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Fault-Tolerant Relay Node Placement in Wireless
Sensor Networks: Problems and Algorithms

Weiyi Zhang, Guoliang Xue and Satyajayant Misra

Abstract— Two fundamental functions of the sensor nodes
in a wireless sensor network are to sense its environment and
to transmit sensed information to a basestation. One approach
to prolong sensor network lifetime is to deploy some relay
nodes whose main function is to communicate with the sensor
nodes, other relay nodes, and the basestations. It is desirable
to deploy a minimum number of relay nodes to achieve certain
connectivity requirement. In this paper, we study four related
fault-tolerant relay node placement problems, each of which has
been previously studied only in some restricted form. For each
of them, we discuss its computational complexity and present
a polynomial time O(1)-approximation algorithm with a small
approximation ratio. When the problem reduces to a previously
studied form, our algorithm either improves the previous best
algorithm or reduces to the previous best algorithm.
Keywords: Survivable relay placement, wireless sensor networks.

1. INTRODUCTION AND RELATED WORK

A wireless sensor network (WSN) consists of many low-
cost and low-power sensor nodes (SNs)[1]. There has been
extensive research on energy aware routing [4, 10, 13, 16, 27],
improvement in lifetime [12, 21, 24, 26], and survivability
[20, 22]. Since energy consumption is proportional to dκ for
transmitting over distance d, where κ is a constant in the
interval [2, 4], long distance transmission in WSNs is costly.
To prolong network lifetime while meeting certain network
specifications, researchers have proposed to deploy in a WSN
a small number of costly, but more powerful relay nodes (RNs)
whose main function is to communicate with the SNs and
other RNs [2, 5, 9, 12, 14, 18, 19, 23, 26]. This is the subject
of study of this paper.

We first review prior works on single-tiered relay node
placement, where both SNs and RNs participate in packet
forwarding. Cheng et al. [5] proposed to deploy a minimum
number of RNs in a WSN so that between every pair of SNs,
there is a path consisting of RNs and/or SNs where each
hop of the path is no longer than the common transmission
range r > 0 of the SNs. This problem is equivalent to
the Steiner minimum tree with minimum number of Steiner
points and bounded edge length problem (SMT-MSPBEL),
defined by Lin and Xue in the study of amplifier placement in
optical networks [17], where they proved the problem is NP-
hard and presented a minimum spanning tree (MST) based
5-approximation algorithm. In [3], Chen et al. proved that the
Lin-Xue algorithm is a 4-approximation algorithm. They also
presented a 3-approximation algorithm. In [5], Cheng et al.
presented a faster 3-approximation algorithm. In [2], Bredin et
al. extended the relay node placement problem studied in [3, 5,
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17] to the case of k-connectivity, instead of 1-connectivity, and
presented polynomial time O(1)-approximation algorithms
for any fixed k. In [14], Kashyap et al. presented a 10-
approximation algorithm ensuring 2-connectivity. All of the
above works assume that the transmission range of the RNs
is the same as that of the SNs. In [19], Lloyd and Xue
generalized the problem studied in [3, 5, 17] to the case where
the RNs have transmission range R ≥ r, and presented a 7-
approximation algorithm.

Next we review prior works on two-tiered relay node place-
ment, where only the RNs participate in packet forwarding.
Motivated by the works [8] and [21] on two-tiered WSNs,
Hao et al. in [9] formulated two-tiered relay node placement
problems where each SN has to be within distance r of at
least k RNs and the RNs (all having communication range
R ≥ r) form a k-connected network, for k = 1, 2. Tang et
al. in [23] presented 4.5-approximation algorithms for k = 1
and 2, under the assumption that R ≥ 4r and that the SNs
are uniformly distributed. In [18], under the assumption that
R = r, but no restriction on the distribution of the SNs, Liu
et al. presented a (6 + ε)-approximation algorithm for k = 1,
and a (24 + ε)-approximation algorithm for k = 2, where
ε > 0 is any given constant. In [19], Lloyd and Xue studied
the problem for k = 1 with the condition R = r relaxed to
R ≥ r, and presented a (5 + ε)-approximation algorithm.

In this paper, we study both single-tiered and two-tiered
relay node placement problems that ensure 2-connectivity,
under the mild condition R ≥ r, and no assumption on the
distribution of the SNs. For the single-tiered problem (which
contains the problem studied in [14] as a special case), we
present a 14-approximation algorithm. Our algorithm reduces
to that of [14] when the problem is reduced to the problem
studied in [14]. For the two-tiered problem, we present a
(10+ε)-approximation algorithm, improving the previous-best
(24 + ε)-approximation algorithm [18] designed for a special
case (R = r). We then generalize the two relay node placement
problems to cases where there are also some basestations
(BSs), and present a 16-approximation algorithm for the
single-tiered problem with BSs and a (20 + ε)-approximation
algorithm for the two-tiered problem with BSs.

In Section 2, we present basic notations. In Section 3,
we study single-tiered fault-tolerant relay node placement
problems. In Section 4, we study two-tiered fault-tolerant relay
node placement problems. We present numerical results in
Section 5 and conclude the paper in Section 6.

2. NOTATIONS AND BASIC CONCEPTS

We use BS, SN, RN to denote basestation, sensor node, and
relay node, respectively. For two points x and y in the plane,
we use d(x, y) to denote the Euclidean distance between them,
and use [x, y] to denote the line segment connecting them. We
use Y = {y1, . . . , yl} to denote l ≥ 0 RNs, X = {x1, . . . , xn}
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to denote n ≥ 1 SNs, and B = {b1, . . . , bm} to denote m ≥ 0
BSs. We use the same symbol to denote the BS/SN/RN and
its corresponding position in the plane. For example, d(xi, yj)
is the Euclidean distance between SN xi ∈ X and RN yj ∈ Y ,
[xi, xj ] is the line segment connecting SNs xi and xj .

For graph theoretic terms not defined in this paper, we refer
readers to the standard textbook [25]. We will use (u, v) to
denote the undirected edge in a graph. Therefore (u, v) and
(v, u) denote the same edge. We will use the terms nodes
and vertices interchangeably, as well as links and edges. For
concepts in algorithms and computing theory, such as NP-
hard, we refer readers to the standard textbooks [6, 7].

A polynomial time α-approximation algorithm for a min-
imization problem is an algorithm A that, for any instance
of the problem, computes a solution that is at most α times
the optimal solution of the instance, in time bounded by
a polynomial in the input size of the instance [6]. In this
case, we also say that A has an approximation ratio of α.
Aε is a polynomial time approximation scheme (PTAS) for
a minimization problem, if for any fixed ε > 0, Aε is a
polynomial time (1+ε)-approximation algorithm with ε treated
as a constant. Since the running time of our algorithms may
also depend on the size of the output (e.g. the number of RNs
to be deployed), we say an algorithm has polynomial running
time if the running time is bounded by a polynomial in the
input size and the output size of the instance. The acronym
WLOG stands for “without loss of generality”.

3. SINGLE-TIERED FAULT-TOLERANT RELAY PLACEMENT

A. Problem Definitions and Summary of Results

Single-Tiered Placement with Basestations:
Definition 3.1: Let B be a set of BSs, X be a set of SNs,

Y be a set of RNs, and R ≥ r > 0 be the respective
communication ranges for RNs and SNs. The hybrid commu-
nication graph HCG(r,R,B,X ,Y) induced by the 5-tuple
(r,R,B,X ,Y) is an edge-weighted undirected graph with
vertex set V = B ∪X ∪Y and edge set E defined as follows:

• For any two BSs bi, bj ∈ B, E contains the undirected
edge (bi, bj) = (bj , bi), with length l(bi, bj) = 0.

• For an RN y ∈ Y and a node z ∈ B ∪Y which could be
either an RN or a BS, E contains the undirected edge
(y, z) = (z, y) if and only if d(y, z) ≤ R. The length of
edge (y, z) ∈ E is l(y, z) = d(y, z).

• For an SN x ∈ X and a node z ∈ B ∪ X ∪ Y which
could be either an SN, an RN or a BS, E contains the
undirected edge (x, z) = (z, x) if and only if d(x, z) ≤ r.
The length l(x, z) of edge (x, z) ∈ E is 0 if z is an SN
and d(x, z) otherwise.

An edge connecting two SNs is called an SN-SN edge. We
can similarly define SN-RN, SN-BS, RN-RN, RN-BS, and
BS-BS edges. The edge length function naturally generalizes
to the length of a subgraph of HCG by summation. Note that
our definition of length facilitates the proof of Lemma 3.3. 2

Definition 3.2: Let R ≥ r > 0 be the respective communi-
cation ranges for RNs and SNs. Let B be a set of BSs, and
X be a set of SNs. A set of RNs Y = {y1, . . . , yl} is said to
be a feasible single-tiered fault-tolerant relay node placement
with basestations (denoted by F1tFTPB) for (r,R,B,X ) if the

graph HCG(r,R,B,X ,Y) is 2-connected. The size of the cor-
responding F1tFTPB is |Y|. An F1tFTPB is said to be a min-
imum single-tiered fault-tolerant relay node placement with
basestations for (r,R,B,X ) (denoted by M1tFTPB) if it has
the minimum size among all F1tFTPBs for (r,R,B,X ). The
single-tiered fault-tolerant relay node placement problem with
basestations for (r,R,B,X ), denoted by 1tFTPB(r,R,B,X ),
seeks an M1tFTPB for (r,R,B,X ).2

Single-Tiered Placement without Basestations:
We also study a special case of the 1tFTPB problem where
B = ∅. In this case, the graph HCG(r,R,B,X ,Y) defined
above becomes HCG(r,R,X ,Y). Similarly,

• the term feasible single-tiered fault-tolerant relay node
placement with basestations (F1tFTPB) for (r,R,B,X )
becomes feasible single-tiered fault-tolerant relay node
placement (F1tFTP) for (r,R,X );

• the term minimum single-tiered fault-tolerant relay node
placement with basestations (M1tFTPB) for (r,R,B,X )
becomes minimum single-tiered fault-tolerant relay node
placement (M1tFTP) for (r,R,X );

• the term single-tiered fault-tolerant relay node placement
with basestations problem (1tFTPB) for (r,R,B,X )
becomes single-tiered fault-tolerant relay node placement
problem (1tFTP) for (r,R,X ).

Discussions:
To our knowledge, neither the 1tFTPB(r,R,B,X ) problem
nor its special case 1tFTP(r,R,X ) has been studied before,
although a restricted version of the problems, 1tFTP(r, r,X )
(with R = r), has been well studied in the literature [2, 14].
Since the 1tFTP(r, r,X ) problem is NP-hard [14], both
1tFTP(r,R,X ) and 1tFTPB(r,R,B,X ) are NP-hard.

In a Mobihoc’2005 paper [2], Bredin et al. presented an
O(1)-approximation algorithm for the problem of deploying a
minimum number of RNs in a WSN to ensure k-connectivity,
for any constant k, under the assumption that R = r. Their
algorithm uses an α-approximation algorithm for computing a
minimum weight k-connected spanning subgraph, and has an
approximation ratio bounded by (9k4 + 36(k3 + k2))α. This
bound is highly dependent on the geometric properties implied
by the restriction R = r, and cannot be easily extended to the
general case of R ≥ r. For k = 2, it is known that α = 2 [15].

In an Infocom’2006 paper [14], Kashyap et al. presented
a 10-approximation algorithm for 1tFTP(r, r,X ). Again, the
bound on the approximation ratio is highly dependent on the
geometric properties implied by the restriction R = r.

Since RNs generally have more energy and stronger com-
munication power than the SNs, the 1tFTP(r,R,X ) problem
is a more realistic model than the 1tFTP(r, r,X ) problem that
has been well studied.

We also study the more general 1tFTPB(r,R,B,X ) prob-
lem because a WSN is usually connected to one or more BSs
and that BSs are more powerful than the SNs and the RNs.
Results:
We will present a simple 14-approximation algorithm for
the 1tFTP(r,R,X ) problem, and a simple 16-approximation
algorithm for the 1tFTPB(r,R,B,X ) problem.
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B. Approximation Algorithm for 1tFTP(r,R,X )

All of our algorithms are based on a concept known as
steinerization, which was first introduced by Lin and Xue [17]
for the case of R = r and later generalized by Lloyd and
Xue [19] for the case of R ≥ r.

Let xi and xj be two SNs. If d(xi, xj) ≤ r, xi and xj can
communicate with each other directly. If d(xi, xj) > r, we
can connect xi and xj by deploying a minimum number of
RNs on the line segment [xi, xj ] (steinerizing [xi, xj ]) in the
following way:

• If d(xi, xj) ∈ (r, 2r], place one RN at the midpoint of
line segment [xi, xj ].

• If d(xi, xj) > 2r, place 1 + d d(xi,xj)−2r

R
e RNs on

the line segment [xi, xj ] such that one RN (call it yF )
is at distance r from xi, one RN (call it yL) is at
distance r from xj , and the other d d(xi,xj)−2r

R
e− 1 RNs

evenly divide the line segment [yF , yL] into c(xi, xj)−1
segments with length bounded by R.

Definition 3.3: Given communication ranges R ≥ r > 0
and a set of SNs X , the 3-tuple (r,R,X ) induces an edge
weighted undirected complete graph GS(r,R,X ), called the
steinerized graph of (r,R,X ), with vertex set V = X and
edge cost defined in the following.

c(xi, xj)=







0, if d(xi, xj) ∈ [0, r];
1, if d(xi, xj) ∈ (r, 2r];

1+dd(xi,xj)−2r

R
e, otherwise.

(3.1)

Essentially, c(xi, xj) is the number of RNs needed to connect
SNs xi and xj by steinerizing [xi, xj ]. The edge cost function
generalizes naturally to the cost of a subgraph of GS(r,R,X )
by summation. 2

Our approximation algorithm for 1tFTP(r,R,X ) con-
sists of three main steps. First, we construct the steiner-
ized graph GS(r,R,X ). Then, we compute GA, a 2-
approximation to a minimum cost 2-connected spanning sub-
graph of GS(r,R,X ). Finally, we deploy the relay nodes by
steinerizing each of the edges of GA.

Algorithm 1 Approximation Algorithm for 1tFTP(r,R,X )

Input: R ≥ r > 0 and SNs X = {x1, . . . , xn}.
Output: Relay nodes YA = {y1, . . . , yl}.

1: Construct the steinerized graph GS(r,R,X ).
2: Compute a 2-connected spanning subgraph GA of

GS(r,R,X ) using the algorithm A of [15].
3: l := 0;
4: for each edge (xi, xj) ∈ GA s.t. c(xi, xj) ≥ 1 do
5: Steinerize edge (xi, xj) with c(xi, xj) relay nodes:

yl+1, yl+2, . . . , yl+c(xi,xj);
6: l := l + c(xi, xj).
7: end for

Theorem 3.1: Algorithm 1 is a 14-approximation algorithm
for 1tFTP. It can compute a 2-connected spanning subgraph
GA of GS(r,R,X ) such that c(GA) ≤ 14 · |Yopt| in O(n4)
time, and requires additional O(n2 + |Yopt|) time to deploy
the RNs in YA, where Yopt is an M1tFTP for (r,R,X ). 2

We need a sequence of lemmas before proving this theorem.

Lemma 3.1: The RNs YA placed by Algorithm 1 is an
F1tFTP for (r,R,X ). Let YB be any F1tFTP for (r,R,X )
that is obtained by steinerizing the edges of a 2-connected
spanning subgraph of GS(r,R,X ). Then |YA| ≤ 2 · |YB |. 2

PROOF. GA is a 2-connected spanning subgraph which spans
all the SNs X . The steinerization of an edge (xi, xj) with
c(xi, xj) RNs can be viewed as a sequence of c(xi, xj) edge
subdivision operations [25]. Therefore the resulting hybrid
communication graph HCG(r,R,X ,YA) is 2-connected. This
shows that YA is an F1tFTP for (r,R,X ).

Let Gmin be a minimum cost 2-connected spanning sub-
graph of GS(r,R,X ). Then its cost is c(Gmin) ≤ |YB |,
since the number of RNs needed to steinerize edge (xi, xj)
is c(xi, xj). Since A is a 2-approximation algorithm, we have
c(GA) ≤ 2 · c(Gmin) ≤ 2 · |YB |.

Definition 3.4: Let Y be an F1tFTP for (r,R,X ) and L(Y)
be a 2-connected spanning subgraph of HCG(r,R,X ,Y). We
call L(Y) a layout of the F1tFTP Y . Note that the length of
L(Y) is l(L(Y)) (see Definition 3.1). 2

Definition 3.5: A layout L(Y) is called a shortest layout for
single-tiered fault-tolerant relay node placement for (r,R,X ),
denoted by S1tFTL, if Y is an M1tFTP for (r,R,X ) and
L(Y) has the minimum length among all layouts of M1tFTPs
for (r,R,X ). 2

Definition 3.6: Let L = L(Y) be a layout of an F1tFTP
for (r,R,X ). Let y ∈ Y be an RN. The sensor degree of y in
the layout L(Y), denoted by δs(y,L), is the number of SNs
in X that are adjacent with y in L(Y). The relay degree of
y in the layout L(Y), denoted by δr(y,L), is the number of
RNs in Y that are adjacent with y in L(Y). 2

Lemma 3.2: Let L = L(Y) be an S1tFTL for (r,R,X ).
Then δs(y,L) ≤ 5 for any RN y ∈ Y . 2

PROOF. Note that by our assumption, Y is an M1tFTP and
that L has the shortest length among all layouts of M1tFTPs.
Assume that there is an RN y ∈ Y such that δs(y,L) ≥ 6.
We will show that this assumption leads to the existence of
another layout L′ of Y such that l(L′) < l(Y), contradicting
the shortest length assumption of L.

Since δs(y,L) ≥ 6, there exist at least six SNs that are
adjacent with y in L. WLOG, assume that x1, x2, . . . , x6 are
six SNs that are adjacent with y in L and that ∠x1yx2 ≤ 60o.

We first prove the following proposition.
(a): The layout L does not contain edge (x1, x2).

x1

x2

y x6

(a) (y, x1) can be cut

x1

x2

y x6

(b) (y, x2) can be cut

Fig. 1. L cannot contain edge (x1, x2).

Since L is 2-connected, there is a path π in L connecting x6

and x1 without using node y. If π does not go through x2, we
have a scenario as shown in Fig. 1(a). If π goes through x2,
we have a path π′ in L connecting x6 and x2 without using
nodes y and x1, as shown in Fig. 1(b). In the first scenario
(see Fig. 1(a)), L contains a cycle going through x1, x2, y,
and x6 and a chord (y, x1). Deleting the chord (y, x1) from L
will reduce the length without destroying 2-connectivity [25],
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contradicting the shortest length assumption of L. Similarly,
deleting the chord (y, x2) will lead to a contradiction in the
second scenario (refer to Fig. 1(b)). This proves (a).

We need to prove the following claim.
(b): By replacing (y, x1) with (x1, x2) in L, we can ob-

tain another 2-connected spanning subgraph L′ of
HCG(r,R,X ,Y), with l(L′) < l(L).

It follows from (a) that L does not contain edge (x1, x2). Let
L′ be obtained from L by replacing edge (y, x1) with edge
(x1, x2). Since d(y, x1) ≤ r, d(y, x2) ≤ r and ∠x1yx2 ≤
60o, we have d(x1, x2) ≤ r. Since l(y, x1) = d(y, x1) and
l(x1, x2) = 0, we have l(L′) = l(L) − d(y, x1) < l(L). We
have to show that L′ is also a 2-connected spanning subgraph
of HCG(r,R,X ,Y).

We first claim that,
(c): for each pair of SNs xi, xj ∈ X , there exists a pair of

node disjoint paths π1, π2 in L′ connecting xi and xj .
Since L is a 2-connected spanning subgraph of

HCG(r,R,X ,Y), there exists a pair of node disjoint
paths π1 and π2 in L connecting xi and xj . If neither path
uses edge (y, x1), π1 and π2 also form a pair of node disjoint
paths in L′. Now we consider the case where one of the paths
(WLOG, assuming π1) uses edge (y, x1).

First, consider the subcase where {xi, xj} = {x1, x2}. In
this case, π2 and the edge (x1, x2) form two node disjoint
x1–x2 paths in L′. This shows that (c) is true in this subcase.

Next, consider the subcase where xj = x1 but xi 6= x2.
Since π1 goes through y (which is an RN), π2 does not go
through y. If π2 goes through x2, L contains the cycle formed
by the two paths π1 and π2, as well as a chord (y, x2). This
contradicts the shortest length assumption of L (see Fig. 2(a)
and similar argument used in the proof of (a)). Therefore π2

does not go through x2 (see Fig. 2(b)). We can replace π1

with a new xi–x1 path π3 which goes from xi to y along π1,
then to x2 via edge (y, x2), then to x1 via edge (x2, x1) (see
Fig. 2(c)). π2 and π3 form a pair of node disjoint xi–x1 paths
in L′. This shows that claim (c) is true in this subcase.

x1

x2

y xi

(a) impossible

x1

x2

y xi

(b) before

x1

x2

y xi

(c) after

Fig. 2. Replacing edge (y, x1) with edge (x1, x2)

Using an argument similar to the one used in the above
paragraph (also see Fig. 2(a)), we can prove that it is impossi-
ble to have xj = x2 and xi 6= x1, as it contradicts the shortest
length assumption of L.

Finally we consider the subcase where {xi, xj}∩{x1, x2} =
∅. Since π1 goes through y, π2 does not go through y. If π2

goes through x2, then L contains the cycle formed by the
two paths π1 and π2, as well as a chord (y, x2), contradicting
the shortest length assumption of L. Therefore π2 does not
go through x2. We can replace π1 with a new xi–xj path π3

which goes from xi to y along π1, then to x2 via edge (y, x2),
then to x1 via edge (x2, x1), then to xj following the subpath
on π1. π2 and π3 form a pair of node disjoint xi–xj paths
in L′. This shows that claim (c) is true in this subcase. This
completes the proof for claim (c).

Now, we have proved that for any pair of SNs xi and xj ,
there is a pair of node disjoint paths in L′ connecting them. We
will show that L′ is actually a 2-connected spanning subgraph
of HCG(r,R,X ,Y).

Following (c), for every pair of SNs xi, xj , there is a cycle
in L passing through xi and xj . Therefore all SNs are on a
common biconnected component of L′ [25]. We claim that,
(d): all RNs in Y are also on the same biconnected component

with the SNs.
We prove this by the following simple coloring scheme.
Initially all RNs in Y are colored white. We examine the
n(n−1)

2 SN pairs in a given order (e.g. alphabetical order).
Whenever we examine a pair of SNs xi and xj , we compute
a pair of node disjoint paths in L connecting xi and xj . This
pair of paths form a cycle which contains xi and xj , as well as
some RNs in Y . We color all the RNs on this cycle black, as
they must be on the same biconnected component with xi and
xj , as well as the rest of the SNs. We claim that all RNs in Y
will be colored black at the end of the above coloring scheme,
as otherwise, the subset of black RNs will also be an F1tFTP
for (r,R,X ), contradicting the minimum size assumption of
Y . Therefore we have proved claim (d). This also completes
the proof of claim (b), as well as the lemma.

Definition 3.7: Let L = L(Y) be a layout of an F1tFTP Y
for (r,R,X ). A Steiner component of L is a maximal subgraph
C of L with the property that for any two nodes u and v in
C, there exists a u–v path in C whose internal nodes are all
RNs. 2

Lemma 3.3: There exists a 2-connected spanning sub-
graph Gappx of the steinerized graph GS(r,R,X ) such that
c(Gappx), the cost of Gappx, is at most 7 times the size of an
M1tFTP for (r,R,X ). 2

PROOF. Let Lopt = L(Yopt) be an S1tFTL for (r,R,X ),
where Yopt is an M1tFTP for (r,R,X ). Let C1, C2, . . . , Cl be
the Steiner components of Lopt. Let |Ci| denote the number
of RNs in Ci, i = 1, 2, . . . , l.

For each component Ci, i = 1, . . . , l, construct a connected
(2-connected, in some cases) subgraph Gi of GS(r,R,X ),
spanning all the SNs in Ci, in the following way.

Compute a spanning tree Ti of Ci such that every leaf node
of Ti is an SN, and every internal node of Ti is an RN. The
existence of such a spanning tree follows from the definition
of Steiner components. Ti can be constructed in the following
way: Initialize Ti to contain any chosen SN xroot

i in Ci and no
edge. Let xnew

i be any other SN in Ci which is not added to
Ti yet. There is an xnew

i –xroot path πnew such that all internal
nodes of πnew are RNs. Let znew be the node on Ti that is
first met if we traverse the path πnew from node xnew. Grow
the tree Ti by adding the xnew–znew subpath of πnew.

If |Ci| = 0, Ti consists of a single edge connecting two SNs
x1

i , x
2
i such that d(x1

i , x
2
i ) ≤ r. In this case, we set Gi = Ti.

Note that Gi is a subgraph of GS(r,R,X ) s.t. c(Gi) = |Ci|.
If |Ci| ≥ 1, but all RNs in Ti have degree (sensor degree plus

relay degree) 2, Ti must be a path connecting two SNs x1
i , x

2
i

using |Ci| internal RNs. Therefore we must have d(x1
i , x

2
i ) ≤

2r +R · (|Ci|−1). In this case, we set Gi to contain nodes x1
i

and x2
i , and a single edge (x1

i , x
2
i ). Note that Gi is a subgraph

of GS(r,R,X ) s.t. c(Gi) ≤ |Ci|.
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Now, assume that Ti contains at least one relay node with
degree 3 or more. Starting from a sensor node in Ti and taking
a clockwise walk of the tree, we obtain an Eulerian loop,
as illustrated in Fig. 3(a). The Eulerian loop induces a ring
subgraph Gi (of GS(r,R,X )) connecting the sensor nodes in
Ti in the order of the tree walk, as illustrated in Fig. 3(b).

x1

x2

x3

x4

y1 y2

(a) Ti and a loop

x1

x2

x3

x4

y2y1
y1

y1 y2
y2

(b) the resulting ring

Fig. 3. Constructing a ring spanning all sensor nodes in component Ci by
taking an Eulerian loop of a spanning tree Ti of Ci. Note that the number of
copies of each relay node is equal to its degree in Ti.

Note that each RN y of Ti is used exactly δs(y, Ti) +
δr(y, Ti) times by the Eulerian loop, where δs(y, Ti) and
δr(y, Ti) are the sensor degree and relay degree of node y
in Ti (see Fig. 3). Following Lemma 3.2, we have δs(y, Ti) ≤
δs(y,L) ≤ 5 for each RN y in Ti. Since Ti is a tree with |Ci|
internal (relay) nodes, it contains |Ci|−1 RN–RN edges. This
leads to

∑

y∈Ci
δr(y, Ti) = 2 · (|Ci| − 1). Therefore the total

number of relay nodes needed to steinerize the subgraph Gi

is bounded by the following formula.

c(Gi) ≤
∑

y∈Ci

(δs(y, Ti) + δr(y, Ti)) < 5|Ci| + 2|Ci| = 7|Ci|. (3.2)

We define Gappx as the union of G1, G2, . . . , Gl constructed
above. Note that Gi is a spanning subgraph of all sensor nodes
in Ci for i = 1, . . . , l, and is a ring (therefore 2-connected)
unless Ci is a path. Therefore the 2-connectivity of L implies
the 2-connectivity of Gappx. At the same time, we have (using
inequality (3.2))

c(Gappx) =
l

∑

i=1

c(Gi) ≤
l

∑

i=1

7|Ci| = 7|Yopt|. (3.3)

This completes the proof of Lemma 3.3.
Now we are ready to prove Theorem 3.1. It follows from

Lemma 3.3 that there exists a 2-connected spanning subgraph
Gappx of GS(r,R,X ) such that c(Gappx) ≤ 7 · |Yopt|, where
Yopt is an M1tFTP for (r,R,X ). It follows from Lemma 3.1
that the F1tFTP YA computed by Algorithm 1 has size

|YA| ≤ 2 · c(Gappx) ≤ 14 · |Yopt|. (3.4)

This proves the approximation ratio of Algorithm 1.
Line 1 of the algorithm requires O(n2) time to construct the

complete graph. Line 2 of the algorithm requires O(n4) time
by the 2-approximation algorithm of [15]. Lines 3–7 requires
O(n2 + |Yopt|) time, where the O(n2) term is due to the loop
over the O(n2) edges in GA, and the O(|Yopt|) term is due to
the deployment of the |YA| RNs. Note that Θ(|Yopt|) time is
required for any algorithm to deploy the RNs. If one is only
interested in the 2-connected spanning subgraph GA, O(n4)
time is sufficient.

C. Approximation Algorithm for 1tFTPB(r,R,B,X )

We generalize the steinerized graph concept defined in
Section 3-B to include BSs. Given a set of BSs B, a set of
SNs X , and communication ranges R ≥ r > 0, the 4-tuple

(r,R,B,X ) induces an edge weighted undirected complete
graph GS(r,R,B,X ), called the steinerized graph, with vertex
set V = B ∪ X and edge costs defined in the following way.

For two SNs xi and xj , the cost of edge (xi, xj) is defined
by formula (3.1). For two BSs bi and bj , the cost of edge
(bi, bj) is c(bi, bj) = 0. For a BS bi and an SN xj , the cost
of edge (bi, xj) is defined as

c(bi, xj)=

{

0, if d(bi, xj) ∈ [0, r];

dd(bi,xj)−r

R
e, otherwise.

(3.5)

We have assumed that the transmission range of BSs is big
enough (�R) so that any two BSs are connected without the
aid of RNs or SNs. Then, c(zi, zj) is the minimum number of
RNs needed to connect nodes zi, zj ∈ B∪X without the aid of
any other nodes. The steinerization of SN-SN edges defined
in Section 3-B can be generalized naturally to the case of
BS-SN edges (based on formula (3.5)). The steinerization of
a BS-BS edge does not deploy any RN. Our approximation
algorithm for 1tFTPB is almost identical to that for 1tFTP
except we also have to deal with BSs.

Algorithm 2 Approximation Algorithm for 1tFTPB
Input: R ≥ r > 0, BSs B and SNs X .
Output: RNs YA = {y1, y2, . . . , yl}.

1: Construct the steinerized graph GS(r,R,B,X ).
2: Compute a 2-connected spanning subgraph GA of

GS(r,R,B,X ) using the algorithm A of [15].
3: l := 0;
4: for each edge (zi, zj) ∈ GA s.t. c(zi, zj) ≥ 1 do
5: Steinerize edge (zi, zj) with c(zi, zj) relay nodes:

yl+1, yl+2, . . . , yl+c(zi,zj);
6: l := l + c(zi, zj).
7: end for

The concepts layout, length of a layout, and shortest layout
defined in Definitions 3.4–3.5 generalize naturally to the case
in the presence of BSs, and the shortest layout of single
tiered fault-tolerant relay node placement with basestations for
(r,R,B,X ) is denoted by S1tFTLB. δb(y,L), the basestation
degree of an RN y in a layout L = L(Y) of an F1tFTPB for
(r,R,B,X ), is the number of BSs adjacent with y in L.

Lemma 3.1 and Lemma 3.2 can be generalized to the case
with BSs, and proved verbatim. We list them (proof omitted)
as Lemma 3.4 and Lemma 3.5 in the following.

Lemma 3.4: The RNs YA placed by Algorithm 2 is an
F1tFTPB for (r,R,B,X ). Let YB be any F1tFTPB for
(r,R,B,X ) that is obtained by steinerizing the edges of
a 2-connected spanning subgraph of GS(r,R,B,X ). Then
|YA| ≤ 2 · |YB |.

Lemma 3.5: Let L=L(Y) be an S1tFTLB for (r,R,B,X ).
Then δs(y,L) ≤ 5 for any RN y ∈ Y .

We need the following lemma, which bounds the basestation
degree of an RN in an S1tFTLB.

Lemma 3.6: Let LS = L(Ymin) be an S1tFTLB for
(r,R,B,X ), where Ymin is an M1tFTPB for (r,R,B,X ).
Then δb(y,L) ≤ 1 for any RN y ∈ Ymin. 2

PROOF. If there is at most one BS (|B| ≤ 1), the lemma is
trivially true. Therefore we assume |B| ≥ 2 in the rest of this
proof. Also, we assume that LS contains all BS–BS edges,
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as addition of any such edge does not increase the length of
the layout.

Let G′ be a spanning subgraph of HCG(r,R,B,X ,Ymin)
such that G′ contains all of the BS–BS edges. We claim that
the following three statements are equivalent.

(1) G′ is 2-connected.
(2) For any SN x ∈ X and any two BSs bi, bj ∈ B, G′

contains a cycle going through edge (bi, bj) and x.
(3) For any SN x ∈ X , there exist two BSs bi, bj ∈ B such

that G′ contains a cycle going through (bi, bj) and x.

(1)⇒(2) : By our assumption, G′ contains all the BS–BS
edges. Therefore (bi, bj) is an edge in G′ and x is a node in
G′. Since G′ is 2-connected, it contains a cycle going through
edge (bi, bj) and node x.
(2)⇒(3) : This is trivially true.
(3)⇒(1) : By assumption, X contains at least one SN x1.
It follows from (3) that there exist two BSs bi, bj such that
G′ contains a cycle going through edge (bi, bj) and node x1.
Therefore bi and bj are on the same biconnected component
of G′.

By our assumption, G′ contains all BS–BS edges. Therefore
all BSs are on the same biconnected component of G′ (see
Expansion Lemma in [25], p. 162).

For each SN x ∈ X , (3) implies that G′ contains a cycle
going through two BSs in B and SN x. This implies that
x is in the same biconnected component of G′ with all the
BSs. Therefore all BSs and SNs are in the same biconnected
component of G′.

Note that Ymin is an M1tFTPB for (r,R,B,X ) and G′ is
a spanning subgraph of HCG(r,R,B,X ,Ymin). Using the
coloring scheme that we used near the end of the proof of
Lemma 3.2, we conclude that G′ is 2-connected (otherwise
we would contradict the minimum size property of Ymin). This
proves the equivalence of the three statements (1)-(3).

Following the minimum size property of Ymin and the 2-
connectivity of LS , we can prove the following claim.
(a): For each RN y ∈ Ymin, there exists an SN x ∈ X such

that for any two BSs bi, bj ∈ B and any cycle C in LS

that uses edge (bi, bj) and node x, C must also contain
node y.

Assume that claim (a) is false. Then there exists an RN
y′ ∈ Ymin such that for any SN x ∈ X , G′ contains a cycle
C that goes through SN x and a BS–BS edge (b′, b′′), but not
RN y′. Let G′′ be obtained from G′ by deleting node y′ and
all edges adjacent with y′. Then G′′ is a spanning subgraph
of HCG(r,R,B,X ,Y ′

min), where Y ′
min = Ymin \ {y′}.

Since we have proved that (3)⇒(1), G′′ is a 2-connected
spanning subgraph of HCG(r,R,B,X ,Y ′

min), contradicting
the minimum size property of Ymin. Therefore (a) is true.

Assume to the contrary that there exists an RN y such that
δb(y,LS) ≥ 2. WLOG, assume that BSs bi and bj are adjacent
with y in LS . It follows from claim (a) in the above that there
exists an SN x ∈ X such that any cycle C of LS that contains
edge (bi, bj) and node x must also contain node y. Note that
the existence of a cycle C of LS which uses edge (bi, bj)
and node x follows from the fact that LS is 2-connected and
contains all the BS–BS edges.

The cycle C can only take one of the following two forms:
x → · · · → y → bi → bj → · · · → x, or x → · · · → bi →
bj → y → · · · → x. If C has the first form, LS contains the
cycle C and its chord (y, bj), contradicting the shortest length
property of LS . If C has the second form, LS contains the
cycle C and its chord (y, bi), again contradicting the shortest
length property of LS . Therefore we have δb(y,LS) ≤ 1 for
every RN y.

The concept of Steiner components defined in Definition 3.7
generalizes naturally to the case with BSs, with BS nodes
treated similarly as sensor nodes. Similar to Lemma 3.3
and Theorem 3.1, we can prove the following (noting that
δb(y,L) + δs(y,L) ≤ 6 for each RN y involved).

Lemma 3.7: There exists a 2-connected spanning subgraph
Gappx of the steinerized graph GS(r,R,B,X ) such that
c(Gappx) is at most 8 times the size of an M1tFTPB for
(r,R,B,X ).

Theorem 3.2: Algorithm 2 is a 16-approximation algorithm
for 1tFTPB. It can compute a 2-connected spanning subgraph
GA of GS(r,R,B,X ) such that c(GA) ≤ 16·|Yopt| in O((m+
n)4) time, and requires additional O((m+n)2+|Yopt|) time to
deploy the RNs, where Yopt is an M1tFTPB for (r,R,B,X ).

We wish to point out that the algorithm of Lin and Xue [17],
the algorithm of Lloyd and Xue [19], the algorithm of Kashyap
et al. [14], and Algorithms 1 and 2 of this paper all follow
the same three-stage design principle: STAGE 1: Construct the
steinerized graph GS(r,R,B,X ) (B could be ∅); STAGE 2:
Compute either an optimal solution (for k=1) or an approxi-
mation (for k=2) of the minimum cost k-connected spanning
subgraph GA of GS(r,R,B,X ) (k=1 for [17, 19] and k=2
for [14] and this paper); STAGE 3: Steinerize the edges of GA.
The difference lies in the analysis of the algorithms and in the
computation of GA.

For k = 1, the minimum cost 1-connected spanning sub-
graph of GS(r,R,B,X ) is the minimum spanning tree, which
can be computed efficiently. For k = 2, computing the mini-
mum cost 2-connected spanning subgraph of GS(r,R,B,X )
is NP-hard [15]. Therefore we compute a 2-approximation
GA using the algorithm of [15]. Although we don’t have
a theoretical proof, it has been observed in [14] that the
Traveling Salesman (TSP) tour of GS provides a 2-connected
spanning subgraph of GS whose cost is often very close to
that of the minimum cost 2-connected spanning subgraph of
GS . Therefore a good heuristic algorithm is to use a TSP tour
as a candidate for GA, instead of using a 2-approximation to
the minimum cost 2-connected spanning subgraph.

4. TWO-TIERED FAULT-TOLERANT RELAY PLACEMENT

A. Problem Definitions and Summary of Results

Two-Tiered Relay Node Placement with Basestations:
Definition 4.1: Let B be a set of BSs, Y be a set of RNs,

and R > 0 be the communication range of the RNs. The relay
communication graph RCG(R,B,Y) induced by the 3-tuple
(R,B,Y) is an edge-weighted undirected graph with vertex
set V = B ∪ Y and edge set E defined as follows:

• For any two BSs bi, bj ∈ B, E contains the undirected
edge (bi, bj) = (bj , bi), with length l(bi, bj) = 0.

• For an RN yi ∈ Y and a node zj ∈ Y ∪ B which could
be either an RN or a BS, E contains the undirected edge



7

(yi, zj) = (zj , yi) if and only if d(yi, zj) ≤ R. The length
of edge (yi, zj) ∈ E is l(yi, zj) = d(yi, zj).

The edge length function generalizes naturally to the length
of a subgraph of RCG by summation. 2

Definition 4.2: Let r > 0 and R ≥ r be the respective
communication ranges for SNs and RNs. Let B be a set of
BSs, and X be a set of SNs. A set of RNs Y is said to be
a feasible two-tiered fault-tolerant relay node placement with
basestations (denoted by F2tFTPB) for (r,R,B,X ) if:

• For each SN x ∈ X , there exist two RNs in Y that are
within distance r of x.

• The graph RCG(R,B,Y) is 2-connected.

The size of the corresponding F2tFTPB is |Y|. An F2tFTPB
is a minimum two-tiered fault-tolerant relay node placement
with basestations for (r,R,B,X ) (denoted by M2tFTPB)
if it has the minimum size among all F2tFTPBs for
(r,R,B,X ). The two-tiered fault-tolerant relay node place-
ment with basestations problem for (r,R,B,X ), denoted by
2tFTPB(r,R,B,X ), seeks an M2tFTPB for (r,R,B,X ). 2

Two-Tiered Relay Node Placement without Basestations:
We also study a special case of 2tFTPB where B = ∅. In this
case, the relay communication graph defined above becomes
RCG(R,Y). Similarly,

• the term feasible two-tiered fault-tolerant relay node
placement with basestations (F2tFTPB) for (r,R,B,X )
becomes feasible two-tiered fault-tolerant relay node
placement (F2tFTP) for (r,R,X );

• the term minimum two-tiered fault-tolerant relay node
placement with basestations (M2tFTPB) for (r,R,B,X )
becomes minimum two-tiered fault-tolerant relay node
placement (M2tFTP) for (r,R,X );

• the term two-tiered fault-tolerant relay node placement
with basestations problem (2tFTPB) for (r,R,B,X )
becomes two-tiered fault-tolerant relay node placement
problem (2tFTP) for (r,R,X ).

Discussions:
To our best knowledge, the 2tFTPB(r,R,B,X ) problem
has not been studied in the literature. Its special case, the
2tFTP(r,R,X ) problem, has been well studied.

Hao et al. in [9] first studied the 2tFTP problem under the
name two connected double cover. The problem is conjectured
to be NP-hard in both [9] and [23]. Approximation algorithms
were presented in [9, 23, 18]. The approximation algorithm
in [9] does not have a constant approximation ratio. The
approximation algorithm in [23] has an approximation ratio of
4.5, provided that the SNs are uniformly distributed and that
R ≥ 4r. Without these conditions, the algorithm of [23] does
not have any known approximation ratio. The approximation
algorithm of [18] assumes R = r, but no assumption on the
distribution of the SNs, and has an approximation ratio of
(24 + ε), where ε > 0 is any given constant.

The 2tFTPB problem is a more realistic model than the
well-studied 2tFTP problem because a WSN is usually con-
nected to one or more BSs and that BSs are more powerful
than the SNs and RNs. To our knowledge, this is the first
paper which studies the 2tFTPB problem.

Results:
We present a polynomial time (10 + ε)-approximation al-
gorithm for 2tFTP, improving the previous-best (24 + ε)-
approximation algorithm of [18] which was designed for the
special case where R = r. We also present a polynomial time
(20 + ε)-approximation algorithm for 2tFTPB.

B. Approximation Algorithm for 2tFTP

In a recent paper [19], Lloyd and Xue presented a polyno-
mial time (5 + ε)-approximation algorithm for the following
two-tiered relay node placement problem.

Definition 4.3: Let R ≥ r > 0 be the respective communi-
cation ranges for RNs and SNs. Let X be a set of SNs and
Y be a set of RNs. Y is said to be a feasible two-tiered relay
node placement (denoted by F2tRNP) for (r,R,X ) if:

• For each SN x ∈ X , there exists an RN y ∈ Y that is
within distance r of x.

• The graph RCG(R,Y) is connected.

The size of the corresponding F2tRNP is |Y|. An F2tRNP
is said to be a minimum two-tiered relay node placement for
(r,R,X ) (denoted by M2tRNP) if it has the minimum size
among all F2tRNPs for (r,R,X ). The two-tiered relay node
placement problem for (r,R,X ), denoted by 2tRNP(r,R,X ),
seeks an M2tRNP for (r,R,X ).

We use the result of Lloyd and Xue [19] in the design of
the following (10 + ε)-approximation algorithm for 2tFTP.

Algorithm 3 (10 + ε)-Approximation Algorithm for 2tFTP
Input: R ≥ r > 0, ε > 0, sensor nodes X = {x1, . . . , xn}.
Output: A set of relay nodes YA = {y1, . . . , yl}.

1: Apply algorithm A of [19] to compute a (5 + ε/2)-
approximation to 2tRNP(r,R,X ), given by the set of
relay nodes Z = {z1, . . . , zk}.

2: Duplicate each of the relay nodes in Z to obtain YA.

Theorem 4.1: For any given constant ε > 0, Algorithm 3
computes a (10 + ε)-approximation to 2tFTP(r,R,X ) in
polynomial time.
PROOF. The polynomial running time of Algorithm 3 follows
that of the (5 + ε)-approximation algorithm for 2tRNP [19].

Since Z is an F2tRNP for (r,R,X ), we know that each
SN x ∈ X is within distance r of an RN z ∈ Z , and that
the relay communication graph RCG(R,Z) is connected. By
the construction of YA, we know that each SN x ∈ X is
within distance r of two RNs y, y′ ∈ YA, and that the relay
communication graph RCG(R,YA) is 2-connected.

Let Zopt be an M2tRNP for (r,R,X ) and Yopt be an
M2tFTP for (r,R,X ). It follows from the definitions of
2tRNP and 2tFTP, any F2tFTP for (r,R,X ) is guaranteed
to be an F2tRNP for (r,R,X ). This implies |Zopt| ≤ |Yopt|.
Since A is a (5 + 0.5ε)-approximation algorithm for 2tRNP,
we have |Z| ≤ (5 + 0.5ε) × |Zopt|. It follows that

|YA| = 2|Z| ≤ (10 + ε) × |Zopt| ≤ (10 + ε) × |Yopt|. (4.1)

Therefore Algorithm 3 is a (10+ε)-approximation algorithm.

C. Approximation Algorithm for 2tFTPB

Our approximation algorithm for 2tFTPB uses an PTAS for
the NP-hard DCover problem defined in the following [11].
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Definition 4.4: Let X be a set of points in the Euclidean
plane, and let r > 0 be a positive constant. A set of points
D is said to be a geometric disk cover of X if for each point
xi ∈ X there exists a point dj ∈ D s.t. d(xi, dj) ≤ r. The
minimum geometric disk cover problem for (r,X ) (denoted by
DCover(r,X )) seeks a minimum cardinality cover of X . 2

Algorithm 4 (20 + ε)-Approximation Algorithm for 2tFTPB
Input: R ≥ r > 0, ε > 0, SNs X , BSs B.
Output: A set of RNs YA ∪ DA ∪ UA.

1: Apply algorithm A of [11] to obtain a minimal set of RNs
D which is a (1+0.25ε)-approximation to DCover(r,X ).

2: Construct a set U ⊆ X s.t ∀ di ∈ D, ∃ exactly one uj ∈ U
with d(di, uj) ≤ r and that ∀ ui ∈ U , ∃ exactly one
dj ∈ D with d(ui, dj) ≤ r. {Note that |U| = |D|.}

3: Apply Algorithm 2 to obtain a set of RNs YA that is a
16-approximation to 1tFTPB(R,R,B,U).

4: Duplicate each RN in D to obtain DA. Duplicate each
RN in U to obtain UA.

Theorem 4.2: For any given constant ε > 0, Algorithm 4
computes a (20 + ε)-approximation to 2tFTPB(r,R,X ) in
polynomial time. 2

PROOF. Lines 1 and 3 each invokes a polynomial time
algorithm. Lines 2 and 4 each takes polynomial time (in both
the input size and the output size). Therefore Algorithm 4 is
a polynomial time algorithm.

Since D is a geometric disk cover of X , and DA is obtained
by duplicating each RN in D, each SN in X is within distance
r of at least two RNs in DA. Since YA is an F1tFTPB for
(R,R,B,U), all RNs in YA and U and the BSs in B are
in a common biconnected component of RCG(R,B,YA ∪
U). Following the construction of U , each RN in D is within
distance r ≤ R of an RN in U . Since DA has two copies
of each RN in D and UA has two copies of each RN in U ,
RCG(R,B,YA ∪ UA ∪ DA) is 2-connected. This proves that
YA ∪ UA ∪ DA is an F2tFTPB for (r,R,B,X ).

Let Yopt be an optimal solution for 2tFTPB(r,R,B,X ),
Dmin be an optimal solution for DCover(r,X ), and Ysub

be an optimal solution for 1tFTPB(R,R,B,U). Since Yopt

is also a geometric disk cover of X (with radius r), we
have |Dmin| ≤ |Yopt|. Since Yopt is a feasible solution
for 2tFTPB(r,R,B,X ), U is placed on a subset of X and
R ≥ r, we conclude that Yopt is a feasible solution for
2tFTPB(R,R,B,U), which in turn implies that Yopt is a
feasible solution for 1tFTPB(R,R,B,U). Since Ysub is an
optimal solution for 1tFTPB(R,R,B,U), we have |Ysub| ≤
|Yopt|. Following the algorithm, we have

|DA| = 2|D| ≤ 2(1 + 0.25ε)Dmin ≤ (2 + 0.5ε)|Yopt|,

|UA| = 2|U| = 2|D| ≤ (2 + 0.5ε)|Yopt|,

|YA| ≤ 16|Yopt|.

Therefore, we have

|YA ∪ DA ∪ UA| ≤ (20 + ε) · |Yopt|. (4.2)

This completes the proof of Theorem 4.2.
Line 4 of Algorithm 4 is very pessimistic, but leads to a

shorter proof of Theorem 4.2. All claims in Theorem 4.2 are
still true if Line 4 of Algorithm 4 is replaced by the following.

4A: Set DA := D and UA := U .
4B: For each RN in DA that is an articulation point of

RCG(R,B,YA ∪DA ∪UA), add a duplicate of it to DA.
4C: For each SN x ∈ X that is within distance r of exactly

one RN in YA ∪ DA ∪ UA, add a duplicate of that RN.

Due to space limitations, we omit the proof of this claim.

5. NUMERICAL RESULTS

We have carried out computational studies of our algorithms
on randomly generated test problems. We present results for
1tFTPB and 2tFTPB, as 1tFTP and 2tFTP can be viewed
as special cases. In the figures and discussions, we will
use 1tFTPB and 2tFTPB also to denote our correspond-
ing algorithms for solving the problems. Our algorithm for
2tFTPB uses the PTAS of [11] for computing a (1 + 0.25ε)-
approximation for DCover. The PTAS uses an integer pa-
rameter ` > 0 and guarantees a (1 + 1

`
)2-approximation. We

found that the results produced by the algorithm were almost
the same with ` set to 3 and to 2. So we fixed ` = 2 in our
implementations, yielding a guaranteed 25-approximation.

Since there are no previous algorithms for solving these
problems, and that optimal solutions are difficult to obtain, we
also implemented two heuristics: 1tTSP and 2tTSP. 1tTSP
computes a TSP tour of GS(r,R,B,X ) and steinerizes the
edges of the tour to deploy RNs. As discussed near the end
of Section 3, 1tTSP may produce close to optimal solutions.
2tTSP is similar to 1tTSP, but computes a TSP tour of
GS

+(r,R,B,X ), which is the same as GS(r,R,B,X ) except
that SN-SN edges that have length 0 in GS now have length 1
in GS

+ (due to the covering need). When the SNs are sparsely
distributed, the length of the computed TSP tour is close to the
number of RNs needed to steinerize the edges of an Euclidean
TSP tour of the nodes. Therefore 2tTSP should produce close
to optimal solutions in this case. Note that neither 1tTSP nor
2tTSP is a polynomial time algorithm. We have used the
Concorde TSP Solver [28] to compute TSP tours.

As in [14] and [23], SNs X were uniformly distributed
in a square playing field. Two basestations were randomly
deployed in the square. Fig. 4 and 5 illustrate the average of
10 test runs for various scenarios. First, we study the scenario
where the number of SNs increases but the playing field is
fixed at 100× 100 sq. units. As expected, the number of RNs
needed for 1tFTPB decreases with n, and converges to 0, (see
Fig. 4(a)); the number of RNs needed for 2tFTPB increases
with n, and converges to a constant, (see Fig. 5(a)).

Fig. 4(b) and Fig. 4(c) illustrate the growth of the number
of RNs needed for 1tFTPB as n increases while the playing
field also grows to keep the sensor density constant, where
density is the number of SNs in one square unit. Fig. 5(b)
illustrates the case for 2tFTPB. As expected, the number of
RNs needed grows almost linearly with n in both cases.

Fig. 5(c) shows the ratio of the number of RNs needed
by Algorithm 4 over that needed by 2tTSP, as a function of
the reciprocal of the sensor density. As discussed earlier, the
2tTSP heuristic produces close to optimal solutions when the
sensor density becomes very small. Fig. 5(c) shows that the
number of RNs required by Algorithm 4 is no more than 1.5
times the number of RNs required by 2tTSP. This suggests
that Algorithm 4 has very good performance.
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(b) density = 0.50
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(c) density = 0.25

Fig. 4. Numerical Results for 1tFTPB: 1tFTPB also denotes the algorithm, and is compared with 1tTSP.
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Fig. 5. Numerical Results for 2tFTPB: 2tFTPB also denotes the algorithm, and is compared with 2tTSP.

6. CONCLUSIONS

We have studied four fault-tolerant relay node placement
problems in WSNs and presented an O(1)-approximation
algorithm for each of them. These problems have been pre-
viously studied only in restricted forms. Besides improv-
ing/generalizing previously best known results, our paper has
the following features. We provide fault-tolerance (compared
with 1-connectivity) and maintain simplicity (compared with
higher order connectivity). We distinguish the communication
powers of the basestations, the relay nodes, and the sensor
nodes. We also explore the two-tiered network architecture.
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