Estimating the Usefulness of Search Engines*

Weiyi Meng!, King-Lup Liu?, Clement Yu?, Wensheng Wu?, Naphtali Rishe?
! Dept. of Computer Science, SUNY — Binghamton, Binghamton, NY 13902
2 Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607
? School of Computer Science, Florida International University, Miami, FL 33199

Abstract

In this paper, we present a statistical method to es-
timate the usefulness of a search engine for any given
query. The estimates can be used by a metasearch en-
gine to choose local search engines to invoke. For a
given query, the usefulness of a search engine in this
paper s defined to be a combination of the number
of documents in the search engine that are sufficiently
similar to the query and the average similarity of these
documents. Experimental results indicate that the pro-
posed estimation method 1s quite accurate.

1 Introduction

Many search engines have been created on the In-
ternet to help ordinary users find desired data. Each
search engine has a corresponding database that de-
fines the set of documents that can be searched by the
search engine. Usually, an index for all documents in
the database is created and stored in the search engine
to speed up query processing.

The amount of data in the Internet is huge (it is be-
lieved that by the end of 1997, there were more than
300 million web pages [13]) and is increasing rapidly.
Employing a single search engine for all data in the In-
ternet is unrealistic because its processing power and
storage capability may not scale to the virtually unlim-
ited amount of data. In addition, gathering all data in
the Internet and keeping them reasonably up-to-date
are extremely difficult if not impossible.

A more practical approach to provide search ser-
vices to the entire Internet is the following two-level
approach (the approach can be generalized to more
than two levels). At the bottom level are the lo-
cal search engines. A metasearch engine is built on
top of them. A metasearch engine is just an inter-
face and it does not maintain its own index on doc-
uments. However, a sophisticated metasearch engine
may maintain certain characteristic information about
each local search engine (called the representative of
the search engine) to provide better service. When a

*This research is supported by the following organiza-
tions: NSF (IRI-9509253, CDA-9711582, HRD-9707076),
NASA (NAGW-4080, NAG5-5095) and ARO (NAAHO04-
96-1-0049, DAAH04-96-1-0278).

metasearch engine receives a user query, it first passes
the query to the appropriate local search engines, and
then collects (sometimes, reorganizes) the results from
the search engines used. The advantages of this ap-
proach are (a) user queries can be evaluated against
smaller databases in parallel, resulting in reduced re-
sponse time; (b) updates to indexes can be localized,
l.e., the index of a local search engine is updated
only when documents in its database are modified;
(Although local updates may need to be propagated
to the metadata that represent the contents of local
databases, the propagation can be done infrequently
as the metadata are typically statistical in nature and
can tolerate certain degree of inaccuracy.) (c¢) local in-
formation can be gathered more easily and in a more
timely manner; and (d) the demand on storage space
and processing power at each local search engine is
more manageable.

When the number of search engines invokable by a
metasearch engine is large, a serious inefficiency may
arise. Typically, for a given query, only a small frac-
tion of all search engines may contain useful docu-
ments to the query. If every search engine is blindly
invoked for each query, then unnecessary network traf-
fic will be created when the query is sent to useless
search engines. In addition, local resources will be
wasted when useless databases are searched. A better
approach is to first 1dentify those search engines that
are most likely to provide useful results to a given
query and then pass the query to only the identified
search engines. A challenge with this approach is how
to identify potentially useful search engines.

In this paper, the usefulness of a search engine to a
given query is measured by a pair of numbers (NoDoc,
AvgSim), where NoDoc is the number of documents
in the database of the search engine whose simelarities
with the query as measured by a certain global sim-
ilarity function are higher than a specified threshold
and AwvgSim is the average similarity of these high-
similarity documents. (The global similarity function
may or may not be the same as the local similarity
function employed by a local search engine.) NoDoc
and AwvgSim are defined precisely below:

NoDoe(T,q,D) = |[{d|d € D and sim(q,d) > T}| (1)

. > deDnsim(g,dy>T Stm(q, d)
AvgSim(T,q, D) = NoD(oqc()T) (2)

where |X| denotes the number elements in set X, T is
a threshold, D is the database of a search engine and
stm(q, d) is the similarity between a query ¢ and a doc-
ument d in D. A query is simply a set of words submit-
ted by a user. It is transformed into a vector of ferms
with weights [17]. A document is also transformed into
a vector with weights. The similarity between a query
and a document can be measured by the dot product
of the two vectors. Often, the dot product is divided
by the product of the norms of the two Vectors where

the norm of a vector (zy,...,2,) is \/>_ i1 xz Thls

i1s to normalize the smnlarlty between 0 and 1
similarity function with such a normalization is known
as the C'osine function [17,19].

This paper has several contributions. First, a new
measure is proposed to characterize the usefulness of
(the database of) a search engine with respect to a
query. The new measure is easy to understand and
very informative. Second, a new statistical method is
proposed to identify search engines to use for a given
query and to estimate the usefulness of a search en-
gine for the query. We will show that both NoDoc
and AvgSim can be obtained from the same process.
Therefore, little additional effort is required to com-
pute both of them in comparison to obtaining any
one of them only. The method yields very accurate
estimates as demonstrated by experimental results.
It also guarantees the following property. Let the
largest similarity of a document with a query among
all documents in search engine ¢ be max_sim;. Suppose
max.sim; > maxsim; and a threshold of retrieval T is
set such that max_sim; > T > max_sim;, then based
on our method, search engine i will be 1nvoked while
search engine j will not if the query is a single term
query. In other words, our method identifies correct
search engines to invoke for single-term queries which
constitutes a significant portion of all Internet queries.
This 1s consistent to the ideal situation where docu-
ments are examined in descending order of similarity.
In addition, the new method is quite robust as it can
still yield good result even when approximate statisti-
cal data are used.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 presents our
method for estimating the usefulness of search engines.
Experimental results will be presented in Section 4.
Section b concludes the paper.

2 Related Work

Several methods have been proposed to identify po-
tentially useful search engines in a metasearch envi-
ronment [4,7,10,11,20]. However, the database repre-
sentatives in most methods cannot be used to esti-
mate the number of globally most similar documents
in each search engine [3,10,11,20]. The measures used
by these methods to rank the search engines are dif-
ficult to understand and a separate method has to be
used to convert these measures to the number of doc-
uments to retrieve from each search engine. Another
shortcoming of these measures is that they are inde-
pendent of the similarity threshold (or the number of

documents desired by the user). As a result, a search
engine will always be ranked the same regardless of
how many documents are desired, if the databases of
these search engines are fixed. A probabilistic model
for distributed information retrieval is proposed in [2].
The method 1s more suitable in a feedback environ-
ment, 1.e., documents previously retrieved have been
identified to be either relevant or irrelevant.

The usefulness of a search engine with respect to
a given query in gGlOSS [4] is defined to be the sum
of all document similarities with the query that are
greater than a threshold. This usefulness measure is
less informative than our measure. The representative
of gGIOSS can be used to estimate the number of use-
ful documents in a database [5] and consequently, it
can be used to estimate our measure. However, the
estimation methods used in gGlOSS are very differ-
ent from ours. The estimation methods employed in
[4,5] are based on two very restrictive assumptions.
One is the high-correlation assumption (for any given
database, if query term j appears in at least as many
documents as query term k, then every document con-
taining term k also contains term i) and the other is
the disjoint assumption (for a given database, for all
term j and term k, the set of documents containing
term j 1s disjoint with the set of documents containing
term k). Due to the restrictiveness of the above as-
sumptions, the estimates provided by these two meth-
ods are not accurate. Note that when the measure of
similarity sum is used, the estimates produced by the
two methods in gGlIOSS form lower and upper bounds
to the true similarity sum. As a result, the two meth-
ods are more useful when used together than when
used separately. However, when the measure is the
number of useful documents, the estimates produced
by the two methods in gGlOSS no longer form bounds
to the true number of useful documents.

[18] proposed a method to estimate the number of
useful documents in a database for the binary and in-
dependent case. In this case, each document d is rep-
resented as a binary vector such that a 0 or 1 at the
ith position indicates the absence or presence of term
t; in d; and the occurrences of terms in different doc-
uments are assumed to be independent. This method
was later extended to the binary and dependent case
n [14], where dependencies among terms are incorpo-
rated. A substantial amount of information will be
lost when documents are represented by binary vec-
tors. As a result, it is seldom used in practice. The
estimation method in [15] permits term weights to be
non-binary but it utilizes the non-binary information
in a way which is very different from the subrange-
based method to be described in Section 3.

3 A New Method for Usefulness Esti-
mation

We present our method for estimating the useful-
ness of a search engine in Section 3.1. A simple tech-
nique for improving the scalability of the method will
be discussed in Section 3.2.

3.1 The Subrange-based Method

Consider a database D of a search engine with m
distinct terms. Each document d in this database can
be represented as a vector d = (dy,...,dp), where
d; is the weight (or significance) of the ith term ;
in representing the document, 1 < ¢ < m. Each
query can be similarly represented. Consider query
q = (U1, U2, ..., Upy), where u; is the weight of ¢; in
the query, 1 < ¢ < m. The similarity between ¢
and document d can be defined as the dot prod-
uct of their respective vectors, namely sim(q,d) =
up *dy + -+ Uy, * dy,. Similarities are often nor-
malized between 0 and 1. One common normalized
similarity function is the C'osine function [17].

We first consider the case when the database D is
represented as m pairs {(p;,w;)}, ¢ = 1,...,m, where
p; 1s the probability that term ¢; appears in a doc-
ument in D and w; is the average of the weights
of ¢; in the set of documents containing ¢;. For a
given query ¢ = (u1,us, ..., Un), the database repre-
sentative can be used to estimate the usefulness of
D. Without loss of generality, we assume that only
the first » wu;’s are non-zero, 0 < r < m. There-
fore, ¢ becomes (uy, ua, ..., u,) and sim(q, d) becomes
uy *kdy + - - -+ u, % d-. This implies that only the first
r terms in each document in D need to be considered.

Consider the following generating function:

(pr* XU 4 (1= p1)) * (p2 ¥ X922 + (1 — pa))
% (pr o XU 4 (1= p,)) (3)

where X is a dummy variable. The following proposi-
tion relates the coefficients of the terms in the above
function with the probabilities that documents in D
have certain similarities with ¢ [15].

Proposition 1. Let ¢ and D be defined as above. If
the terms are independent and the weight of term #;
whenever present in a document is w;, which 1s given
in the database representative (1 < ¢ < r), then the

coefficient of X'* in function (3) is the probability that
a document in D has similarity s with q.

Example 3.1: Let ¢ be a query with three terms with
all weights equal to 1, i.e., ¢ = (u1,u2,uz) = (1, 1, 1)
(for ease of understanding, the weights of terms in the
query and documents are not normalized). Suppose
database D has five documents and their vector rep-
resentations are (only components corresponding to
query terms are given): (3, 0, 0), (1, 1, 0), (0, 0, 2),
(2,0, 2) and (0, 0, 0). Namely, the first document has
query term 1 and the corresponding weight is 3. Other
document vectors can be interpreted similarly. From
the five documents in D, we have (p1, w1) = (0.6, 2) as
3 out of the 5 documents have term 1 and the average
weight of term 1 in such documents is 2. Similarly,
(p2,w2) = (0.2, 1) and (p3, ws) = (0.4, 2). Therefore,
the corresponding generating function is:

(0.6% X? +0.4)(0.2% X +0.8)(0.4% X? 4+ 0.6) (4)

Consider the coefficient of X? in the function.
Clearly, it is the sum of py * (1 — p2) * (1 — p3) and
(1=p1)*(1—p2)*ps. The former is the probability that

a document in D has exactly the first query term and
the corresponding similarity with ¢ is wy * uy (=2).
The latter is the probability that a document in D
has exactly the last query term and the corresponding
similarity is ws * uz (=2). Therefore, the coefficient
of X? (= 0.416) is the estimated probability that a
document in D has similarity 2 with ¢. B

After expanding the generating function (3) and
merging terms with the same X?® we obtain

ay* X fas* X2 4o 4a, x X (5)

We assume that the terms in (5) are listed in descend-
ing order of the exponents, i.e., by > by > ... > b..
By Proposition 1, a; is the probability that a docu-
ment in D has similarity b; with ¢. In other words, if
database D contains n documents, then n * a; is the
expected number of documents that have similarity b;
with query ¢. For a given similarity threshold 7', let
C be the largest integer to satisfy b > 7. Then, the
expected number of documents whose similarity with

query ¢ is greater than 7' is ZZ’C:1(” * a;). That is,
the NoDoc measure of D for query ¢ based on thresh-
old T' (i.e. the number of documents in database D
whose similarities with ¢ are greater than 7)) can be
estimated as:

c c
est_NoDoc(T,q,D) = Z n*a; =n Z a; (6)
i=1 i=1

Note that n * a; * b; is the expected sum of all simi-
larities of those docun&ents whose similarities with the
query are b;. Then " | (n*a;*b;) is the expected sum
of all similarities of those documents whose similari-
ties with the query are greater than 7. Therefore, the
AwvgSim measure of D for query ¢ based on threshold
T (i.e., the average similarity of those documents in
database D whose similarities with ¢ are greater than
T) can be estimated as:

c c

g Qg x by © o ar kb

est_AvgSim(T,q, D) = nzl_lcaz kb D Z_éaz * by
n Zi:l ¢} E i=1 a;

Since both NoDoc and AwvgSim can be estimated
from the same expanded expression (5), estimating
both of them requires little additional effort in com-
parison to estimating only one of them.

Example 3.2: (Continue Example 3.1). When the
generating function (4) is expanded, we have:

0.048 % X° +0.192 % X* 4+ 0.104 % X3 4+ 0.416 X2
4+0.048 « X +0.192

From the above estimation formulas, we have
est_NoDoc(3,¢, D) = 5% (0.048 4+ 0.192) = 1.2 and
est_AvgSim(3,q, D) = (0.048 +5+0.1924)/(0.048 +
0.192) = 4.2. Tt is interesting to note that the ac-
tual NoDoc is NoDoc(3,¢q, D) = 1 since there is one
document having similarity higher than 3 with ¢ (the
fourth and the similarity is 4) and the actual AvgSim
is AvgSim(3,¢,D) =4. 1

One unrealistic assumption used in Proposition 1
is that all documents having a term have the same
weight for the term. We now present a subrange-based
statistical method to overcome the problem.

Consider a term {. Let w and ¢ be the average
and standard deviation of the weights of ¢ in the set
of documents containing ¢, respectively. Let p be the
probability that term ¢ appears in a document in the
database. Based on the above discussion, if term ¢
is specified in a query, then the following polynomial
is included in the probability generating function (see
Expression (3)):

p* X + (1 -p) (7)

where u is the weight of the term in the user query.

This expression essentially assumes that the term
t has an uniform weight of w for all documents con-
taining the term. In reality, the term may have a
non-uniform distribution among the documents hav-
ing the term. Let these weights in non-ascending order
of magnitude be wy, ws, ..., wy, where k = p * n is the
number of documents having the term and n is the
total number of documents in the database. Suppose
we partition the weight range of ¢ into 4 subranges,
each containing 25% of the term weights, as follows.
The first subrange contains the weights from w; to
w;, where s = 25% * k; the second subrange contains
the weight wsi1 to wy, where ¢ = 50% = k; the third
subrange contains the weights from w41 to w,, where
v = 75% x k and the last subrange contains weights
from wy41 to wg. In the first subrange, the median is
the (25% # k/2)-th weight of the term weights in the
subrange and is wy,1, where m1 = 12.5% * k; simi-
larly, the median weights in the second, the third and
the fourth subranges are w2, Wys and w4, respec-
tively, where m2 = 37.5% * k,m3 = 62.5% * k and
m4 = 87.5% * k. This can be illustrated by the follow-
ing figure.

ml S m2 t m3 \Y m4 k
|
|

| | | | | | | |
[I I I I I I I

87.5 100

0 125 25 375 50 625 75

Then, the distribution of the term weights of ¢ may
be approximated by the following distribution: The
term has a uniform weight of w1 for 25% of the k
documents having the term, another uniform weight
of wy,s for the next 25% of the k£ documents, another
uniform weight of w3 for the next 25% of documents
and another uniform weight of w4 for the last 25%
of documents.

With the above weight approximation, for a query
containing term ¢, polynomial (7) in the generating
function can be replaced by the following polynomial:

+pax XVt 4 (1 — p) (8)

where p; is the probability that term ¢ occurs in a doc-
ument and has a weight of wy,;,7 = 1,2,3,4. Since
25% of those documents having term ¢ are assumed to

have a weight of wy,; for ¢ and for each j, p; = p/4.
Essentially, polynomial (8) is obtained from polyno-
mial (7) by decomposing the probability p that a doc-
ument has the term into 4 probabilities, p1, pa, p3 and
pa, corresponding to the 4 subranges. A weight of
term ¢ in the first subrange, for instance, is assumed
to be wy,1 and the corresponding exponent of X in
polynomial (8) is the similarity due to this term ¢,
which equals u % w,,1, taking into consideration the
query term weight, u.

Since it is expensive to find and to store
W1, Wm2, Wm3 and w4, they are approximated by
assuming that the weight distribution of the term is
normal. Then wy,; = w + ¢; * o, where o is the stan-
dard deviation and ¢; 1s a constant that can be looked
up from a table for the standard normal distribution.
It should be noted that these constants are indepen-
dent of individual terms and therefore one set of such
constants is sufficient for all terms.

Example 3.3: Suppose the average weight of a term
tis w = 2.8 (to ease presentation, assume that term
weights are not normalized) and the standard devia-
tion of the weights of the term is 1.3. From a table
of the standard normal distribution, ¢; = 1.15,¢5 =
0.318,¢3 = —0.318 and ¢4 = —1.15. Note that these
constants are independent of the term. Thus, w1 =
w4erx1.3 = 4.295; wype = w4Hea*x1.3 = 3.2134; w3 =
w—+ezx1.3=2.3866 and w4 = w+cqx1.3=1.305.

Suppose the probability that a document in the
database has the term ¢ 1s 0.32. Then p; = 0.08, for 1
=1, 2, 3 and 4. Suppose the weight of the term ¢ in
the query is 2. Then, the polynomial for the term ¢ in
the generating function is

0.08 % X359 4 0.08 + X 4265 1 (.08 X 7732

+0.08 * X% 4+ 0.68
|

In general, it is not necessary to divide the weights
of the term into 4 equal subranges. For example, we
can divide the weights into 5 subranges of different
sizes. In the experiments we report in Section 4, a
specific six-subrange i1s used with a special subrange
(i.e., the highest subrange) containing the maximum
normalized weight only (see Section 4). The proba-
bility for the highest subrange is set to be 1 divided
by the number of documents in the database. This
probability may be an underestimate. However, since
different documents usually have different norms and
therefore there is usually only one document having
the largest normalized weight, the estimated proba-
bility is reasonable.

Note that the subrange-based method needs to
know the standard deviation of the weights for each
term. As a result, a database with m terms is now
represented as m triplets {(p;,w;,04)}, ¢ = 1,...,m
where p; is the probability that term #; appears in a
document in the database, w; 1s the average weight of
term ¢; in all documents containing the term and o; is
the standard deviation of the weights of ¢; in all doc-
uments containing ¢;. Furthermore, if the maximum
normalized weight of each term is used by the highest

subrange, then the database representative will con-
tain m quadruplets {(p;, w;, o5, mw;)}, with mw; be-
ing the maximum normalized weight for term ¢;. Our
experimental results indicate that the maximum nor-
malized weight is a critical parameter that can drasti-
cally improve the estimation accuracy of search engine
usefulness.

We now provide some insight into why the maxi-
mum normalized weight is critically important for cor-
rectly identifying useful search engines for single-term
queries. Consider a query ¢ that contains a single term
t. Suppose the similarity function is the widely used
Cosine function. Then the query has a normalized
weight of 1 for ¢ and the similarity of a document d
with the query ¢ is w’, which is the dot product 1-w’,
where w’ = w/|d| is the normalized weight of ¢ in doc-
ument d, |d| is the norm of d, and w is the weight of the
term in d before normalization. Consider a database
D that contains documents having term ¢. Let mw;
be the maximum normalized weight of term ¢ among
all documents in database 1. Then the component
of the database representative concerning term ¢ will
contain mwy. Suppose the highest subrange contains
the maximum normalized weight only and its proba-
bility is set to be 1 divided by the number of docu-
ments in the database. Then the generating function
for the query ¢ for the database D is:

p1* XM =+ ...

where py is set to be 1/n and n is the number of
documents in this database. For a different database
D;, i # 1, having maximum normalized term weight
muw; for term ¢, the generating function for the same
query for database D; is obtained by replacing mw;
by mw; in the above expression (with p; being mod-
ified accordingly). Suppose mw; is the largest nor-
malized term weight of term ¢ among all databases
and mwsy 18 the second largest with mw; > mws.
Suppose the threshold of retrieval T 1s set such that
mwi > 1 > mwsy. Then, the estimated number of
documents with similarities greater than T in database
Dy 1s at least py * n = 1 because mw; > T. Since
mwsy < T, the estimated numbers of documents with
similarities greater than T in database Dy and other
databases are zero. Thus, database D; 1s the only
database which can be identified by our estimation
method as having documents with similarities greater
than T for the single term query. This identification
is correct because documents with normalized term
weight mw; can only appear in database D; and docu-
ments in other databases have similarities less than or
equal to mws. In general if the maximum normalized
weights of term ¢ in the databases are arranged in de-
scending order mwy > mwsy > ... > mw > ... > My,
where v is the number of databases, and the threshold
T is set such that mws_; > T > mw;, then databases
Dy, Do, ..., Ds_1 will be identified by our estimation
method to be useful. This identification is consistent
with the ideal situation where these databases contain
documents with similarities greater than T and other
databases do not have the desired documents (with
similarities greater than T). Thus, when the highest

subrange contains the maximum normalized weight
only, our method guarantees the correct identification
of useful search engines for single term queries. The
same argument applies to other similarity functions
such as [16]. Tt is reported in [8,9] that the percent-
age of single-term queries in the Internet 1s quite high
(30% or much higher). Thus, for a large percentage
of all Internet queries, our method guarantees optimal
identification when the maximum normalized weight
of each term is utilized.

3.2 Improving the Scalability

If the representative of a database used by an es-
timation method has a large size relative to that of
the database, then this estimation method will have
a poor scalability. Suppose each term occupies four
bytes. Suppose each number (probability, average
weight, standard deviation and maximum normalized
weight) also occupies 4 bytes. Then based on our esti-
mation method, 20k bytes of space is needed to store
the database representative for a database with & dif-
ferent terms. The following table shows, for several
document collections, the percentage of the sizes of
the database representatives based on our approach
relative to the sizes of the original document collec-
tions. All sizes are in pages of 2 KB.

collection size #dist. terms | rep. size %
WSJ 40605 156298 1563 3.85
FR 33315 126258 1263 3.79
DOE 25152 186225 1862 7.40

The statistics of the second and third columns of
the three document collections, namely, WSJ (Wall
Street Journal), FR (Federal Register) and DOE (De-
partment of Energy), were collected by ARPA/NIST
[6]. The above table shows that for the three
databases, the sizes of the representatives range from
3.79% to 7.40% of the sizes of the actual databases.
Therefore, our approach is fairly scalable. Also, typ-
ically, the percentage of space needed for a database
representative relative to the database size will de-
crease as the database grows. This is because when
new documents are added to a large database, the
number of distinct terms either remains unchanged or
grows slowly.

A simple method to reduce the size of a database
representative is as follows. Instead of using 4 bytes
for each number, a one-byte number can be used to
approximate it. For example, all probabilities are in
interval [0, 1]. Using one byte, 256 different values can
be represented. Based on this, interval [0, 1] can be
partitioned into 256 equal-length intervals. Next, the
average of the probabilities falling into each small in-
terval can be computed. Finally, we map each original
probability to the average of its corresponding inter-
val. Experimental results show (see Section 4) that
the approximation has negligible impact on the esti-
mation accuracy of database usefulness. When the
above scheme 1s used, the size of the representative
of a database with k terms drops to 8 x k bytes from
20 * k bytes. As a result, the sizes of the database

representatives for the above databases will be about
1.5% to 3% of the database sizes.

4 Experimental Results

Three databases, D1, D2 and D3, and a collection
of 6,234 queries were used in the experiment. DI,
containing 761 documents, is the largest among the
53 databases that were collected at Stanford Univer-
sity for testing the gGlOSS system. The 53 databases
are snapshots of 53 newsgroups at the Stanford CS De-
partment news host. D2, containing 1,466 documents,
was obtained by merging the two largest databases
among the 53 databases. D3, containing 1,014 doc-
uments, was obtained by merging the 26 smallest
databases among the 53 databases. As a result, the
documents in D3 are more diverse than those in D2
and the documents in D2 are more diverse than those
in D1. The queries are real queries submitted by
users to the STFT Netnews server [4]. Since most user
queries in the Internet environment are short [1,12],
only queries with no more than 6 terms are used 1n our
experiments. Approximately 30% of the 6,234 queries
in our experiments are single-term queries.

For all documents and queries, non-content words
such as “the”, “of”, etc. are removed. The similarity
function is the C'osine function which guarantees that
the similarity between any query and document with
non-negative term weights will be between 0 and 1.
As a result, no threshold larger than 1 is needed.

We first present the experimental results when the
database representative is represented by a set of
quadruplets (w;, p;, 05, mw;) (average weight, prob-
ability, standard deviation, maximum normalized
weight) and each number is the original number (i.e.,
no approximation is used). The results will be com-
pared against the estimates generated by the method
for the high-correlation case and our previous method
proposed in [15]. (The method in [15] is similar to
the basic method described in Section 3.1 of this pa-
per except that it also utilizes the standard deviation
of the weights of each term in all documents to dy-
namically adjust the average weight and probability
of each query term according to the threshold used
for the query. No experimental results for the method
based on the disjoint case [4] will be reported here as
we have shown that this method underperforms the
method based on the high-correlation case [15].) We
then present the results when the database represen-
tative 1s still represented by a set of quadruplets but
each number is approximated by a one-byte number.
This is to investigate whether our method can tolerate
certain degree of inaccuracy on the numbers used in
the database representative. These experiments use
six subranges for our subrange-based method. The
first subrange contains only the maximum normal-
ized term weight; the other subranges have medians
at 98 percentile, 93.1 percentile, 70 percentile; 37.5
percentile and 12.5 percentile, respectively. Note that
narrower subranges are used for weights that are large
because those weights are often more important for
estimating database usefulness, especially when the
threshold 1s large. Finally, we present the results when

the database representative is represented by a set of
triplets (w;, p;, 0;) and each number is the original
number. In other words, the maximum normalized
weight is not directly obtained but is estimated to be
the 99.9 percentile from the average weight and the
standard deviation. All other medians are determined
in the same manner as before. The experimental re-
sults show the importance of maximum normalized
weights in the estimation process.

Using Quadruplets and Original Numbers

Consider database D1. For each query and each
threshold, four usefulnesses are obtained. The first is
the true usefulness obtained by comparing the query
with each document in the database. The other three
are estimated based on the database representatives
and estimation formulas of the following methods: (1)
the method for the high-correlation case; (2) our previ-
ous method; and (3) our subrange-based method with
the database representative represented by a set of
quadruplets and each number being the original num-
ber. All estimated usefulnesses are rounded to inte-
gers. The experimental results for D1 are summarized
in Tables 1 and 2.

([[high-correlation | our prev method | subrange method |
[T | U | match/mismatch | match/mismatch | match/mismatch |

0.1 1475 296/35 767/14 1423/13

0.2 440 24/3 180/0 421/2

0.3 162 5/1 49/2 153/3

0.4 56 1/0 20/1 52/0

0.5 30 0/0 11/0 24/0

0.6 12 0/0 0/0 6/0

Table 1: Comparison of Match/Mismatch Using D1

[T [high-correlation | our prev method | subrange method |
LT [v 1 4N T a8 [d-N] d-8 [a-N] d-8 |
0.1 1475 16.87 0.121 9.29 0.078 7.05 0.017
0.2 440 17.61 0.242 8.91 0.159 7.34 0.029
0.3 162 20.28 0.354 9.79 0.261 7.69 0.042
0.4 56 17.14 0.470 8.57 0.325 9.48 0.054
0.5 30 3.87 0.586 3.70 0.401 3.77 0.130
0.6 12 1.50 0.692 1.50 0.692 0.92 0.323

Table 2: Comparison of d-N and d-S Using D1

In Tables 1 and 2, T is threshold and U is the num-
ber of queries that identify D1 as useful (D1 is useful
to a query if there is at least one document in D1
which has similarity greater than T with the query,
i.e., the actual NoDoc is at least 1). When T = 0.1,
for instance, 1,475 out of 6,234 queries identify D1 as
useful. The comparison of different approaches are
based on the following three different criteria.

match/mismatch: For a given threshold, “match”
reports among the queries that identify D1 as use-
ful based on the true NoDoc, the number of queries
that also 1dentify D1 as useful based on the estimated
NoDoc; “mismatch” reports the number of queries
that identify D1 as useful based on the estimated
NoDoc but in reality D1 1s not useful to these queries
based on the true NoDoc. For example, consider the
“match/mismatch” column using the method for the
high-correlation case. When T = 0.1, “296/35” means
that out of the 1,475 queries that identify D1 as use-
ful based on the true NoDoc, 296 queries also iden-
tify D1 as useful based on the estimated NoDoc by

the high-correlation approach; and there are also 35
queries that identify D1 as useful based on the high-
correlation approach but in reality, D1 is not useful to
these 35 queries. Clearly, a good estimation method
should have its “match” close to “U” and its “mis-
match” close to zero for any threshold. Note that
in practice, correctly identifying a useful database is
more significant than incorrectly identifying a useless
database as a useful database. This is because miss-
ing a useful database does more harm than searching
a useless database. Therefore, if estimation method A
has a much larger “match” component than method B
while A’s “mismatch” component is not significantly
larger than B’s “mismatch” component, then A should
be considered to be better than B.

Table 1 shows that the subrange-based approach
is substantially more accurate than our previous
method which in turn is substantially more accu-
rate than the high-correlation approach under the
“match/mismatch” criteria.

d-N: For each threshold T, the “d-N” (for “difference
in NoDoc”) measure for a given estimation method in-
dicates the average difference between the true NoDoc
and the estimated NoDoc over the queries that iden-
tify D1 as useful based on the true NoDoc. For ex-
ample, for T = 0.1, the average difference is over the
1,475 queries. The smaller the number in “d-N” is, the
better the corresponding estimation method is. Table
2 shows that the subrange-based approach is better
than our previous method for most thresholds which
in turn i1s much better than the high-correlation ap-
proach under the “d-N” criteria.

d-S: For each threshold T, the “d-S” (for “difference in
AwvgSim”) measure for a given estimation method indi-
cates the average difference between the true AvgSim
and the estimated AvgSim over the queries that iden-
tify D1 as useful based on the true NoDoc. The smaller
the number in “d-S” is, the better the correspond-
ing estimation method is. Table 2 shows that the
subrange-based approach is substantially more accu-
rate than the other two approaches for all thresholds.

The experimental results for database D2 are sum-
marized in Tables 3 and 4. The experimental re-
sults for database D3 are summarized in Tables 5
and 6. From Tables 1 to 6, the following observa-
tions can be made. First, the subrange-based esti-
mation method significantly outperformed the other
two methods for each database under each criteria.
Second, the “mismatch” components are smaller for
database D1, larger for database D2 and largest for
database D3. This is probably due to the increased
degrees of inhomogeneity of these three databases by
their construction.

high-correlation |

our prev method |
match/mismatch | match/mismatch |

subrange method |

T 1T v match/mismatch |
0.1 2506 779/102 1299/148 2352/215
0.2 1110 30/7 321/41 1002/80
0.3 500 4/2 104/14 401/28
0.4 135 1/0 27/1 97/1
0.5 54 0/0 9/1 38/1
0.6 14 0/0 4/0 8/0

Table 3: Comparison of Match/Mismatch Using D2

high-correlation

our prev method |

subrange method

[T 1 v 1 4N d-s | a-N d-8 [d-N d-8
0.1 2506 26.96 0.112 20.31 0.082 12.04 0.026
0.2 1110 19.56 0.252 9.80 0.191 8.35 0.047
0.3 500 13.00 0.347 7.64 0.282 7.02 0.088
0.4 135 11.13 0.458 6.49 0.374 4.58 0.152
0.5 54 5.43 0.550 3.67 0.463 4.61 0.187
0.6 14 3.07 0.664 2.21 0.492 2.50 0.291

Table 4: Comparison of d-N and d-S Using D2

high-correlation

our prev method |

subrange method

[T | U | match/mismatch | match/mismatch | match/mismatch
0.1 2582 760/135 13797192 2410/276
0.2 1125 46/23 277/55 966/76
0.3 393 6/5 76/12 310/21
0.4 133 0/1 17/6 93/7
0.5 48 0/0 8/0 30/0
0.6 15 0/0 3/0 6/0

Table 5: Comparison of Match/Mismatch Using D3

high-correlation

our prev method |

subrange method

LT | v 1 4N T a8 [4a-N] d-8 [a-N] d-8
0.1 2582 17.44 0.114 13.96 0.081 8.02 0.026
0.2 1125 12.47 0.245 7.16 0.198 5.72 0.054
0.3 393 10.92 0.354 6.76 0.297 5.55 0.095
0.4 133 7.18 0.460 4.89 0.405 3.85 0.158
0.5 48 3.77 0.558 2.81 0.472 2.50 0.226
0.6 15 2.20 0.659 3.20 0.534 1.80 0.409

Table 6: Comparison of d-N and d-S Using D3

Using Quadruplets and Approximate Numbers

In Section 3.2, we proposed a simple method to re-

duce the size of a database representative by approxi-
mating each needed number (such as average weight)
using one byte. Fssentially no difference in perfor-
mance (compare Table 7 with Tables 1 and 2). Similar
result can be obtained for databases D2 and D3 (see

Tables 8 and 9).

T m/mis d-N d-5 T m/mis d-N d-5
0.1 1423713 6.79 0.017 0.1 2353/214 12.19 0.026
0.2 42172 7.64 0.030 0.2 1002/79 8.35 0.047
0.3 153/3 7.69 0.042 0.3 401/29 7.03 0.088
0.4 52/0 9.50 0.055 0.4 97/1 1.59 0.152
0.5 24/0 377 0.130 0.5 38/1 1.59 0.187
0.6 6/0 0.92 0.323 0.6 §/0 2.50 0.291

Table 7: Using One Byte
for Each Number for D1

Table 8: Using One Byte
for Each Number for D2

T m/mis d-N d-5 T m/mis d-N d-5
0.1 24117280 8.03 0.027 0.1 §91/12 7.38 0.067
0.2 966/76 574 0.054 0.2 189/0 7.97 0.154
0.3 310/21 5.56 0.095 0.3 60/1 §.33 0.239
0.4 93/7 3.85 0.158 0.4 24/0 9.98 0.293
0.5 30/0 2.52 0.225 0.5 12/1 1.23 0.390
0.6 6/0 1.80 0.409 0.6 1/2 1.23 0.641

Table 9: Using One Byte
for Each Number for D3

Table 10: Result for D1
When Maximum Weights
Are Estimated

Using Triplets and Original Numbers

In Section 3.1, we discussed the importance of the

maximum normalized weights for correctly identifying
useful databases, especially when single term queries
are used. Since single term queries represent a large
fraction of all queries in the Internet environment, it 1s
expected that the use of maximum normalized weights
will significantly improve the overall estimation accu-
racy for all queries. Among 6,234 queries used in our
experiments, 1,941 are single term queries. Table 10
shows the experimental results for database D1 when
the maximum normalized weights are not explicitly

obtained. (Instead, it is assumed that for each term,
the normalized weights of the term in the set of doc-
uments containing the term satisfy a normal distribu-
tion and therefore the maximum normalized weight is
estimated to be the 99.9 percentile based on its av-
erage weight and its standard deviation.) Comparing
the results in Tables 1 and 2 with those in Table 10, it
is clear that the use of maximum normalized weights
can indeed improve the estimation accuracy substan-
tially. Similar conclusion can be reached for databases

D2 (see Table 11) and D3 (see Table 12).

T m/mis a-N -5 T m/mis a-N -5
0.1 1691/175 12.55 0.062 0.1 1851/205 8.50 0.058
0.2 142747 §.96 0.165 0.2 291/50 6.43 0.194
0.3 117/10 7.56 0.272 0.3 76/15 6.19 0.294
0.4 3471 1.85 0.353 0.4 3073 1.23 0.365
0.5 12/3 191 0.439 0.5 10/0 2.85 0.446
0.6 5/1 2.29 0.440 0.6 3/0 2.00 0.536

Table 11: Result for D2
When Maximum Weights
Are Estimated

Table 12: Result for D3
When Maximum Weights
Are Estimated

5 Conclusions

In this paper, we introduced a search engine useful-
ness measure that is intuitive and easily understand-
able. We proposed a statistical method to estimate the
usefulness of a given search engine with respect to each
query. Accurate estimation of the usefulness measure
allows a metasearch engine to send queries to only the
appropriate local search engines to be processed. This
will save both the communication cost and the local
processing cost substantially. Our estimation method
has the following properties:

1. The estimation makes use of the number of doc-
uments desired by the user (or the threshold of
retrieval), unlike some other methods which rank
search engines independent of the above informa-
tion.

2. It guarantees that those search engines containing
the most similar documents are correctly identi-
fied when the submitted queries are single-term
queries.

3. Experimental results indicate that our estimation
method are much more accurate than existing
methods in identifying the correct search engines
to use, in estimating the number of potentially
useful documents in each database, and in esti-
mating the average similarity of the most similar
documents.

We intend to perform extensive experiments involv-
ing much larger and much more databases.
Acknowledgment

We are grateful to Luis Gravano and Hector Garcia-
Molina of Stanford University for providing us with
the database and query collections used in [4].

References

[1] G. Abdulla, B. Liu, R. Saad, and E. Fox. Char-
acterizing World Wide Web Queries. TR-97-04, Vir-
ginia Tech., 1997.

[2] C. Baumgarten. A Probabilistic Model for Dis-
tributed Information Retrieval. ACM SIGIR, 1997.
[3] J. Callan, Z. Lu, and W. Bruce Croft. Search-
wng Distributed Collections with Inference Networks.
ACM SIGIR, 1995.

[4] L. Gravano, and H. Garcia-Molina. Generalizing
GIlOSS to Vector-Space databases and Broker Hierar-
chies. VLDB Conf., 1995.

[5] L. Gravano, and H. Garcia-Molina. Generalizing
GIlOSS to Vector-Space databases and Broker Hier-
archies. Technical Report, CS Dept., Stanford U.,
1995. (This report discussed how to estimate the
database usefulness defined in this paper for the high-
correlation and disjoint scenarios. Such discussion did
not appear in [4].)

[6] D. Harman. Owerview of the First Text Retrieval
Conference. Edited by D. Harman, Computer Sys-
tems Technology, NIST, 1993.

[7] A. Howe, and D. Dreilinger. SavvySearch: A Meta-
Search Engine that Learns Which Search Engines to
Query. Al Magazine, 18(2), 1997.

[8] IDM: Research Agenda for the 21st Century. IDM
Program, NSF, March 1998.

[9] B. Jansen, A. Spink, J. Bateman, and T. Sarace-
vic. Real Life Information Retrieval: A Study of User
Queries on the Web. ACM SIGIR Forum, 32:1, 1998.
[10] B. Kahle, and A. Medlar. An Information System
for Corporate Users: Wide Area information Servers.
Technical Report TMC199, Thinking Machine Corp.,
April 1991.

[11] M. Koster. ALIWEB: Archie-Like Indexing in the
Web. Comp. Networks and ISDN Syst., 27:2, 1994.
[12] G. Kowalski. Information Relrieval Systems,
Theory and Implementation. Kluwer Academic Pub-
lishers, 1997.

[13] S. Lawrence, and C. Lee Giles. Searching the
World Wide Web. Science, 280, April 1998.

[14] K. Lam, and C. Yu. A Clustered Search Algorithm
Incorporating Arbitrary Term Dependencies. ACM
TODS, September 1982.

[15] W. Meng, K-L. Liu, C. Yu, X. Wang, Y. Chang,
and N. Rishe. Determining Text Databases to Search
wn the Internet. VLDB Conf., 1998.

[16] A. Singhal, C. Buckley. and M. Mitra. Pivoted
Document Length Normalization. ACM SIGIR, 1996.
[17] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. New York: McCraw-Hill, 1983.
[18] C. Yu, W. Luk and M. Siu. On the Estimation of
the Number of Desired Records with respect to a Given
Query. ACM TODS, March 1978.

[19] C. Yu, and W. Meng. Principles of Database
Query Processing for Advanced Applications. Morgan
Kaufmann, San Francisco, 1998.

[20] B. Yuwono, and D. Lee. Server Ranking for Dis-
tributed Text Resource Systems on the Internet. bth
Int’l Conf. on Database Systems for Adv. Appli.
(DASFAA’97), April 1997.

