Wendy Beane

Wendy Beane
Western Michigan University | WMU · Department of Biological Sciences

Doctor of Philosophy

About

46
Publications
28,923
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,570
Citations
Education
July 2001 - June 2007
Duke University
Field of study
  • Developmental, Stem Cell, Cell and Molecular Biology

Publications

Publications (46)
Article
Full-text available
Reactive oxygen species (ROS) signaling regulates cell behaviors and tissue growth in development, regeneration, and cancer. Commonly, ROS are modulated pharmacologically, which while effective comes with potential complications such as off-target effects and lack of drug tolerance. Thus, additional non-invasive therapeutic methods are necessary. R...
Article
Full-text available
Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biolo...
Article
Methylisothiazolinone (MIT) is a common biocide used in cosmetic and industrial settings. Studies have demonstrated that MIT is a human sensitizer, to the extent that in 2013 MIT was named allergen of the year. Recently, we showed that MIT exposure in Xenopus laevis (the African clawed frog) inhibits wound healing and tail regeneration. However, it...
Article
Full-text available
Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is...
Preprint
Full-text available
Superoxide concentration and tissue regeneration in planarians exhibit a complex non-monotonic dependence on the strength of an applied weak magnetic field. While this is difficult to understand based on classical physics, a recently proposed quantum model based on a flavin-superoxide radical pair mechanism could replicate the previously observed s...
Article
Full-text available
With the growth of the quantum biology field, the study of magnetic field (MF) effects on biological processes and their potential therapeutic applications has attracted much attention. However, most biologists lack the experience needed to construct an MF exposure apparatus on their own, no consensus standard exists for exposure methods, and proto...
Article
Full-text available
Quantum biology studies span multiple disciplines including physics, engineering, and biology with the goal of understanding the quantum underpinnings of living systems. Recent findings have brought wide attention to the role of quantum mechanisms in the function and regulation of biological processes. Moreover, a number of activities have been int...
Article
Full-text available
The COVID-19 pandemic forced educators to teach in an online environment. This was particularly challenging for those teaching courses that are intended to support bench science research. This practitioner article tells the story of how an instructor transformed their Course-based Undergraduate Research Experience (CURE) using the Backwards Design...
Article
Full-text available
Involving undergraduate STEM majors in authentic research has been cited as being an imperative goal in advancing the field of science and preparing students for careers and post-graduate educational programs. An important component of authentic research that is often overlooked is student understanding of the Nature of Science (NOS) and how this r...
Article
Full-text available
Recent studies have furthered our understanding of how dying and living cells interact in different physiological contexts, however the signaling that initiates and mediates apoptosis and apoptosis-induced proliferation are more complex than previously thought. One increasingly important area of study is the biophysical control of apoptosis. In add...
Preprint
Full-text available
Reactive oxygen species (ROS), such as hydrogen peroxide, are conserved and critical components of both wound healing and regeneration. Even though millions are affected each year by poor wound healing and an inability to restore functional tissue, how the same ROS-mediated signaling regulates these two different processes is not fully understood....
Article
Full-text available
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for ne...
Article
Full-text available
Physiological parameters such as resting potential and pH are increasingly recognized as important regulators of cell activity and tissue-level events in regeneration, development, and cancer. The availability of fluorescent reporter dyes has greatly increased the ability to track these properties in vivo. The planarian flatworm is an important and...
Article
Full-text available
Although light is most commonly thought of as a visual cue, many animals possess mechanisms to detect light outside of the eye for various functions, including predator avoidance, circadian rhythms, phototaxis, and migration. Similar to C. elegans, leeches, and Drosophila larvae, we confirmed that planarians are also capable of detecting and respon...
Article
Full-text available
In the study of adult stem cells and regenerative mechanisms, planarian flatworms are a staple in vivo model system. This is due in large part to their abundant pluripotent stem cell population and ability to regenerate all cell and tissue types after injuries that would be catastrophic for most animals. Recently, planarians have gained popularity...
Article
Full-text available
While tissue regeneration is typically studied using standard injury models, in nature injuries vary greatly in the amount and location of tissues lost. Planarians have the unique ability to regenerate from many different injuries (including from tiny fragments with no brain), allowing us to study the effects of different injuries on regeneration t...
Article
The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus v...
Article
Full-text available
A main goal of regenerative medicine is to replace lost or damaged tissues and organs with functional parts of the correct size and shape. But the proliferation of new cells is not sufficient; we will also need to understand how the scale and ultimate form of newly produced tissues are determined. Using the planarian model system, we report that me...
Data
Previously proposed models of patterning in planarian regeneration. (DOCX)
Article
Full-text available
A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to ident...
Article
Full-text available
The ability to stop producing or replacing cells at the appropriate time is essential, as uncontrolled growth can lead to loss of function and even cancer. Tightly regulated mechanisms coordinate the growth of stem cell progeny with the patterning needs of the host organism. Despite the importance of proper termination during regeneration, cell tur...
Article
Biophysical signaling is required for both embryonic polarity and regenerative outgrowth. Exploiting endogenous ion transport for regenerative therapies will require direct regulation of membrane voltage. Here, we develop a pharmacological method to target ion transporters, uncovering a role for membrane voltage as a key regulator of anterior polar...
Article
Full-text available
Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniq...
Article
Full-text available
Amphibians such as frogs can restore lost organs during development, including the lens and tail. To design biomedical therapies for organ repair, it is necessary to develop a detailed understanding of natural regeneration. Recently, ion transport has been implicated as a functional regulator of regeneration. Whereas voltage-gated sodium channels p...
Article
A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration—proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful re...
Article
Full-text available
dissertation GTPases are integral components of virtually every known signal transduction pathway, and mutations in GTPases frequently cause disease. A genomic analysis identified and annotated 174 GTPases in the sea urchin genome (with 90% expressed in the embryo), covering five classes of GTP-binding proteins: the Ras superfamily, the heterotrime...
Article
This paper reports a preliminary in silico analysis of the sea urchin kinome. The predicted protein kinases in the sea urchin genome were identified, annotated and classified, according to both function and kinase domain taxonomy. The results show that the sea urchin kinome, consisting of 353 protein kinases, is closer to the Drosophila kinome (239...
Article
In every organism, GTP-binding proteins control many aspects of cell signaling. Here, we examine in silico several GTPase families from the Strongylocentrotus purpuratus genome: the monomeric Ras superfamily, the heterotrimeric G proteins, the dynamin superfamily, the SRP/SR family, and the "protein biosynthesis" translational GTPases. Identified w...
Article
Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translatio...
Article
Full-text available
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associate...
Article
Full-text available
10.1126/science.1133609 We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcam...
Article
During gastrulation, the archenteron is formed using cell shape changes, cell rearrangements, filopodial extensions, and convergent extension movements to elongate and shape the nascent gut tube. How these events are coordinated remains unknown, although much has been learned from careful morphological examinations and molecular perturbations. This...

Network

Cited By