DOI: 10.1007/s11676-007-0010-3

# Fire cycle of the Canada's boreal region and its potential response to global change

ZHANG Quan-fa<sup>1</sup>, CHEN Wen-jun<sup>2</sup>

<sup>1.</sup>Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China <sup>2.</sup>Applications Division, Canada Centre for Remote Sensing, 588 Booth Street, Ottawa, Ontario K1A 0Y7, Canada

**Abstract:** Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30–130 years and 25–234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCM1, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.

Keywords: Boreal forest; Fire cycle; Global change; Spatial variability

# Instruction

Fire cycle (van Wanger 1978) or fire rotation (Heinselman, 1973) is an indicator of fire frequency measuring the time (years) required to burn an area equal in size to the area under consideration. It has been an important component in maintaining boreal ecosystems for the past 10 000 years since the last glaciation (Payette et al. 1985). Ecosystems adapted to the various fire regimes in the boreal region along the migration of species from south and other refugees of glacier, but they are not necessarily in equilibrium with the climate (Overpeck et al. 1990; Campbell et al. 1993). Studies revealed a complex interaction among landscape, fire regimes, and vegetation types (Bergeron et al. 1993; Suffling 1995; Hely et al. 2001). Changes in fire cycles have significant consequences on landscape pattern by affecting regenerating pathways of forest after fires. Interactions of fire cycle and species' reproductive characteristics could determine vegetation distribution pattern of a landscape (Suffling et al., 1988; Bergeron and Dansereau, 1993; Johnson at al. 1995; Suffling 1995). For instance, an increase of fire frequency would cause shifts of vegetation zones northwards and increases of deciduous species (e.g., poplar) importance in landscape of cen-

Received: 2006-11-17; Accepted : 2006-12-28

© Northeast Forestry University and Springer-Verlag 2007

Electronic supplementary material is available in the online version of this article at http://dxdoi.org/10.1007/s11676-007-0010-3

Responsible editor: Zhu Hong

tral Canada (Suffling 1995) and coniferous dominance in the east (Bergeron *et al.* 1993; Gauthier *et al.* 1996).

On daily and monthly bases, fire occurrence is closely related to weather conditions, while fire regime at decadal to century scales is coupled with climate (Johnson et al. 1991; Johnson 1992; Larsen 1996). Over the past few hundred years, climate has changed dramatically across Canada (Grove 1988; Gullett et al. 1992). Studies revealed consequent changes in fire cycles and feedbacks linking landscape pattern of the boreal ecosystems (Wein et al. 1983; Suffling et al. 1988; Baker, 1992, 1995; Johnson et al. 1995; Razt 1995; Campbell mand Flannigan 2000; Weir et al. 2000). There were also attempts to project future fire activities by using fire weather index (FWI) or its derivation of seasonal severity rating (SSR) and yet changes in fire frequency (fire cycle is an indicator of fire frequency) were difficult to quantify because of the poor correlation between burned areas and SSR (Flannigan et al. 1991; Flannigan et al. 1998). Moreover, fire cycle is a long-term and cumulative indicator of fire frequency over a large area while FWI/SSR indicates daily representation of fire danger at a specific location (Flannigan et al. 1991; Weber et al. 1997).

On the other hand, society's perception of fire has changed as well. Policy concerning wildfire has evolved from suppression to current prescribed burning (e.g., using fire as a management tool for forest ecosystem management), and there are some forms of fire management programs in place over the boreal region (Ward and Mawdsley, 2000). Because forested landscape pattern at any moment is a reflection of and a mosaic from the past dynamics fire cycles (Larsen 1996; Johnson *et al.* 1995, 1998). Changes in policy would have had profound impacts on landscape pattern (Baker 1992, 1995; Beverly 1998; Weir and Johnson, 1998; Ward *et al.* 2001). Thus, formulation of forest fire management has to consider past changes in fire cycles and the potential impact of climatic change in the near future.

This study is to summarize the changes in fire cycles and the spatial variability over the past century across Canada's boreal region. Multiple regressions were employed to provide insight in the relationships between fire cycle and climatic variables (e.g.,

Foudation project: The research was financially supported by the Program for Energy Research and Develop (PERD) of Canada and "The Hundred-Talent Project" of the Chinese Academy of Sciences (0108140).

Biography: ZHANG Quan-fa (1965-), male, Ph.D. in Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China. Email: <u>gzhang@wbgcas.cn</u>

temperature and precipitation). By using developed empirical relationships and the widely used climate change scenarios of CGCM1, CGCM2, and HadGM2, potential changes of fire cycles in response to climate change and the implications on forest management are discussed afterwards.

# Data collections and analysis

The authors extracted data from the literature and the survey was intended to be as inclusive as possible (Table 1; Fig. 1). The compiled dataset included publications in which fire cycles were explicitly estimated or from which fire cycles could be derived. Studies have revealed changes in fire cycles attributable to climatic change and human activities (e.g., fire suppression). To demonstrate the relationships between fire cycle and climatic conditions, we acquired Canada's historic climate dataset of the past century from Environment Canada (New *et al.* 2000). Data

in fire season (defined as the time period of April-October) including mean temperature and total precipitation and the departures from the 1961–1990 normals were derived from the dataset. Considering that fire cycle could be significantly different by inclusion of one or few fire seasons (Beverly 1998), we also derived the maximum temperature and its departures from the 1961–1990 normal for each fire cycle study site over its respective time period of consideration. Because the climatic dataset was limited in the time period of 1901-1998, the analysis was carried out on the study sites with fire cycle estimations within this period (Table 1). Selection of the climatic variables was also limited by the data source, which included only monthly temperature and precipitation (New *et al.* 2000). Annual mean temperature departure from the 1961–1990 normal in the region was also obtained from Environment Canada (Gullett *et al.* 1992).

Table 1. Fire cycle studies in the Canada's boreal region

| Eco Zone               | Location                                      | Total study Record type |                                        | Dominant species                         | Record    | Fire cycle (a)                        |                                   |                      | Reference                    |
|------------------------|-----------------------------------------------|-------------------------|----------------------------------------|------------------------------------------|-----------|---------------------------------------|-----------------------------------|----------------------|------------------------------|
| (ESWG, 1996)           |                                               | area (km <sup>-</sup> ) |                                        |                                          | period    | Before Little<br>Ice Age (c.<br>1850) | Settlement<br>epoch (c.<br>1930s) | Suppres-<br>sion era |                              |
| Boreal Cordil-<br>lera | Kluane National Park, Yukon                   | 1541                    | Aerial photos                          | White spruce                             | 1890-1970 |                                       |                                   | 160                  | Alexander and Dube 1983      |
|                        | Kluane National Park, Yukon                   | 22100                   | Aerial photos, fire<br>scars           | White spruce                             | 1880-1980 |                                       |                                   | 179                  | Hawkes 1983                  |
| Taiga Plains           | Inuvik, NW territories                        | 140 km<br>transect      | Stand samplings                        | Black spruce                             | 1970's    |                                       |                                   | 100                  | Black and Bliss 1976         |
|                        | Abitau-Dunvegan lakes, NW<br>Territories      | 4100                    | Stand samplings,<br>fire scars         | Black spruce, paper<br>birch             | ~1976     |                                       | "                                 | 100                  | Maikawa and Kerhaw<br>1976   |
|                        | Caribou Range, NW Territory                   | 105000                  | Fire reports                           | Black spruce                             | 1966-1972 |                                       |                                   | 110                  | Johnson and Rowe 1975        |
| pla                    | Great Slave Lake, NW Territories              | 105000                  | Samplings, fire<br>reports, fire scars | Black spruce, jack<br>pine, white spruce | 1966-1975 |                                       |                                   | 150                  | Johnson 1981                 |
| aiga Shi               | Whirlwind Lake, NW Territories                | 25                      | Fire reports                           | Jack pine, black<br>spruce               | 1966-1972 |                                       |                                   | 37                   | Johnson 1979                 |
| West T                 | Siltaza Lake, NW Territories                  | 25                      | Fire reports                           | Black spruce, jack pine                  | 1966-1972 |                                       |                                   | 102                  | Johnson 1979                 |
|                        | Rutledge Lake, NW Territories                 | 100                     | Fire reports                           | Black spruce, jack<br>pine               | 1966-1972 |                                       |                                   | 70                   | Johnson 1979                 |
|                        | Pilot Lake, NW Territories                    | 100                     | Fire reports                           | Jack pine, black<br>spruce               | 1966-1972 |                                       |                                   | 51                   | Johnson 1979                 |
|                        | Candle Lake, Saskatchewan                     | Samplings               | Stand ages                             | Balsam fir, paper<br>birch, black spruce | ~1970s    |                                       |                                   | 120                  | Dix and Swan 1971            |
|                        | Prince Alberta National Park,<br>Saskatchewan | 1898                    | Time-since-fire<br>map                 | many boreal species                      | 1745-1995 | 25                                    | 25                                | 645                  | Weir <i>et al.</i> 2000      |
|                        | Prince Alberta National Park,<br>Saskatchewan | 1563                    | Time-since-fire<br>map                 | many boreal species                      | 1745-1995 | 15                                    | 75                                |                      | Weir <i>et al.</i> 2000      |
| su                     | Northeastern Alberta                          | 73600                   | Fire records                           | Aspen, black spruce,<br>white spruce     | 1961-1996 |                                       |                                   | 482                  | Cumming 2001                 |
| cal Plai               | Wood Buffalo National Park,<br>Alberta        | 44800                   | Fire reports                           | Black spruce                             | 1950-1985 |                                       |                                   | 69                   | Larsen and MacDonald<br>1995 |
| Bor                    | Wood Buffalo National Park,<br>Alberta        | 44870                   | Sampling, fire<br>maps, fire scars     | Black spruce, white<br>spruce, jack pine | 1750-1989 | 38                                    |                                   | 63                   | Larsen 1997                  |
|                        | Wood Buffalo National Park,<br>Alberta        | Samplings               | Fire-origin map                        | White spruce                             | 1951-1995 |                                       |                                   | 186                  | Timoney et al. 1997          |
|                        | Rutledge Lake, Northwest Territo-<br>ries     | 105000                  | Fire scars                             | Jack pine, black<br>spruce               |           |                                       |                                   | 100                  | van Wagner 1978              |
|                        | west-central Alberta                          | 6500                    | Stand ages                             | Pine, white spruce                       | 1915-1960 |                                       | 50                                | 65                   | van Wagner 1978              |
|                        | Foothill model forests, Alberta               |                         | Aerial photos                          |                                          | 1790-1950 |                                       |                                   | 80                   | Andison 1997                 |
| West Borcal<br>Shield  | Northern Ontario                              | 1,100 km<br>transect    | Fire records                           | Boreal species                           |           |                                       | 40                                |                      | Suffling 1995                |
|                        | Wabakimi Provincial Park, Ontario             | 8920                    | Fire reports                           | Jack pine, black<br>spruce               | 1858-1978 |                                       | 37                                | 360                  | Beverly 1998                 |
|                        | Northwest Ontario                             | 300 km<br>transect      | Fire reports                           | Jack pine, black<br>spruce               | 1921-1976 |                                       |                                   | 120                  | Suffling et al. 1988         |

| Eco Zone          | Location                                                   | Total study                  | Record type                                   | Dominant species            | Record     | Fire cycle (a)                        |                                   |                      | Reference                    |
|-------------------|------------------------------------------------------------|------------------------------|-----------------------------------------------|-----------------------------|------------|---------------------------------------|-----------------------------------|----------------------|------------------------------|
| (ESWG, 1996)      |                                                            | area (km²)                   |                                               |                             | period     | Before Little<br>Ice Age (c.<br>1850) | Settlement<br>epoch (c.<br>1930s) | Suppres-<br>sion era |                              |
|                   | Northern Ontario                                           | 43506<br>inventory<br>stands | Forest resource<br>inventory, fire<br>reports | Black spruce, jack<br>pine  | 1860-1975  |                                       | 60                                | 120                  | Suffling et al. 1982         |
|                   | Newfoundland                                               |                              | Fire records                                  | Boreal forests              | 1910-1970  |                                       |                                   | 400                  | Wilton and Evans 1974        |
| East Taiga Shield | Southeastern Labrador, Newfound-<br>land                   | 48500                        | Aerial photos, fire reports                   | Black spruce                | 1870-1979  |                                       |                                   | 500                  | Foster 1983                  |
|                   | Northern Quebec                                            | 4725                         | Fire scars, aerial photos                     | Black spruce                | 1920-1984  |                                       |                                   | 100                  | Payette et al. 1989          |
|                   | Northern Quebec                                            | 14850                        | Fire scars, aerial photos                     | Black spruce                | 1920-1984  |                                       |                                   | 180                  | Payette et al. 1989          |
|                   | Northern Quebec                                            | 17100                        | Fire scars, aerial photos                     | Black spruce                | 1930-1984  |                                       |                                   | 1,460                | Payette et al. 1989          |
|                   | Central Quebec                                             | 3844                         | Fire-origin map                               | Boreal forest species       | 1700-1999  | 69                                    | 123                               | 273                  | Bergeron et al. 2001         |
|                   | Laurentian Highlands, Central<br>Quebec                    | large area                   | Fire records, stand<br>samplings              | Spru                        | 1972-1974  | 70                                    |                                   | 100                  | Cogbill 1985                 |
|                   | Abitibi east, Quebec                                       | 3294                         | Fire-origin map                               | Boreal forest species       | 1850-1999  |                                       | 86                                | 191                  | Bergeron et al. 2001         |
| ield              | Barron Township, Ontario                                   | 186                          | Fire scars, reports                           | White pine, aspen           | 1939-1974  | 80                                    |                                   | 70                   | Cwynar 1977 1978             |
| East Borcal Shi   | Lake Duparquet, Quebec                                     | 50                           | Fire scars                                    | Red pine stands             | 1800-1982  | 30                                    |                                   | 68                   | Bergeron and Brisson<br>1990 |
|                   | Lake Duparquet vicinity, Quebec                            | 2000                         | Fire scars                                    | White spruce, aspen         | 1760-1988  | 63                                    |                                   | 99                   | Bergeron 1991                |
|                   | Islands of Lake Duparquet, Quebec                          | 50                           | Fire scars                                    | White spruce, balsam<br>fir | 1729-1988  | 74                                    |                                   | 112                  | Bergeron 1991                |
|                   | Abitibi west, Quebec                                       | 15793                        | Fire-origin map                               | Boreal forest species       | 1700-1999  | 83                                    | 146                               | 325                  | Bergeron et al. 2001         |
|                   | Lake Abitibi model forest, Ontario                         | 8245                         | Fire-origin map                               | Boreal forest species       | 1700-1999  | 132                                   | 234                               | 521                  | Bergeron et al. 2001         |
|                   | Intensive and measured fire man-<br>agement zones, Ontario | 492810                       | Fire reports                                  | Boreal species              | up to 2000 |                                       | 65                                | 604                  | Ward <i>et al</i> . 2001     |

Continue Table 1.

Multiple regression analyses on the relationship between fire cycles and climatic variables were initially conducted using fire cycle studies (Table 3). Since the total precipitations are different across Canada's landmass (Stone *et al.* 2000), changes in precipitation (e.g., departure from the 1961–1990 normal) were calculated as the percentages of the 1961–1990 normal for the respective ecozone. That would also be compatible with the climate change scenarios (e.g., decrease or increase in precipitation by percentages). Multiple regression analyses were conducted to derive the relationship between fire cycle and climatic variables over the past century thereafter. We focused the study in the west taiga shield, boreal plains, east boreal shield and east taiga shield, because there were too few fire studies in other ecozones (Fig. 1).



Fig. 1 Ecozones of Canada's boreal forest region (ESWG 1996) and locations of fire cycle studies (Table 1)

Climate change scenarios of CGCM1, CGCM2, and HadGM2 were derived from the websites of IPCC and the Canadian Institute for Climate Studies (http://ipcc-ddc.cru.uea.ac.uk/; http://www.cics.uvic.ca/scenarios/index.cgi? Other\_Data; Price *et al.* 2001). Projected changes in growing season (April-October) temperature and total precipitation in 2050 were derived from the datasets and utilized to assess possible changes in fire cycle using the developed empirical relationships using fire cycle studies (Table 4).

## **Results and discussion**

Spatial variations and temporal changes of fire cycles

Studies revealed that fire cycles were less than 80 years except one report of 132 years (Bergeron *et al.* 2001) in the eastern Ontario before the Little Ice Age (c. 1850s), (Tables 1, 2). Since then, reported fire cycles were greater than 400 years in the east and highly varied in the rest of the Canada's boreal region. They were in a range of 25–234 years before the large-scale settlement (c. 1930s) but not significantly different from these before the Little Ice Age at the continental scale. Fire cycles had dramatically increased for the past few decades especially in the eastern region and the diversion between the east and west had been established. Changes of fire cycles during the past 20 years (1980-2000) suggested that shorter fire cycles were less than 100 years in drier west and longer ones greater than 700 years in the moister east boreal shield (Table 2).

Spatial variability of fire cycle indicated a closely relationship among fire cycle and landscape pattern (Bergeron 1991). For instance, fire cycles were significantly different among different vegetation types within a landscape (Suffling *et al.* 1982; Larsen 1997; Timoney *et al.* 1992). A study in a transect of north Ontario (Suffling *et al.* 1988) revealed varying fire cycles from 110 to more than 1000 years, in a short distance. That indicated the influence of underlying heterogeneity of landscapes on fire cycle. A small sampling area over a short time period of consideration could result in significant differences in estimated fire cycles because one fire incident might burn over the entire area of consideration. For instance, fire cycles were 742 years in the Wabakimi Provincial Park of Ontario between 1979 and 1994 and decreased to 202 years if areas burnt in 1995-1996 were included in the estimation (Beverly 1998).

## Relationship between fire cycle and climatic variables

A nation-wide study on the changes in temperature revealed a statistically significant increase of  $1.1^{\circ}$ C during the period 1895-1991 (Gullett *et al.* 1992). There were three phases, warming periods before 1940s and after 1970s and one cooling period in between over the past century. Coincidently these phases corresponded well the epochs when fire cycles changed (Gullett *et al.* 1992; Table 2) and shorter fire cycles were observed in ecozones with larger increases in temperature over the past century (Table 2).

Table 2. Fire cycles by ecozone (ESWG 1996)

| Ecozone            |                                       | Temperature                       |                    |           |                            |  |
|--------------------|---------------------------------------|-----------------------------------|--------------------|-----------|----------------------------|--|
|                    | Before Little<br>Ice Age<br>(c. 1850) | Settlement<br>epoch<br>(c. 1930s) | Suppression<br>era | 1980-2000 | change<br>(1895-1991)<br>B |  |
| Boreal Cordillera  |                                       |                                   | 160-179            | 264       | 0.8                        |  |
| Taiga Plain        |                                       |                                   | 100                | 90        | 1.7 *                      |  |
| West Taiga Shield  |                                       |                                   | 37-150             | 47        | 1.7 *                      |  |
| Boreal Plain       | 15-38                                 | 25–75                             | 63-645             | 132       | 1.3 *                      |  |
| West Boreal Shield |                                       | 40-60                             | 120-360            | 88        | 1.3 *                      |  |
| East Taiga Shield  |                                       |                                   | 100-400            | 162       | 0.5                        |  |
| Hudson Bay         |                                       |                                   |                    | 307       | 0.5                        |  |
| East Boreal Shield | 30-132                                | 65–234                            | 68-604             | 728       | 0.5                        |  |
| Total              |                                       |                                   |                    | 145       | 1.1 *                      |  |

**Notes:** A----Fire cycles for the periods of before Little Ice Age, Settlement epoch, and Suppression era were; extracted from the literature. Those of 1980-1990 were estimated using areas burnt from Frnech; *et al.* (2001) and Amiro *et al.* (2001) for the time period 1980-1994 and AVHRR hotspot for 1995-2000; Indicating changes in fire cycle. B---Data derived from Gullett and Skinner (1992). \*---Variables utilized in multiple regression analysis.

However, there were no significant correlations between fire cycles and temperature or other climatic variables in the fire cycle study sites over the respective time period nation-wide. Rather, relationships at ecozone level were evident (Table 3). In the west taiga shield, fire cycle was related to various temperature measurements and precipitation departure from the 1961-1990 normal ( $r^2 = 0.36$ ), (Table 4). We chose the mean temperature to conduct a multiple regression analysis and obtained the following equation to describe their relationship in the ecozone:

$$F_{\rm C} = 296.64 - 41.58 \times T{\rm m} + 9.07 \times \Delta P \ ({\rm r}^2 = 0.56) \ (1)$$

where,  $F_C$ , Tm and  $\Delta P$  were fire cycle, mean temperature and changes (%) of precipitation over the 1961-1990 normal, respectively.

In the east boreal shield and east taiga shield ecozones, fire cycle seemed to correlate with the maximum temperature departure from the 1961-1990 normal ( $r^2 = 0.30$ ) and precipitation departure from the 1961-1990 normal (Fig. 3A,  $r^2 = 0.24$ ), (Table 4). Inclusion of the estimated fire cycles using fire statistics of 1960-2000 would increase ( $r^2$ ) from 0.35 to 0.42, respectively. It indicated the importance of few warm seasons in determining fire cycle in the region. A multiple regression was conducted and the relationship between fire cycle and climatic variables could be described using the following equation.

$$F_{\rm C} = 818.77 - 174.15 \times \Delta T x + 42.30 \times \Delta P \quad (r^2 = 0.56) \quad (2)$$

where,  $F_{\rm C}$ ,  $\Delta T x$  and  $\Delta P$  were fire cycle, maximum temperature departure from the 1961–1990 normal, and precipitation departure from the 1961–1990 normal, respectively.

Relationships between fire cycle and the maximum temperature departure from 1961–1990 normal ( $r^2 = 0.30$ ) and the total precipitation departure from the 1961-1990 normal ( $r^2 = 0.39$ ) were also observed in the boreal plains ecozone (Table 4). A multiple regression analysis revealed the following equation to predict fire cycle in the region.

$$F_{\rm C} = 909.90 - 384.39 \times \Delta T x + 20.48 \times \Delta P \quad (r^2 = 0.49)$$
(3)

where,  $F_C$ ,  $\Delta Tx$  and  $\Delta P$  were fire cycle, maximum temperature departure from the 1961–1990 normal, and precipitation departure from the 1961–1990 normal, respectively.

Table 3. Correlation (r<sup>2</sup>) between fire cycles and climatic variables by ecozone (ESWG 1996)

| Ecozone (ESWG, 1996)                 | Mean Tem- | Mean          | Maximum     | Maximum       | Mean temperature   | Total precipitation | Maximum temperature |
|--------------------------------------|-----------|---------------|-------------|---------------|--------------------|---------------------|---------------------|
|                                      | perature  | Precipitation | Temperature | precipitation | departure from the | departure from the  | departure from the  |
|                                      | (°C)      | (mm)          | (°C)        | (mm)          | 1961-1990 normal   | 1961-1990 normal    | 1961-1990 normal    |
| West Taiga Shield                    | 0.72*     | 0.04          | 0.46        | 0.00          | 0.52               | 0.36*               | 0.71                |
| East taiga shield east boreal shield | 0.05      | 0.02          | 0.04        | 0.00          | 0.00               | 0.24*               | 0.30*               |
| Boreal plains                        | 0.11      | 0.34          | 0.00        | 0.27          | 0.16               | 0.39*               | 0.30*               |

Notes: \*----Variables utilized in multiple regression analysis.

While there were too few fire studies to characterize the relationships between fire cycle and climatic variables in other ecozones, the analyses here suggested that there were different dominant climatic variables in different regions and the importance of few warming seasons over the 1961–1990 normal climatic conditions in determining regional fire cycles. That explained why inclusion of few warming seasons might greatly change the fire cycle of a region (Beverly 1998). That also implied that over a large and relatively uniform landscape (e.g., ecozone) fire cycle over a certain time period had been relating to the climatic fluctuation or changes at the site of consideration. Of course, fire cycles were different in various sites over the referenced time period (i.e., 1961–1990) in contrast to the result from the equations. That might result from factors other than climate such as vegetation types, fuel loading and topography (Johnson 1992; Cumming 2001; Timoney *et al.* 1997).

## Potential changes of fire cycles under climate change scenarios

Changes in climatic conditions affected fire cycles in the past (Johnson *et al.* 1991; Johnson 1992; Larsen 1996). Projected fire weather index (FWI) and its derivation of seasonal severity rating (SSR), under doubling CO<sub>2</sub> would decrease in the east and area burned could be increasing by 40%–50% in the west (Flannigan *et al.* 1991; Weber *et al.* 1997; Flannigan *et al.* 1998). Assuming that there is a one to one relationship between FWI and area burned (Michael Flannigan, personal communication), fire frequency would likely decease by 10%-15% (a fire cycle of 60–80 years considering 40%–50% increase in area burning) in the central and western Canada. Uncertainty remains on the assumption of the relationship between FWI, a short-term index of climatic conditions, and fire cycle, a long-term and cumulative indicator of fire activities.

Using the derived relationships between fire cycles and climatic variables (Eqs. 1-3) and climate change scenarios (Table

4), we assessed the possible changes of fire cycles responsive to climatic warming in the three ecozones. The relationships were empirical and the underlying assumption was that wildfires would respond to future warming similar to its manner during the past century. Reported fire cycle was around 40-150 years in the west taiga shield ecozone for the past century (Table 1), and an increase of growing season mean temperature by 1.86-2.75°C and about 5% increase of precipitation with respect to the 1961-1990 normal (Table 4) would result in a fire cycle of 80–140 years in the region. Similarly, we estimated, using Eq. 2, that fire cycle would be more than 700 years in the east boreal shield and east taiga shield. Projected fire cycles ranged from 300 to 400 years using scenarios of CGCM2 and HadCM2 in the boreal plains ecozone. However, estimated fires cycle was negative using scenario CGCM1. Of course, the result was unrealistic and due to the smaller increase of precipitation form scenario CGCM1 (Table 4). Overall, these estimates seemed to well correspond to those derived from fire weather index (Flannigan and van Wagne 1991; Weber and Flannigan, 1997; Flannigan et al. 1998). It should be pointed out that the projected fire cycles were averages for the ecozones. At a specific location within the ecozones, fire cycle might be different dependent upon the heterogeneity of landscape and spatial variability in the magnitude of climatic changes (e.g., temperature and precipitation) (Price et al. 2001)

#### Table 4. Climate change scenarios

|                                      | Temp      | berature | departure from | n the 1961- | Precipitation departure from the1961-1990 normal (%) |      |           |           |            |
|--------------------------------------|-----------|----------|----------------|-------------|------------------------------------------------------|------|-----------|-----------|------------|
| Ecozone (ESWG 1996)                  | CGCM1GSAX |          | CGCM2GSA2      |             | HadCM2GSAX                                           |      | CGCM1GSAX | CGCM2GSA2 | HadCM2GSAX |
|                                      | Maximum   | Mean     | Maximum        | Mean        | Maximum                                              | Mean |           |           |            |
| West Taiga Shield                    | 2.60      | 2.75     | 2.40           | 2.56        | 1.74                                                 | 1.86 | 6.75      | 3.61      | 7.22       |
| Borel Plain                          | 2.63      | 2.57     | 2.24           | 2.35        | 1.67                                                 | 1.93 | 1.99      | 12.10     | 7.76       |
| East taiga shield east boreal shield | 2.13      | 2.28     | 2.13           | 2.29        | 1.54                                                 | 1.67 | 6.81      | 8.43      | 10.16      |

Studies revealed changes of species distribution ranges and disturbance regimes in response to climatic change in the past (Overpeck *et al.* 1990; Davis *et al.* 2001), and few assessments indicated shifts of the Canada's boreal forest responsive to further climatic warming (Emanuel *et al.* 1985; Rizzo *et al.* 1992). However, shift in ranges of species distribution is generally slower than the current climate warming (Davis 1989) and focus needs to be on the species survival in the current range and migration to new locations (likely northwards). Changes in fire cycles as indicated in this study determine how long an individual plant can grow and become maturity before next fire returns. Thus, investigating the response of ecosystems to climatic change must incorporate changes of fire cycle.

The number of fire cycle studies limited this approach especially where there were too few studies in some ecozones to develop relationships between fire cycle and climatic variables. The on-going development of the Canada's large-fire database (Amiro *et al.* 2001) will provide an opportunity in quantifying changes in fire cycles over the past century. Time series analysis over different time periods and spatial extents (e.g., ecozone) (Baker 1989) could be employed to develop such relationships and generated a fire cycle "surface" for the Canada's boreal region. That would help in incorporating changes of fire cycles into the study of terrestrial carbon budget (Kabiski *et al.* 1995; Chen *et al.* 2000) and in formulating forest resources management strategy (Bergeron *et al.* 1993; Gauthier *et al.* 1996; Bergeron *et al.* 2001; McRae *et al.* 2001; Harvey *et al.* 2002).

#### Conclusions

In Canada's boreal forest region, there have been changes in fire cycles over the past century and those changes were attributable to climatic change and human interventions. Three epochs, namely pre-Little Ice Age (c. 1850), pre-settlement (c. 1850-1930), and fire suppression era (c. 1930), could be recognized with respect to the stationarity of fire cycles. However, difference in fire cycles between pre-Little Ice Age and settlement was not significant. Regression analyses indicated that fire cycles in four ecozones namely, west taiga shield, boreal plains, and the combination of east taiga and boreal shield, were relating to the growing season (April-October) temperature and precipitation departure from the 1961–1990 normal. Assessment of climate change demonstrated that fire cycle would be shortened in the west taiga (50–60 years) and boreal plain (300 years) and lengthened in the east region (700 years).

# Acknowledgements

We thank Goran Pavlic for data processing, and Robert Whitewood, David Price and Dan McKenney for providing climatic datasets. Thanks are extended to Dr. Robert Fraser, Dr. Mike Flannigan and two reviewers for their constructive comments and Dr. H. Peter White for internal review. The research is financially supported by the Program for Energy Research and Develop (PERD) of Canada and "The Hundred-Talent Project" of the Chinese Academy of Sciences (0108140).

#### References

- Amiro, B.D., Todd, J.B., Wotton, B.M., et al. 2001. Direct carbon emissions from Canadian forest fires, 1959-1999. Can. J. For. Res., 31: 512 – 525.
- Baker, W.L. 1989. Effect of scale and spatial heterogeneity on fire-interval distribution. *Can. J. For. Res.*, 19: 700–706.
- Baker, W.L. 1992. Effects of settlement and fire suppression on landscape structure. *Ecology*, 73: 1879–1887.
- Baker, W.L. 1995. Longterm response of disturbance landscapes to human intervention and global change. *Landscape Ecol.*, 10: 143–159.
- Bergeron, Y. and Brisson, J. 1990. Fire regime in red pine stands at the northern limit of the species range. *Ecology*, **71**: 1352–1364.
- Bergeron, Y. and Dansereau, P. 1993. Predicting the composition of Canadian southern boreal forest in different fire cycles. J. Veg. Sci., 3: 827–832.
- Bergeron, Y. and Flannigan, M. 1995. Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest. *Water Soil and Air Pollution*, 82: 437–444.
- Bergeron, Y., Gauthier, S., Kafka, V., *et al.* 2001. Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry. *Can. J. For. Res.*, **31**: 384–391.
- Bergeron, Y. 1991. The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. *Ecology*, **72**: 1980–1992.
- Beverly, J.L. 1998. Management and history of fire in Wabakimi Provincial Park'. northwestern Ontario. University of Toronto, Toronto. M.S. thesis.
- Black, R.A. and Bliss, L.C. 1978. Recovery sequence of Picea mariana--Vaccinium uliginosum forests after burning near Inuvik, Northwest Territories, Canada. *Can. J. Bot.*, **56**: 2020–2030.
- Campbell, I.D. and Flannigan, M.D. 2000, Long-term perspectives on fire-climate-vegetation relationships in the North American boreal forest. In: E.S. Kasis-chke, and B.J. Stocks (eds), *Fire, climate change, and carbon cycling in the boreal forest.* New York: Springer-Verlag, pp. 151–172.
- Chen, W., Chen, J., Liu, J. et al. 2000. Approaches for reducing uncertainties in regional forest carbon balance. Global Biogeochem. Cycles, 14: 827–838.
- Cihlar, J., Xiao, Q., Chen, J. M., et al. 1998. Classification by Progressive Generalization: a new automated methodology for remote sensing multichannel data, Int.. J. Remote Sens., 19: 2685–2704.
- Cogbill, C.V. 1985. Dynamics of the boreal forests of the Laurentian Highlands, Canada. Can. J. For. Res., 15: 252–261.
- Cumming, S.G. 2001. Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn. *Ecol. Appl.*, **11**: 97–110.
- Cwynar, L.C. 1977. The recent fire history of Barron Township, Algonquin Park. Can. J. Bot., 55: 1524-1538.
- Cwynar, L.C. 1987. Fire and the forest history of the north cascade range. *Ecology*, **68**: 791–802.
- Dix. R.L. and Swan, J.M.A. 1971. The roles of disturbance and succession in upland forest at Candle Lake, Saskatchewan. *Can. J. Bot.*, 49: 657–676.
- Ecological Stratification Working Group (ESWG). 1996. A National Ecologi-cal Framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environ-ment Can-ada, State of Environment Directorate, Ottawa/Hull, pp. 125.
- Emanuel, W.R., Shugart, H.H. and Stevenson, M.P. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. *Climatic Change*, 7: 29–43.

- ZHANG Quan-fa et al.
- Flannigan, M.D. and van Wanger, C.E. 1991. Climate change and wildfire in Canada. *Can. J. For. Res.*, **21**: 66–72.
- Flannigan, M., Campbell, I., Wotton, M., et al. 2001. Future fire in Canada's boreal forest: paleoecology results and general circulation model- regional climate model simulations. Can. J. For. Res., 31: 854–864.
- Flannigan, M.D., Bergeron, Y., Engelmark, O. et al. 1998. Future wildfire in circumboreal forests in relation to global warming. J. Veg. Sci., 9: 469–476.
- Foster, D.R. 1983. The history and pattern of fire in the boreal forest of southeastern Labrador. *Can. J. Bot.*, **61**: 2459–2471.
- French, N.H., Kasischke, E.S., Stocks, B.J., et al. 2000. Carbon release from fires in the North American boreal forest. In: E.S. Kasischke and B.J. Stocks (Eds), Fire, Climate Change and Carbon Cycling in the Boreal Forest, Ecological Studies Series. New York: Springer-Verlag, pp. 377–388.
- Gauthier, S., Leduc, A. and Bergeron, Y. 1996. Forest dynamics modelling under a natural fire cycle: A tool to define natural mosaic diversity in forest management. *Environ. Monitor. Assess.*, **39**: 417–434.
- Grove, J.M. 1988. The Little Ice Age. New York: Methuen, pp. 498.
- Gullett, D.W. and Skinner, W.R. 1992. The state of Canada's climate: tem-perature change in Canada 1895-1991. SOE Report, 92-2, Environment Canada, Ottawa.
- Gutsell, S.L. and Johnson, E.A.1996. How fire scars are formed: coupling a disturbance process to its ecological effect. *Can. J. For. Res.*, 26: 166–174.
- Harvey, B.D., Ledue, A., Gauthier, S. *et al.* 2002. Stand-landscape integration in natural disturbance-based management of the southern boreal forest. *For. Ecol. Manage.*, 155: 369–385.
- Hawkes, B.C. 1983. Fire history and ecology of forest ecosystems in Kluane National Park: fire management implications. In: R.W. Wein, R.R. Riewe, and I.R.M. Methven (eds.), *Resources and dynamics of the boreal zone*, *Proceedings of a conference held at Thunder Bay, Ontario. Canada*: Associa-tion of Canadian Universities for Northern Studies, pp.266–179.
- Heinselman, M.L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. *Quat. Res.*, 3: 329–382.
- Hely, C, Flannigan, M., Bergeron, Y., et al. 2001. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res., 31: 430–441.
- Huggard, D.J. and Arsenault, A. 1999. Comment--reverse cumulative standing age disturbutions in fire-frequency analysis. *Can. J. For. Res.*, 29: 1449–1456.
- Hunter, M.L.Jr. 1993. Natural fire regimes as spatial models for managing boreal forests. *Biol. Conserv.*, 65: 115–120.
- Johnson, E.A. and Rowe. J.S. 1975. Fire in the subarctic wintering ground of the beverley caribou herd. *Am. Midl. Nat.*, **94**: 1–14.
- Johnson, E.A.1979. Fire recurrence in the subartic and its implications for vegetation composition. *Can. J. Bot.*, **57**: 1374–1379.
- Johnson, E.A. 1981. Vegetation organization and dynamics of lichen woodland communities in the Northwest Territories, Canada. *Ecology*, 62: 200–215.
- Johnson, E.A.1992. Fire and vegetation dynamics, studies from the North American boreal forest. New York: Cambridge University Press, pp.129.
- Johnson, E.A., Miyanishi, K. and Weir, J.M.H. 1995. Old-growth, disturbance, and ecosystem management. *Can. J. Bot.*, 73: 918–926.
- Johnson, E.A. and Larsen, C.P.S. 1991. Climatically induced change in fire frequency in the southern Canadian Rockies. *Ecology*, 72: 194–201.
- Johnson, E.A., Miyanishi, K. and O'Brien, N. 1999. Long-term reconstruction of the fire season in the mixedwood boreal forest of Weastern Canada. *Can. J. Bot.*, 77: 1185–1188.
- Johnson, E.A., Miyanishi, K. and Weir, J.M. 1998. Wildfires in the western Canadian boreal forest: landscape patterns and ecosystem management. J. Veg. Sci., 9: 603-610.
- Kasischke, E.S., Christensen, Jr.N.R. and Stocks, B.J. 1995. Fire, global warming and the mass balance of carbon in boreal forest. *Ecol. Appl.*, 5: 437–451.

Larsen, C.P.S. 1996. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. *The Holocene*, **6**: 449–456.

- Larsen, C.P.S. 1997.Spatial and temporal variations in boreal forest fire frequency in northern Alberta. J. Biogeogr., 24: 663–673.
- Larsen, C.P.S. and MacDonald, G.M. 1998. An 840-year record of fire and vegetation in a boreal white spruce forest. *Ecology*, **79**: 106–118.
- Lesieur, D., Gauthier, S. and Bergeron, Y. 2002. Fire frequency and vegetation dynamics for the south-central boreal forest of Quebec, Canada. *Can. J. For. Res.*, **32**: 1996–2009.
- Maikawa, E. and Kershaw, K.A. 1976. Studies on lichen-dominated systems: XIX. Thepostfire recovery sequence of black spruce-lichen woodland in the Abitau Lake Region, N.W.T. Can. J. Bot., 54: 2679–2687.
- McRae, D.J., Duchesne, L.C., Freedman, B., et al. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Enviro. Rev., 9: 223–260.
- Murphy, P.J., Mudd, J.P., Stocks, B.J., et al. 2000. Historical fire records in the north American boreal forest. In: E.S. Kasischke, and B.J. Stocks(eds), *Fire, climate change, and carbon cycling in the boreal forest.* New York: Springer-Verlag, pp. 274–288.
- New, M.G., Hulme, M. and Jones, P.D. 2000. Representing twentieth century space-time climate variability. Part II: Development of a 1901-1996 monthly terrestrial climate fields. J. Climate, 13: 2217–2238.
- Overpeck, J.T., Rind, D. and Goldberg, R. 1990. Climate-induced changes in forest disturbance and vegetation. *Nature*, 343: 51–53.
- Payette, S. and Gagnon, R. 1985. Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. *Nature*, 313: 570–572.
- Payette, S., Morneau, C., Sirois, L. *et al.* 1989. Recent fire history of the northern Quebec biomes. *Ecology*, **70**: 656–673.
- Podur, J., Martell, D.L and. Knight, K. 2002. Statistical quality control analysis of forest fire activity in Canada. *Can. J. For. Res.*, 32: 195–205.
- Price, D.T., McKenney, D.W., Caya, D., et al. 2001. Transient climate change scenarios for high resolution assessment of impacts on Canada's forest eco-systems. Report to Climate Change Action Fund, June 2001. Available from<u>http://www.cics.uvic.ca/scenarios/index.cgi?Transient\_High\_Resolution\_n\_Data</u>
- Ratz, A.1995. Long-term spatial patterns created by fire: a model oriented towards boreal forests. *Int. J. Wildland Fire*, 5: 25–34.
- Reed, W.J. 1994. Estimating the historic probability of stand-replacement fire using the age-class distribution of old-growth forest. *For. Sci.*, **40**: 104–119.
- Reed, W.J., Larsen, C.P.S, Johnson, E.A., *et al.* 1998. Estimation of temporal variation in fire frequency from time-since-fire data. *For. Sci.*, 44: 465–475.

- Rizzo, B. and Wiken, E. 1992. Assessing the sensitive of Canada's ecosystems to climatic change. *Climatic Change*, 21: 37–55.
- Stock, B.J. and Simard, A.J. 1993. Forest fire management in Canada. *Diaster Manage.*, 5: 21–27.
- Stone, D.A., Weaver, A.J. and Zwiers, F.W. 2000. Trends in Canadian precipitation intensity. *Atmosphere-Ocean*, 38: 321–347.
- Suffling, R., Lihou, C. and Morand, Y. 1988. Control of landscape diversity by catastrophic disturbance: a theory and a case study of fire in a Canadian boreal forest. *Environ. Manage.*, **12**: 73–78.
- Suffling, R., Smith, B. and Molin, J.D. 1982. Estimating past forest age distributions and disturbance rates in north-western Ontario: a demographic approach. J. Environ. Manage., 14: 45–56.
- Suffling, R. 1995. Can disturbance determine vegetation distribution during climate warming. A boreal test. J. Biogeogr., 22: 501–508.
- Szeicz J. M. and MacDonald, G. M. 1996. A 930-year ring-width chronology from moisture-sensitive white spruce (Picea glauca Moench) in northwestern Canada. *Holocene*, 6: 345–351.
- Timoney, K.P., Peterson, G. and Wein, R. 1997. Vegetation development of boreal riparian plant communities after flooding, fire, and logging, Peace River, Canada. *For. Ecol. Manage.*, **93**: 101–120.
- Van Wanger, C.E. 1978. Age-class distribution and the forest fire cycle. Can. J. For. Res., 8: 220–227.
- Ward, P.C. and Mawdsley, W. 2000. Fire management in the boreal forests of Canada. In: E.S. Kasischke and B.J. Stocks (eds), *Fire, climate change, and carbon cycling in the boreal forest.* New York: Springer, pp. 66–84.
- Ward, P.C., Tithecott, A.G. and Wotton, B.M. 2001. Reply-A re-examination of the effects of fire suppression in the boreal forest. *Can. J. For. Res.*, 31: 1467–1480.
- Weber, M.G. and Flannigan, M.D. 1997. Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. *Environ. Rev.*, 5: 145–166.
- Wein, R. W. and MacLean, D. A. 1983. An overview of fire in northern eco-systems. In: R. W. Wein, and D. A. MacLean.John (eds), *The role of fire in northern circumpolar ecosystems*. England: Wiley & Sons Chichester, pp 1–18.
- Weir, J.M.H. and Johnson, E.A. 1998. Effects of escaped settlement fires and logging on forest composition in the mixedwood boreal forest. *Can. J. For. Res.*, 28: 459–467.

Weir, J.M.H., Johnson, E.A. and Miyanishi, K. 2000. Fire frequency and the spatial age mosaic of the mixed-wood boreal forest in western Canada. *Ecol. Appl.*, 10: 1162–1177