8) and

hJ ¼ u
ðIÞ
J;1u

ðIÞ
J;11 ðfor J ¼ 1; 2; 3Þ

ha ¼ u
ðIÞ
I;1u
ðIÞ
J;11 þ u

ðIÞ
I;11u

ðIÞ
J;1 ½for a ¼ 4ðI; J ¼ 2; 3Þ;

5ðI; J ¼ 1; 3Þ; 6ðI; J ¼ 1; 2Þ�: (10c)

It is seen that the first-order approximation equations are

just the unperturbed linear ones. For plane wave solutions,

the equations are the same as the Christoffel equations.20

There are three acoustic wave modes: one quasi-longitudinal

and two quasi-shear waves, all can propagate along the

a-direction in crystals. Usually, the particle displacement

component uJ includes contributions of all three quasi-

longitudinal and quasi-shear waves. That is, three displace-

ment components may be coupled to each other. Obviously,

when c15 ¼ c16 ¼ 0, the displacement u1 will not be coupled

to u2 and u3. In this case, the direction of wave propagation

is the first kind of pure mode direction. If the axes 2 and 3 of

calculation coordinate system are selected to be coincident

with polarization directions of two pure shear waves, then

c56 ¼ 0.20 Therefore, crystals having the first kind of

pure mode directions are those with certain symmetries for

which c15 ¼ c16 ¼ c56 ¼ 0. For the second kind of pure

mode directions, the following conditions must be satis-

fied:20 c15 6¼ 0; c16 ¼ c56 ¼ 0 or c16 6¼ 0; c15 ¼ c56 ¼ 0 .

In ultrasonic measurements, the first kind of pure mode

or simply the pure mode direction is preferred, since the

interpretation of experimental results becomes simpler.

Since there is no coupling between displacement compo-

nents, it can be assumed that u
ðIÞ
1 6¼ 0; u

ðIÞ
2 ¼ u

ðIÞ
3 ¼ 0 when

dealing with longitudinal waves and u
ðIÞ
1 6¼ 0; u

ðIÞ
1 ¼ u

ðIÞ
3 ¼ 0,

or u
ðIÞ
3 6¼ 0; u

ðIÞ
1 ¼ u

ðIÞ
2 ¼ 0 or u

ðIÞ
1 ¼ 0; u

ðIÞ
2 6¼ 0; u

ðIÞ
3 6¼ 0
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when dealing with shear waves. Besides, it is known that the

second harmonic or waves with sum or difference frequen-

cies (it will be called mix frequency wave hereafter) can

reach the intensity strong enough to be detected in the meas-

urements only when the interaction are said to be synchro-

nous, that is, propagation velocities of the wave involved in

the interaction are the same as the freely propagating second

harmonic or mix frequency waves. Therefore, the second

harmonic or mix frequency wave of shear waves generated

through nonlinear interaction of longitudinal wave or vice

versa is not relevant in practical experiments. Ignoring the

non-synchronous interactions, the successive approximation

equations for pure mode directions can be simplified. For the

pure longitudinal wave, it is given by

q0 _u
ðIÞ
1 � c11u

ðIÞ
1;11 ¼ 0; (11a)

q0€u
ðIIÞ
1 � c11u

ðIIÞ
1;11 ¼ ð3c11 þ c111Þu

ðIÞ
1;1u

ðIÞ
1;11: (11b)

Along a pure mode direction, the velocities of the two shear

waves may or may not be the same. For the latter case, the

successive approximate equations can be written as

q0 €u
ðIÞ
2 � c66u

ðIÞ
2;11 ¼ 0; (12a)

q0€u
ðIIÞ
2 � c66u

ðIIÞ
2;11 ¼ c666u

ðIÞ
2;1u

ðIÞ
2;11; (12b)

or

q0 €u
ðIÞ
3 � c55u

ðIÞ
3;11 ¼ 0; (13a)

q0€u
ðIIÞ
3 � c55u

ðIIÞ
3;11 ¼ c555u

ðIÞ
3;1u

ðIÞ
3;11: (13b)

For the former case, which is often referred to degenerate

case, the self-action as well as cross-action between two shear

waves are all synchronous. Thus, the equations are written as

q0€u
ðIÞ
2 � cu

ðIÞ
2;11 ¼ 0; (14a)

q0€u
ðIÞ
3 � cu

ðIÞ
3;11 ¼ 0; (14b)

q0€u
ðIIÞ
2 � cu

ðIIÞ
2;11 ¼ c666u

ðIÞ
2;1u

ðIÞ
2;11 þ c556u

ðIÞ
3;1u

ðIÞ
3;11

þ c566ðu
ðIÞ
2;1u

ðIÞ
3;11 þ u

ðIÞ
2;11u

ðIÞ
3;1Þ; (15a)

q0€u
ðIIÞ
3 � cu

ðIIÞ
3;11 ¼ c566u

ðIÞ
2;1u

ðIÞ
2;11 þ c555u

ðIÞ
3;1u

ðIÞ
3;11

þ c556ðu
ðIÞ
2;1u

ðIÞ
3;11 þ u

ðIÞ
2;11u

ðIÞ
3;1Þ: (15b)

Here, c ¼ c55 ¼ c66.

III. GENERATIONS OF SECOND HARMONIC AND MIX
FREQUENCY WAVES

Since there is no mode coupling for pure mode direc-

tions, the second-order approximate equations can be solved

separately for longitudinal and shear waves. For example, let

the solution of Eq. (11a) be

u
ðIÞ
1 ¼ A1 sinðx1t� k1aÞ þ A2 sinðx2t� k2aÞ: (16)

Here, k2
j ¼ q0x

2
j =c11 (j¼ 1, 2). Then (11b) becomes

q0€u
ðIIÞ
1 � c11u

ðIIÞ
1;11 ¼

1

2
ð3c11 þ c111Þ k3

1A2
1 sin½2ðx1t� k1aÞ�

�
þ k3

2A2
2 sin½2ðx2t� k2aÞ�

þ k1k2ðk1 þ k2ÞA1A2 sin

� ½ðx1 þ x2Þt� ðk1 þ k2Þa�
þ k1k2ðk1 � k2ÞA1A2 sin

� ½ðx1 � x2Þt� ðk1 � k2Þa�g: (17)

Equation (17) is a linear inhomogeneous differential

equation. The terms in the right-hand-side of the equation

represents the self-action and cross-action of the fundamen-

tal waves, which can be considered as the driving force for

the generation of the second harmonic and mix frequency

waves. Since Eq. (17) becomes linear, the particular solu-

tions for the second harmonic and mix frequency waves can

be written separately as

u
ðIIÞ
1 ¼ U2x1

cos½2ðx1t� k1aÞ� or

u
ðIIÞ
1 ¼ U2x2

cos½2ðx2t� k2aÞ�; (18a)

U2x1
¼ 1

8
bLk2

1A2
1a or U2x2

¼ 1

8
bLk2

2A2
2a; (18b)

for the second harmonic wave and

u
ðIIÞ
1 ¼ Ux16x2

cos½ðx16x2Þt� ðk16k2Þa�; (18c)

Ux16x2
¼ 1

4
bLk1k2A1A2a; (18d)

for waves with sum or difference frequency. Here,

bL ¼ �
3c11 þ c111

c11

(19)

is the so-called nonlinearity parameter.21 It is seen that the

amplitude of the second harmonic or mix frequency waves

driven by the synchronous interactions will increase with

propagation distance a. So their energy will be accumulated

with propagation to reach a measurable intensity when the

sample is long enough. Both the second order elastic constants

(SOECs) and TOECs are involved in the defined nonlinearity

parameter. The former represents the contribution from the

induced nonlinearity due to the finite strain while the latter is

the contribution of the intrinsic nonlinearity of the materials.

Similar results can be obtained for shear waves. The

non-degenerate shear waves can have exactly the same solu-

tions as the longitudinal wave but with the corresponding

nonlinearity parameters given by

bS1 ¼ �
c555

c55

or bS2 ¼ �
c666

c66

: (20a,b)

For degenerated shear waves, the setup in an experiment

may be in such a way that the transducers with angular fre-

quencies x1 and x2 are used to generate the fundamental
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shear waves simultaneously. In this case, the solutions of the

first order approximate equations (14a) and (14b) can be

written as

u
ðIÞ
2 ¼ A1 sinðx1t� k1aÞ þ A2 sinðx2t� k2aÞ; (21a)

u
ðIÞ
3 ¼ B1 sinðx1t� k1aÞ þ B2 sinðx2t� k2aÞ; (21b)

where k1;2¼x1;2

ffiffiffiffiffiffiffiffi
q=c

p
are the wave number of the funda-

mental shear waves. Substituting Eqs. (21) into Eqs. (15a)

and (15b) gives

q0€u
ðIIÞ
2 � cu

ðIIÞ
2;11 ¼

1

2
k3

1ðc666A2
1 þ c556B2

1 þ 2c566A1B1Þsin½2ðx1t� k1aÞ�

þ 1

2
k3

2ðc666A2
2 þ c556B2

2 þ 2c566A2B2Þsin½2ðx2t� k2aÞ�

þ 1

2
k1k2ðk1 þ k2Þ½ðc666A1A2 þ c556B1B2 þ c556ðA1B2 þ A2B1Þ�sin½ðx1 þ x2Þt� ðk1 þ k2Þa�

þ 1

2
k1k2ðk1 � k2Þ½ðc666A1A2 þ c556B1B2 þ c556ðA1B2 þ A2B1Þ�sin½ðx1 � x2Þt� ðk1 � k2Þa�; (22a)

q0€u
ðIIÞ
3 � cu

ðIIÞ
3;11 ¼

1

2
k3

1ðc566A2
1 þ c555B2

1 þ 2c556A1B1Þsin½2ðx1t� k1aÞ�

þ 1

2
k3

2ðc566A2
2 þ c555B2

2 þ 2c556A2B2Þsin½2ðx2t� k2aÞ�

þ 1

2
k1k2ðk1 þ k2Þ½ðc566A1A2 þ c555B1B2 þ c556ðA1B2 þ A2B1Þ�sin½ðx1 þ x2Þt� ðk1 þ k2Þa�

þ 1

2
k1k2ðk1 � k2Þ½ðc566A1A2 þ c555B1B2 þ c556ðA1B2 þ A2B1Þ�sin½ðx1 � x2Þt� ðk1 � k2Þa�: (22b)

In the case of two fundamental shear waves are with different amplitudes and polarizations, it may be assumed that

A1 ¼ A cos u; B1 ¼ A sin u; A2 ¼ B cos w; B2 ¼ B sin w; (23)

where / and w are the angles of the polarization directions of the driving transducers of the fundamental waves with the direc-

tion of displacement u2, A and B the amplitudes of the shear waves with frequencies x1 and x2, respectively. Then Eqs. (22)

can be rewritten as

q0 €u
ðIIÞ
2 � cu

ðIIÞ
2;11 ¼

1

2
k3

1ðc666 cos2 uþ c556 sin2 uþ c566 sin 2uÞA2sin½2ðx1t� k1aÞ�

þ 1

2
k3

2ðc666 cos2 wþ c556 sin2 wþ c566 sin 2wÞB2sin½2ðx2t� k2aÞ�

þ 1

2
k1k2ðk1 þ k2Þ½ðc666 cos u cos wþ c556 sin u sin wþ c556 sinðuþ wÞ�AB sin½ðx1 þ x2Þt� ðk1 þ k2Þa�

þ 1

2
k1k2ðk1 � k2Þ½ðc666 cos u cos wþ c556 sin u sin wþ c556 sinðuþ wÞ�AB sin½ðx1 � x2Þt� ðk1 � k2Þa�;

(24a)

q0 €u
ðIIÞ
2 � cu

ðIIÞ
2;11 ¼

1

2
k3

1ðc566 cos2uþ c555 sin2uþ c556 sin 2uÞA2 sin½2ðx1t� k1aÞ�

þ 1

2
k3

2ðc566 cos2 wþ c555 sin2 wþ c556 sin 2wÞB2sin½2ðx1t� k1aÞ�

þ 1

2
k1k2ðk1 þ k2Þ½ðc566 cos u cos wþ c555 sin u sin wþ c556sinðuþ wÞ�AB sin½ðx1 þ x2Þt� ðk1 þ k2Þa�

þ 1

2
k1k2ðk1 � k2Þ½ðc666 cos u cos wþ c556 sin u sin wþ c556 sinðuþ wÞ�AB sin½ðx1 � x2Þt� ðk1 � k2Þa�:

(24b)

It is seen that Eqs. (24) are similar to Eq. (17). The interactions of two degenerate shear waves will generate the second

harmonic waves of each fundamental wave as well as mix frequency waves. Those waves can be expressed, respectively,

by
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u
ðIIÞ
2 2x1

¼ U2�2x1
cos½2ðx1t� k1aÞ�; u

ðIIÞ
2 2x2

¼ U2�2x2
cos½2ðx2t� k1aÞ�;

u
ðIIÞ
2 x16x2

¼ U2 x16x2
cos½ðx16x2Þt� ðk16k2Þa�; (25a-f)

u
ðIIÞ
3 2x1

¼ U3�2x1
cos½2ðx1t� k1aÞ�; u

ðIIÞ
3 2x2 ¼ U3�2x2

cos½2ðx2t� k2aÞ�;

u
ðIIÞ
3 x16x2

¼ U3 x16x2
cos½ðx16x2Þt� ðk16k2ÞaÞ�;

where

U2�2x1
¼ 1

8
bS3k2

1A2a; U2�2x2
¼ 1

8
bS4k2

2B2a;

U3�2x1
¼ 1

8
bS5k2

1A2a; U3�2x2
¼ 1

8
bS6k2

2B2a; (26a-f)

U2�x16x2
¼ 1

4
bS7k1k2ABa; U3�x16x2

¼ 1

4
bS8k1k2ABa;

and

bS3 ¼ �
c666 cos2 uþ c556 sin2 uþ c566 sin 2u

c
;

bS4 ¼ �
c666 cos2 wþ c556 sin2wþ c566 sin 2w

c
;

bS5 ¼ �
c566 cos2 uþ c555 sin2 uþ c556 sin 2u

c
; (27a-f)

bS6 ¼ �
c566 cos2 wþ c555 sin2wþ c556 sin 2w

c
;

bS7 ¼ �
c666 cos u cos wþ c556 sin u sin wþ c566 sinðuþ wÞ

c
;

bS8 ¼ �
c566 cos u cos wþ c555 sin u sin wþ c556 sinðuþ wÞ

c
:

In experiments, it is quite often that one single broadband

transducer is used to generate two fundamental shear waves

with slightly different frequencies. In this case, u ¼ w and

bS3 ¼ bS4 ¼ bS7 ¼ �
c666 cos2 uþ c556 sin2 uþ c566 sin 2u

c
;

bS5 ¼ bS6 ¼ bS8 ¼ �
c566 cos2 uþ c555 sin2 uþ c556 sin 2u

c
:

(28a,b)

Meanwhile, if one receiving transducer is used to detect one

of the second harmonic or mix frequency waves, the ampli-

tude detected by the receiving transducer may be expressed

as

U ¼ U2 cos hþ U3 sin h; (29)

where U2 and U3 represent the amplitudes of the second har-

monic or mix frequency waves along the directions of dis-

placements u2 and u3, respectively, / is the angle between

polarization direction of the receiving transducer and dis-

placement u2. Usually, h ¼ u.

It is seen from Eqs. (20a,b) and (27a–f) that only intrin-

sic nonlinearity of materials contributes to the quadratic non-

linear effects of pure shear waves.

IV. EFFECTIVE SOECS AND TOECS OF CRYSTALS

The above discussions show that the TOECs, which

characterize the quadratic nonlinear interactions of collinear

acoustic waves along pure mode directions of crystals, are

c111, c555, c666, c556, and c566. Those constants are referred to

the calculation coordinates, which may be different from the

constitutive coordinates. They can be related to constants

defined under constitutive coordinates through the following

tensor transformation:

cIJKLMN ¼ aIPaJQaKRaLSaMTaNUcPQRSTU; (30)

where aAB is the element of coordinate transformation ma-

trix, i.e., the direction cosine of rotated A-axis with respect

to the B-axis of original coordinate. Thus, cIJKLMN may be

just a single cIJKLMN constant or a combination of several

cIJKLMN , so that it is called an effective TOEC.

The pure mode directions for various crystals were

researched by Brugger.20 The relation between the calcula-

tion and constitutive coordinates, i.e., aAB can be found in

Ref. 20 where the a-axis (or 1-axis) of the calculation coordi-

nate is always parallel to the direction of wave propagation,

that is, to the displacement direction of the pure longitudinal

mode wave. Other two axes are parallel to displacement

directions of the two pure mode shear waves, as mentioned

above.

The TOEC is a six-order tensor. There are total 729 ele-

ments, which means that there are 729 summations in Eq.

(30). But the symmetries of TOECs make the maximum in-

dependent TOECs being 56. The 56 independent TOECs can

be grouped by the possible ways for the index to permute

their positions, as shown in Table I.

Now, for simplicity, we define the following coeffi-

cients, here the superscripts x,y,z in Ax;y;z
ijklmn correspond to the

lower indexes of the relevant third order elastic constants

cxyz:

TABLE I. The 56 independent TOECs (M indicates the number of the possi-

ble ways for indexes to permute their positions).

M TOECs

1 c111; c222; c333

3 c112; c113; c122, c133; c223; c233

6 c114; c115; c116,c224; c225; c226,c334; c335; c336, c123

8 c444; c555; c666

12 c124; c125; c126, c134; c135; c136, c234; c235; c236,

c144; c155; c166, c344; c355; c366, c254; c255; c266

24

c145; c146; c156, c245; c246; c256, c345; c346;

c356, c445; c446; c455, c466; c556; c566

48 c456
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A
ðpppÞ
ijklmn ¼ apbpcp; for c111; c222; c333

A
ðppqÞ
ijklmn ¼ apbpcq þ apbqcp þ aqbpcp for c112; c113; c122; c133; c223; c233

A
ðppQÞ
ijklmn ¼ apbpcQ þ apbQcp þ aQbpcp for c114; c115; c116; c224; c225; c226; c334; c335; c336

A
ðpqQÞ
ijklmn ¼ apðbqcQ þ bQcqÞ þ aqðbpcQ þ bQcpÞ þ aQðbpcq þ bqcpÞ

for c124; c125; c126; c134; c135; c136; c234; c235; c236

A
ðpQQÞ
ijklmn ¼ apbQcQ þ aQbpcQ þ aQbQcp; for c144; c155; c166; c244; c255; c266; c344; c355; c366;

A
ðpQRÞ
ijklmn ¼ apðbQcR þ bRcQÞ þ bpðaQcR þ aRcQÞ þ cpðaQbR þ aRbQÞ

for c145; c146; c156; c245; c246; c256; c345; c346; c356

A
ðQQRÞ
ijklmn ¼ aQbQcR þ aQbRcQ þ aRbQcQ for c445; c446; c455; c466; c556; c566

A
ðQQQÞ
ijklmn ¼ aQbQcQ for c444; c555; c666

A
ð123Þ
ijklmn ¼ a1ðb2c3 þ b3c2Þ þ a2ðb1c3 þ b3c1Þ þ a3ðb1c2 þ b2c1Þ for c123

A
ð456Þ
ijklmn ! a4ðb5c6 þ b6c5Þ þ a5ðb4c6 þ b6c4Þ þ a6ðb5c4 þ b4c5Þ for c456:

(31)

Here,

ap ¼ aipajp; bp ¼ akpalp; cp ¼ ampanp;

aQ ¼ aipajq þ aiqajp

bQ ¼ akpalq þ akqalp cQ ¼ ampanq þ amqanp;

p; q ¼ 1; 2; 3; Q;R ¼

4

5

6

p; q ¼ 2; 3

p; q ¼ 3; 1

p; q ¼ 1; 2:

8>>><
>>>:

(32)

Every A
ðÞ
ijklmn includes the summation of M times of products

aisajtakualvamwanx, Then, the summation in Eq. (30) can be

grouped into N terms, where N is equal to the number of in-

dependent TOECs of the crystals determined by the crystal

symmetry.

For example, the independent and non-zero TOECs of

tetragonal point groups 422, 4 mm, �42 m, and 4/mmm are 12

and 20, respectively, i.e., c111 ¼ c222, c112 ¼ c122, c113 ¼ c223,

c123,c133 ¼ c233, c144 ¼ c255, c155 ¼ c244, c166 ¼ c266, c333,

c344 ¼ c355, c366, c456.

The TOEC under an arbitrary rotated coordinate can be

written as

cijklmn ¼ ðA
ð111Þ
ijklmn þ A

ð222Þ
ijklmnÞc111 þ ðAð112Þ

ijklmn þ A
ð122Þ
ijklmnÞc112 þ ðAð113Þ

ijklmn þ A
ð223Þ
ijklmnÞc113 þ A

ð123Þ
ijklmnc123

þðAð133Þ
ijklmn þ A

ð233Þ
ijklmnÞc133 þ ðAð144Þ

ijklmn þ A
ð255Þ
ijklmnÞc144 þ ðAð155Þ

ijklmn þ A
ð244Þ
ijklmnÞc155

þðAð166Þ
ijklmn þ A

ð266Þ
ijklmnÞc166 þ A

ð333Þ
ijklmnc333 þ ðAð344Þ

ijklmn þ A
ð355Þ
ijklmnÞc344 þ A

ð366Þ
ijklmnc366 þ A

ð456Þ
ijklmnc456: (33)

Obviously, the calculations of Eq. (33) can be implemented

by computer. The calculated effective TOECs for pure mode

directions of tetragonal point groups 422, 4 mm, �42 m, and

4/mmm are shown in Table II. Here, the symbols for pure

mode directions defined in Ref. 20 are used. For other point

groups, the formula similar to Eq. (33) can be easily obtained.

Similarly, the effective SOECs involved in above equa-

tions can be written as

cijkl ¼ aipajqarkaslcpqrs: (34)

They can be calculated by the same method as that for effec-

tive TOECs given above or through M-matrix listed by Auld

on the cover page of his book.22 The calculated results for

tetragonal crystals20 (point group 422, 4 mm, �42 m, and

4/mmm) are also shown in Table II.

V. DISCUSSION AND CONCLUSION

In this paper, interactions of collinear elastic waves

propagating along pure mode directions of crystals have

been investigated. The nonlinearity parameters describing

the interactions are given. The effective TOECs involved in

the parameters are c111, c555, and c666 (when shear waves are

non-degenerated) or c111, c555, c666, c556, and c566 (when

shear waves are degenerated). A computerized method to

calculate those effective TOECs of crystals is presented. It is

found that the calculation method presented in this paper
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will give the same results listed in Ref. 17 for cubic crystal,

which testifies the validity of our method.

It is observed that c111 never vanishes. Thus, quadratic

nonlinear interaction of longitudinal waves is always present

regardless of the direction of wave propagation. From

Eq. (30),

c111 ¼ c111111 ¼ a1pa1qa1ra1sa1ta1ucpqrstu

¼ a6
11c111 þ a6

12c222 þ a6
13c333 þ � � � : (35)

It is known that c111, c222, and c333 are never zero for

any crystal (including isotropic solids). Among a11, a12, and

a13, at least one of them is non-zero, hence, c111 is never

zero, which is at least equal to one of c111, c222, and c333. But

for c555 and c666, the situation is different

c555 ¼ c131313 ¼ a1pa3qa1ra3sa1ta3ucporstu;

c666 ¼ c121212 ¼ a1pa2qa1ra2sa1ta2ucpqrstu: (36a,b)

They involve the product of elements of the transforma-

tion matrix in different rows. If one of aij is zero then the

products a1pa2qa1ra2sa1ta2u ¼ 0, a1pa3qa1ra3sa1ta3u ¼ 0.

Besides, c555 and c666 themselves are zero for some crystals

due to symmetry. Thus, the probability for c555 and c666 to be

zero is very high. Our calculations show that c555 is zero for

most of pure mode directions and c666 is zero for all the

TABLE II. Effective SOECs and TOECs of tetragonal crystals (Tetragonal 422, 4 mm, �42 m, and 4/mmm).

TIa TIba TIpa TIc TIj

c11 c33 1

2
c11 cos4 lþ 1

2
c12 cos4 lþ c66 cos4 l

þ2c13 cos2 lsin2lþ 2c14 cos2 lsin2l
þc66 sin4 l

c11cos4hþ2 c13 cos2 h sin2h
þ4 c44cos2h sin2h
þc33 sin4h

1

2
c11 þ

1

2
c12

þc66

c11

c55 c44 1

2
c11 cos2 lsin2lþ 1

2
c12 cos2 lsin2l

�2c13 cos2 lsin2lþc33 cos2 lsin2l
þc66 cos2 lsin2lþc44cos22l

c11 cos2h sin2h� 2 c13 cos2h sin2h
þc33 cos2h sin2hþc44cos22h

c44 c44

c66 c44 1

2
c11 cos2l� 1

2
c12 cos2 l

þc44sin2l

c44sin2hþ c66cos2h � 1

2
c12 þ

1

2
c11

c66

c15 0 � 1

2
c11 cos3l sinl � 1

2
c12 cos3l sinl

�c66cos3l sinlþc33cos l sin3l
þ2 c44 cos l sinl cos2l
þc13cos l sinl cos2l

�c11cos3h sin hþ c33 cos h sin3h
þ2 c44 cos h sin h cos2h
þc13 cos h sin h cos2h

0 0

c16 0 0 0 0 0

c56 0 0 0 0 0

c111 c333 1

4
c111cos6lþ 3

4
c112cos6l

þ3c166cos6lþ 3

2
c113 cos4l sin2l

þ 3

2
c123cos4l sin2lþ 6 c144cos4l sin2l

þ6 c155cos4l sin2lþ 3 c366 cos4l sin2l
þ12c456cos4l sin2lþ 3c133 cos2 l sin4l
þ12 c344 cos2 l sin4lþ c333sin6l

c111cos6hþ 3c113cos4h sin2h
þ12 c155cos4h sin2h
þ3c133 cos2 h sin4h
þ12 c344 cos2 h sin4h
þc333sin6h

1

4
C111 þ

3

4
C112

þ3c166

c111

c555 0 � 1

4
c111cos3l sin3l� 3

4
c112cos3l sin3l

þ 3

2
c113cos3l sin3lþ 3

2
c123cos3l sin3l

�3 c133cos3l sin3l� 3c166cos3l sin3l
þc333cos3l sin3lþ3c366 cos3l sin3l

� 3

2
c144 cos l sinl cos22l� 3

2
c155cos l sinl cos22l

þ 3c344cos l sinl cos22l� 3 c456cos l sinl cos22l

�c111cos3h sin3h
þ3 c113cos3h sin3h
�3 c133cos3h sin3h
þc333cos3h sin3h

�3 c155 cos h sin h cos22h
þ3 c344 cos h sin h cos22h

0 0

c666 0 0 0 0 0

c556 0 0 0 0 0

c566 0 � 1

4
c111cos3l sinlþ 1

4
c112 cos3l sinl

þ 1

2
c113 cos3l sinl� 1

2
c123 cos3l sinl

þ c344cos l sin3lþc456 cos l sin3l

þc144 �
1

2
cos l sin3l� cos l sinl cos2l

� �

þc155 �
1

2
cos l sin3lþcos l sinl cos2l

� �

�c166 cos3h sin hþc366cos3h sin h
�c144 cos h sin3hþc344 cos h sin3h
þ2 c456 cos h sin h cos2h

0 0

aThese are the second kind of pure mode directions. The shear wave with particle displacement along the 2-axis is a pure one. Another shear wave is coupled

to the longitudinal wave.
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calculated cases. The quadratic nonlinear interaction of shear

waves is still prohibited for many pure mode directions.

Our results presented in this paper provide a general

method to calculate effective TOECs, which can be used for

any symmetry systems and will be very helpful for experi-

mentally investigating the nonlinear elastic properties of

crystals.
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APPENDIX: aAB FOR TETRAGONAL CRYSTALS

Tetragonal (422, 4 mm, �42 m, 422)

1. TIa

a ¼
0 0 1

cos h sin h 0

�sin h cos h 0

2
4

3
5 Along 001½ �

� 	

h can have any value in the case of degenerate transverse

waves.

2. TIb a ¼

ffiffiffi
1

2

r
cos l

ffiffiffi
1

2

r
cos l sin l

�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

�
ffiffiffi
1

2

r
sin l �

ffiffiffi
1

2

r
sin l cos l

2
6666664

3
7777775

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C

2A� Bþ 2C

r
¼ cos l;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� B

2A� Bþ 2C

r
¼ sin l

A ¼ c11 � 2c44 � c13; B ¼ c11 � 2c66 � c12;

C ¼ c33 � 2c44 � c13

l has a special value.

3. TIp

a ¼
cos h 0 sin h

0 1 0

�sin h 0 cos h

2
64

3
75

� Along a special direction on x-z planeð Þt
cos h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C=ðAþ CÞ

p

h has a special value.

4. TIc

a¼

ffiffiffiffiffiffiffiffi
1=2

p ffiffiffiffiffiffiffiffi
1=2

p
0

�
ffiffiffiffiffiffiffiffi
1=2

p ffiffiffiffiffiffiffiffi
1=2

p
0

0 0 1

2
64

3
75 Alongdiagonalof x-yplaneð Þ

5. TIj

a ¼
1 0 0

0 1 0

0 0 1

2
4

3
5

(Along [100] or [010]).
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