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This paper investigates the interaction of a small number of modes in the two-fluid Kelvin–Helmholtz instability

at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively

long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and

vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their

effective amplitude. Three distinct stages of interaction have been identified.
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1. Introduction

Kelvin–Helmholtz (KH) instability arises in a hor-
izontally stratified heterogeneous fluid when the differ-
ent layers are in relative motion.[1] The resulting in-
stability is of great importance in many astrophysical
and geophysical situations such as the interaction of
the solar wind with the earth’s magnetosphere,[2] the
jets in nuclei extragalactic radio sources,[3,4] super-
novae explosions,[5−7] the merger of a binary neutron
star system,[8] etc.

There are a number of studies about the single-
wavelength sinusoidal perturbation of the interface be-
tween the fluids.[9−11] If the initial perturbation am-
plitude η0, is much smaller than the wavelength λ,
the perturbation grows exponentially in time. As
the amplitude of the instability becomes larger, non-
linear effects become important and a great deal of
higher harmonics is initiated.[12,13] The nonlinear evo-
lution of single-mode KH instability has been inves-
tigated analytically[14−16] for the weakly nonlinear
stage, experimentally for nonlinear stage[17,18] and
computationally for both weakly and fully nonlinear
stage.[19,20] However, mode coupling is not so clear and
in most physical cases the flow cannot be described by
a single mode. It is important to investigate the mode
coupling in the KH instability especially the nonlinear

regime.
Broadly speaking, we distinguish among three

phases in the evolution of a KH system. Phase I is the
linear regime, when the flow is described adequately
by a linear superposition of the perturbing modes. In
phase II nonlinear effects become significant but the
system can still be analysed in terms of the perturb-
ing modes. In phase III the flow has developed into a
highly disordered regime.

In Section 2 we will briefly introduce the mode
coupling model theoretically. In Section 3 we will
shortly describe the two-dimensional hydrodynamic
code and the method. Then, in Section 4, we shall
first demonstrate mode coupling that occurs during
the second phase of flow evolution, where nonlinear
interaction between modes is already present but prin-
cipal modes can still be identified in the mode spec-
trum. The evolution of a combination of modes will
be compared to the single-mode evolution (when only
one mode is initially present). The interaction is not
expected to be symmetric in wave-number space. We
summarize the work in Section 5.

2. Mode coupling model

At the interface (F (r, t) = 0) of two layer incom-
pressible fluid, the continuous condition of pressure
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can be written as[21]
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The continuous condition of normal velocity can
be written as

−∂F

∂t
= ∇Φ1 · ∇F = ∇Φ2 · ∇F. (2)

Where ρi is density, Φi is velocity potential, fi(t) is
an arbitrary function only relying on time. Physical
quantity of one side of the interface is denoted by the
subscript ‘1’ and the other is ‘2’.

Let y = 0 be the unperturbed surface. Consider-
ing two layer fluid (y > 0 and y < 0) each with a finite
velocity along x direction respectively and ignoring a
potential field, we can write such velocity potential as
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(0)
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Where ϕi(x, t) is the perturbation of velocity poten-
tial.

Expanding ϕi at the unperturbed interface (y =
0) and substituting it into the boundary conditions
(1) and (2), we obtain
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Velocity ϕi and position of interface η(x, t) are ex-
panded by a small number ε, i.e.

ϕi = εϕ
(1)
i + ε2ϕ

(2)
i + O(ε3),

η = εη(1) + ε2η(2) + O(ε3). (5)

Substituting Eq.(5) into Eq.(4), comparing the
same rank, we obtain the following equation:

First-order equations, at y = 0 are
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Second-order equations, at y = 0 are
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All the orders of ϕi satisfy the Laplace equation.
Typical initial perturbations are a superposition

of modes. Given the initial perturbation conditions,
we can solve these equations. In linear phase, first-
order equation (6) can describe the development of
mode coupling accurately. In weakly phase, the
second-order equation (7) can describe the develop-
ment of mode coupling approximately. In nonlinear
phase, analytic theory is difficult to describe the de-
velopment of mode coupling. Numerical simulation is
one of the main methods for researching into nonlinear
mode coupling KH instability.

3. Numerical methods

The finite difference hydrodynamic code LARED-
S[22−24] is used in numerical simulation. The hydrody-
namic equations in LARED-S are integrated with the
flux-corrected transport (FCT) algorithm in space and
the second-order Runge-Kutta method in time. The
FCT with sixth-order accurate phase error is used and
has second-order accuracy on the uniform part of the
grid.

We initial each mode at time t = 0 by taking an
interface perturbation of the form

η(x, y, 0) = η0 cos(kx) (8)

and apply periodic boundary conditions at x direction.
Where k is the wave number (k = 2π/λ = 2π · l) and
η0 is the initial perturbation amplitude. The initial
interface is at y = 0. We always use a mesh in which
the smallest initial perturbation wavelength includes
at least 40 mesh points.

We analyse the spectrum by first calculating the
vertical density Integral

∫
ρ(x, y)dy, and then we take

the discrete Fourier transform. This procedure gives
an accurate representation of the interface at initial
times. We believe that it is also valid at relatively
late times, so long as the flow has not developed into
a turbulent regime (as will be demonstrated in the
results presented below).
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4. Mode–mode interactions

Here we investigate cases with two initial pertur-
bation modes. We give two examples: one with similar
wavelengths (short-range interactions in k space) and
one with dissimilar wavelengths (long-range interac-
tions).

The growth of instability mode comes from two
aspects. One is the growth of its own and the other is
the growth of mode coupling. We assume that there
are two linear growing waves with wave numbers kA

and kB at the initial time. Mode coupling between
the two waves excites many waves with wave numbers
k = kA ± kB , 2kA and 2kB .

4.1. Interaction of nearby modes

First we examine the case where the initial per-
turbation consists of the two nearby modes: l = 4 and
l = 5, representing the interaction of similar wave-
lengths. Mode coupling between the l = 4 and l = 5
modes will couple l = 8, l = 10, l = 1 and l = 9 modes.
The initial perturbation amplitudes are 0.32µm for
l = 4 and 0.21µm for l = 5. In Figs.1(a)–1(f) we plot
the Fourier spectrum of the interface, superposed with
the spectra of single-mode calculations for l = 4 and

l = 5, at six increasing times and in Figs.1(g)–1(l) we
plot the outline of the corresponding physical space at
the same times. Notice that at early times the growth
is nearly without interaction: each mode grows at the
same rate as that when it is alone. At later times, the
flow enters the nonlinear regime. It is clear that the
l = 4 mode (which initially had the higher amplitude)
is significantly reduced in amplitude (in comparison
with its growth as a single mode) although the flow
still seems ordered, while l = 5 is affected to a much
lesser extent. This is seen in the spectrum (Fig.1(e)),
showing that indeed the l = 5 periodicity is domi-
nant. At still later times we see that the interface
lacks of accurate local periodicity (which character-
izes a single-mode flow), and the flow takes on a more
turbulent nature.

We find it instructive to emphasize the following
points regarding the interaction of similar modes. (1)
The l = 8 mode and l = 10 mode grow rapidly in
single-mode calculations. But in two modes (l = 4
and l = 5) coupling calculations, these two modes
(l = 8 and l = 10) manifest contrarily. The growth
rate of l = 9 mode is larger than those of the l = 8
and l = 10 modes. (2) At last stage, the amplitude
of difference frequency (l = 1 mode) mode and sum
frequency mode (l = 9 mode) is dominant.
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Fig.1. Evolution of a two-mode case with l = 4 and l = 5 (I indicates the number of wavelengths). Initial

perturbation amplitudes are 0.32 µm for l = 4 and 0.21 µm for l = 5. Parts (a)–(f) depict the interface spectrum at

T = 0.2 ns, 0.4 ns, 0.6 ns, 0.8 ns, 1.0 ns, 1.2 ns, respectively, and parts (g)–(l) show the physical interface at the same

times.
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4.2. Interaction of dissimilar modes

To further illustrate the above points, we con-
ducted a second set of calculations for the modes
l = 2 and l = 6, attempting to study the interac-
tion of modes with different wavelength scales. In
Fig.2 we plot the results of these calculations for both
physical interfaces and spectra. Initial perturbation
amplitudes are 0.32µm for l = 2 and 0.16µm for
l = 6. Again there are three distinct stages: early
times where growth is linear; intermediate times where
the flow is still rather ordered but strong interaction
between modes exists; finally, the flow becomes tur-
bulent with a large number of modes that were not
present in the initial conditions.

Notice that at early times the growth is nearly
without interaction: each mode grows at the same rate

as that when it is alone. At later times, the flow enters
the nonlinear regime. It is clear that the l = 2 mode
(which initially had the higher amplitude) is signifi-
cantly reduced in amplitude (in comparison with its
growth as a single mode) although the flow still seems
ordered, while l = 6 is affected to a much lesser extent.
This is seen in the spectra (Figs.1(a)–1(e)), showing
that indeed the l = 6 periodicity is dominant. At still
later times, it is clear that the l = 6 mode is signif-
icantly reduced in amplitude (in comparison with its
growth as a single mode), while l = 2 is affected to a
lesser extent. This is seen in the spectrum (Figs.1(f)),
showing that indeed the l = 2 periodicity is domi-
nant. At still later times we see that the interface also
has accurate local periodicity, and the flow takes on a
more turbulent nature.
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Fig.2. Evolution of a two-mode case with l = 2 and l = 6 (I indicates the number of wavelengths). Initial

perturbation amplitudes are 0.32 µm for l = 2 and 0.16 µm for l = 6. Parts (a)–(f) depict the interface spectrum at

T = 0.2 ns, 0.4 ns, 0.6 ns, 0.8 ns, 1.0 ns,1.2 ns, respectively, and parts (g)–(l) show the physical interface at the same

times.

We find it instructive to emphasize the following
points regarding the interaction of dissimilar modes.
(1) At the onset of interaction, one mode is suppressed
whereas the other continues growth according to its
single-mode dynamics. This suggests a nonsymmet-
ric transition to “nonlinearity,” i.e., the relative effect
of the interaction on the various modes is unequal.
This seems to indicate that there is no simple equiv-
alent transformation from a band of similar modes to
one mode representing their effective amplitude. (2)
At early time the l = 2 periodicity is dominant; at
later time the l = 6 periodicity is dominant. This
phenomenon is novel.

5. Summery

In phase II, mode–mode interaction is still or-
dered and the presence of one mode can suppress the
amplitude of another mode. We emphasize that al-
though this stage clearly includes mode–mode inter-
action, it can occur when one or both modes have an
amplitude that is clearly still in the classical single-
mode ‘linear’ regime. There is no simple equivalent
transformation from a band of similar modes to one
mode representing their effective amplitude. In phase
III, the random or ‘turbulent’ stage, mode coupling
develops towards low-l modes.
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The results we bring here should be significant in
understanding the stages of the development of multi-

mode KH instability, since in most physical cases the
flow cannot be described by a single mode.
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