Wenqi Yao

Wenqi Yao
National University of Singapore | NUS · Department of Mathematics

About

12
Publications
842
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
66
Citations
Additional affiliations
September 2009 - July 2014
Peking University
Position
  • PhD Student

Publications

Publications (12)
Article
Full-text available
The stationary Wigner inflow boundary value problem (SWIBVP) is modeled as an optimization problem by using the idea of shooting method in this paper. To remove the singularity at \(v=0\), we consider a regularized SWIBVP, where a regularization constraint is considered along with the original SWIBVP, and a modified optimization problem is establis...
Article
Full-text available
We propose a Deuflhard-type exponential integrator Fourier pseudo-spectral (DEI-FP) method for solving the “Good” Boussinesq (GB) equation. The numerical scheme is based on a Deuflhard-type exponential integrator and a Fourier pseudo-spectral method for temporal and spatial discretizations, respectively. The scheme is fully explicit and efficient d...
Article
Full-text available
In Li et al. (J Sci Comput 62:317–335, 2015), we thoroughly investigated the structure of the kernel space of the discrete one-dimensional (1D) non-polar optical phonon (NPOP)-electron scattering matrix, and proposed a strategy to setup grid points so that the uniqueness of the discrete scattering kernel is preserved. In this paper, we extend the a...
Preprint
We propose an exponential integrator Fourier pseudospectral method DEI-FP for solving the "Good" Boussinesq (GB) equation. The numerical scheme is based on a Deuflhard-type exponential integrator and a Fourier pseudospectral method for temporal and spatial discretizations, respectively. The scheme is fully explicit and efficient due to the fast Fou...
Article
Liquids on a solid surface patterned with microstructures can exhibit the Cassie-Baxter (Cassie) state and the wetted Wenzel state. The transitions between the two states and the effects of surface topography, surface chemistry as well as the geometry of the microstructures on the transitions have been extensively studied in earlier work. However,...
Article
The minimum action method, developed by E et al. (2004) [1] based on the least action principle from the Wentzell-Freidlin theory of large deviations, is applied to barotropic flow over topography. Application is presented for Kuroshio. The optimal dynamical paths for transitions between the small and large meander states are obtained by minimizing...
Article
We investigate the discretization of of an electron–optical phonon scattering using a finite volume method. The discretization is conservative in mass and is essentially based on an energy point of view. This results in a discrete scattering system with elegant mathematical features, which are fully clarified. Precisely the discrete scattering matr...
Article
Full-text available
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a...
Article
Full-text available
By the moment closure of the Boltzmann transport equation, the extended hydrodynamic models for electron transport have been derived in Cai et al. (J Math Phys 53:103503, 2012). With the numerical scheme developed in Li et al. (2012) recently, it has been demonstrated that the derived extended hydrodynamic models can capture the major features of t...
Conference Paper
A globally hyperbolic high-order moment method of the Boltzmann transport equation (BTE) is proposed in [1], [2], and here it is extended for the BTE with the electron-phonon scattering term to simulate a silicon nano-wire (SNW). Convergence with respect to the order of the moment system and the characteristics of SNW including the I-V curve are st...
Article
Full-text available
In this paper, we extend the method in Cai et al. (J Math Phys 53:103503, 2012) to derive a class of quantum hydrodynamic models for the density-functional theory (DFT). The most popular implement of DFT is the Kohn–Sham equation, which transforms a many-particle interacting system into a fictitious non-interacting one-particle system. The Kohn–Sha...
Article
Full-text available
A globally hyperbolic moment system upto arbitrary order for the Wigner equation was derived in [6]. For numerically solving the high order hyperbolic moment system therein, we in this paper develop a preliminary numerical method for this system following the NRxx method recently proposed in [8], to validate the moment system of the Wigner equation...

Network

Cited By