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ABSTRACT
Re-ranking is a critical task for large-scale commercial recom-
mender systems. Given the initial ranked lists, top candidates are
re-ranked to improve the accuracy of the ranking results. However,
existing re-ranking strategies are sub-optimal due to (i) most prior
works do not consider explicit item relationships, like being substi-
tutable or complementary, which may mutually influence the user
satisfaction on other items in the lists, and (ii) they usually apply
an identical re-ranking strategy for all users, with personalized
user preferences and intents ignored. To resolve the problem, we
construct a heterogeneous graph to fuse the initial scoring informa-
tion and item relationships information. We develop a graph neural
network based framework, IRGPR, to explicitly model transitive
item relationships by recursively aggregating relational informa-
tion from multi-hop neighborhoods. We also incorporate a novel
intent embedding network to embed personalized user intents into
the propagation. We conduct extensive experiments on real-world
datasets, demonstrating the effectiveness of IRGPR in re-ranking.
Further analysis reveals that modeling the item relationships and
personalized intents are particularly useful for improving the per-
formance of re-ranking.
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1 INTRODUCTION
Re-ranking, as an effective way of improving recommendation
performance, has been largely adopted by modern commercial
large-scale recommender systems on platforms such as Amazon
∗This work was done when Weiwen Liu was an intern at Huawei Noah’s Ark Lab.
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Figure 1: Architecture of a typical commercial recommender
system.

and Google [26]. A commercial recommender system consists of
three stages in general: candidates generation, scoring, and re-
ranking, as illustrated in Figure 1. The system firstly generates
candidates from a large pool of items, then these candidates are
scored and ranked. Finally, the system conducts re-ranking on
the top candidates based on rules or certain functions to further
improve the recommendation results [26, 39]. The performance of
re-ranking directly influences user experience and satisfaction.

Two essential facts need to be considered in the re-ranking stage.
Firstly, item relationships in a ranked list affect the behavior of a user
on this list. Typical item relationships for e-commerce include sub-
stitutability, complementarity [23, 24] and so on. Substitutable items
are interchangeable. Complementary items are usually bought to-
gether by users. Items with such specific relationships have mutual
influences on each other. For example, a user who is browsing
headphones in an online store will be attracted to substitutable
headphones that are cheaper or of better quality. Re-ranking the
substitutable items to a higher position could improve the recom-
mendation results. For a user who is randomly exploring the system,
recommending a list of complementary items to her may better fit
the user’s interests. The combination of items in the list as a whole
affects user satisfaction, therefore incorporating item relationships
can improve the accuracy and explainability of re-ranking.

Secondly, different users view a ranked list of items with different
preferences and perspectives. For instance, some users prefer a list
of substitutable items while others prefer a list of complementary
items. Some may be sensitive to price. Others may think quality is
the first priority. As such, manually re-ranking the initially ranked
list according to fixed rules or simply using an identical re-ranking
strategy for all users would overlook the users’ personalized inter-
ests and intents, which will lead to inferior re-ranking results.

Foundational work has demonstrated the effectiveness of re-
ranking models that explicitly model item relationships in a ranked
list [1, 17, 26, 39]. For example, DLCM [1] and miDNN [39] utilize
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a Recurrent Neural Network (RNN) to sequentially encode the
distribution of top items in the initial ranked lists and treat it as
features of the re-ranking model. Neither of these prior works
considers the personalization of the re-ranking model. A recent
work PRM [26] uses self-attention architecture to learn the mutual
influences between every item pairs in the ranked list. This work
shows that the performance of re-ranking improves by realizing
personalization with a pre-trained user embedding.

However, these approaches have the following limitations. 1)
RNN-based models [1, 39] are not able to model mutual influences
of a specific pair of items since all the items in a list are sequentially
aggregated together by a recurrent unit. 2) Self-attention mecha-
nism [26] tries to model the mutual influences between every pair
of items. But it is not able to distinguish different types of influences,
such as complementarity and substitutability, which are common in
many e-commerce scenarios. Furthermore, 3) existing works learn
item relationships only from the initial ranked lists, while item
relationships outside this ranked list are ignored. In fact, the global
transitive dependencies among items across different ranked lists
carry rich semantic information for re-ranking. Take u4 in Figure 2
as an example. Rather than solely relying on modeling how v7 and
v81 influences each other, the global item relationships, exploiting
all related items (v5, v6, v7, v8) and all transitive relationship paths
among them, also contain useful information.

In recent years, the emergence of graph-based representation
learning, e.g., Graph Neural Networks (GNN), shows great potential
for automated information propagation [21]. Some existing ad-
vanced re-ranking approaches can be viewed in the framework of
graph neural networks as we will discuss them in detail in Section 2.
Recent studies have demonstrated that graph-based representation
learning methods are capable of providing general representations
to integrate multiple types of information [11, 31, 34]. We believe
that using a more sophisticated graph model by introducing user
nodes, item nodes, and different types of edges can overcome the
limitations of previous re-ranking algorithms, since it enables us to
encode different types of item relationships inside and outside the
ranked list and to distinguish personalized user intentions.

Specifically, we model items and their associated relationships as
the item relationship graph, and initial ranking score between users
and items as the user-item scoring graph, as shown in Figure 2.While
the combination of these two graphs is promising for personalized
re-ranking, it is nontrivial to extract useful information due to the
heterogeneity of the graph. The graph has two types of nodes (users
and items) and two types of edges (initial scores and item relations).
Since different types of nodes and edges have different semantic
meanings, the ability to fuse the diverse semantic information in
node representations is required.

To resolve the problem, we propose a graph neural network
based framework, Item Relationship Graph Neural Networks for
Personalized Re-ranking (IRGPR). IRGPR learns item representa-
tions with a novel global item relationship propagation, as well as
user representations with a novel personalized intent propagation.
A fully connected network is then deployed to learn the re-ranking

1Note that, Candidate Generationmodule in Figure 1 may generate different candidates
for individual users, so that we have different candidates to be ranked for different
users.
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Figure 2: The illustration of the heterogeneous graph in per-
sonalized re-ranking task. Green edges with stars represent
the initial ranking scores. Blue and red edges represent be-
ing complementary and substitutable, respectively.

score. IRGPR has the ability to model the heterogeneous item rela-
tionships, where the initial ranking score is also well-preserved by
the model. The main contributions of this paper are as follows:
• We discuss the commonality of the start-of-the-art re-ranking
models in the framework of graph neural networks and pro-
pose a more sophisticated model that considers different types
of item relationships for personalized re-ranking. To the best of
our knowledge, this is the first work that incorporates explicit
item relationships for re-ranking in e-commerce.
• We propose a GNN-based framework, IRGPR, with a global item
relationship propagation and a personalized intent propagation
for personalized re-ranking. IRGPR can better exploit multi-hop
item relationships and initial ranking scores to improve the rec-
ommendation results.
• Extensive experiments demonstrate the effectiveness of IRGPR,
which outperforms the state-of-the-art models, including RNN-
based models and Transformer-based models. Experiments are
conducted on several widely used e-commerce datasets from
Amazon in terms of ranking metrics such as precision and MAP.

2 DISCUSSION: RE-RANKING IN GNN
FRAMEWORK

The concept of graph neural networks (GNN) was first proposed
by Scarselli et al. [29], which extended existing neural networks
for graph-structured data. We find that notable examples of neural
network based re-ranking models like PRM [26] and DLCM [1] can
be viewed in GNN framework. Let G = (V, E) be a graph with
node feature vectors xv ∈ Rd with dimension d for node v ∈ V .
The goal of GNN is to learn a node representation vector hv ∈ Rd
which contains the information of neighborhood for each node.
The node representation vectors can be obtained by performing
the following propagation operation L times to gather information
from L-hop neighbors [13].

m
(l+1)
v =

∑
w ∈Nv

Ml

(
h
(l )
v ,h

(l )
w

)
, (1)

h
(l+1)
v = Ul

(
m
(l+1)
v ,h

(l )
v

)
(2)



(a) Graph for RNN based model (b) Graph for Transformer based model
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Figure 3: Graphs for RNN and Transformer based models.

where l = 0, 1, . . . , L means the l-th propagation, Nv denotes the
neighbors of node v in graph G,Ml (·) andUl (·) are the parametric
functions to be learned, and h(0)v = xv . Basically, these two steps
present how information from the neighbors of node v is collected
and how the collected neighbor information is fused into target
node v . For example, in Graph Convolutional Neural Networks
(GCN) [7],Ml (·) is a linear transformation andUl (·) is an activation
function [13],

m
(l+1)
v =

∑
w ∈Nv

A
(l )
vwh

(l )
w , (3)

h
(l+1)
v = µ

(
m
(l+1)
v

)
, (4)

where µ is the activation function, e.g., ReLU. The matrices A(l )vw
are parameterized by the eigenvectors of the graph Laplacian and
some learned parameters of the model.

After obtaining the representation vectors hLv , the final decisions
ŷ, such as node labels, can then be generated with a parametric
function R(·) [13]

ŷ = R
(
hLv |v ∈ V

)
. (5)

We nowpresent howRNN-based re-rankingmodels, e.g., DLCM [1]
and Transformer-based re-ranking model, e.g., PRM [26], can fall
into GNN framework.
Relation to DLCM. DLCM [1] applies a Gated Recurrent Unit
(GRU) on the initial ranked list to model the influences of a item in
the list on adjacent items. The list is a special case of the graphwith a
set of nodes connected in sequence. Different from a standard GNN,
a typical one direction RNN performs the propagation sequentially,
from left to right as in Figure 3(a). Specifically, for the GRU used in
DLCM, the learning procedure can be re-written as:

m
(l+1)
v =

∑
w ∈Nv

(1 − ul ) ⊙ h
(l )
w + ul ⊙ sl , (6)

h
(l+1)
v =m

(l+1)
v , (7)

where

ul = σ
(
W 0
u · xv +W

1
u · h

(l )
w

)
, (8)

sl = tanh
(
W 0
s · xv +W

1
s ·

(
rl ⊙ h

(l )
w

))
, (9)

rl = σ
(
W 0
r · xv +W

1
r · h

(l )
w

)
. (10)

In Eq. (8)-(10), σ (·) is the sigmoid function,W 0
u ,W 1

u ,W 0
s ,W 1

s ,W 0
r

andW 1
r ∈ R

d×d are the parametric matrices, and ⊙ represents
element-wise product. For re-ranking, a sequence is less informa-
tive than a graph since only adjacent items are connected in the
sequence. Information of previously encoded items degrades along
with the propagation.

Relation to PRM. PRM [26] adopts a Transformer structure to
encode the mutual influences between any two items in a given
ranked list. If we build a complete graph with nodes denoting the
items in a ranked list, as shown in Figure 3(b), PRM is equivalent
to a GNN model which can be re-written as:

m
(l+1)
v =

∑
w ∈Nv

αvwW
(l )
V h
(l )
w , (11)

h
(l+1)
v = FFN(m(l+1)v ), (12)

where

αvw =
e

1√
d

(
W (l )
Q h(l )v

)⊤
·

(
W (l )
K h(l )w

)
∑
i ∈Nv e

1√
d

(
W (l )
Q h(l )v

)⊤
·

(
W (l )
K h(l )i

) . (13)

In Eq. (11)-(13), 1/
√
d is the scaling factor, FFN means feed-forward

networks,W (l )Q ,W (l )K , andW (l )V are parameter matrices. The final
re-ranking score of each item is computed by several feed-forward
layers followed by a softmax layer, the input of the feed-forward lay-
ers is the representation learned by Transformer. Note that Eq. (11)
can be easily extended to the multi-heads version by concatenating
multiple heads together.

Transformer assumes each node interacts with every other node
in the graph. Thus, the principle of PRM is to propagate information
on the fully connected item graph based on the initial ranked list,
which can also be accomplished by graph neural networks. How-
ever, Transformer does not scale well to large graphs which are
common in a real-world e-commerce recommender system, since
the number of edges in the Transformer scales quadratically with
the number of nodes. Therefore, this method is limited to modeling
mutual influences among items in small graphs.

In sum, we provide a new perspective to understand the state-of-
the-art works for re-ranking in the GNN framework. However, these
works have their own limitations. As illustrated in Figure 3, items
in RNN only connect to a single item according to the order in the
ranked lists, while items connect to every other item in Transformer.
In this paper, we introduce a perspective to model item relationships
and personalized user intents under the GNN framework for re-
ranking to improve the quality of recommendation.

3 PROPOSED MODEL
In this section, we first present the problem formulation of personal-
ized re-ranking for recommendation. Then we propose to construct
a unified heterogeneous graph to explicitly connect two comple-
mentary sources of information – item relationships and initial
ranking scores. We design a graph neural network based frame-
work, IRGPR, to resolve the problem. By recursively aggregating
information on the heterogeneous graph, item mutual influences
and user intents are encoded into the item representations and user
representations, respectively.

The purpose of this work is to present a personalized re-ranking
scheme that considers item relationships and user intents. Given
a set of users U = {u1, . . . ,up }, a set of items V = {v1, . . . ,vq },
and an initial ranked list R(u) of items for user u ∈ U, our task is
to re-rank R(u) and generate a list S(u) that better meets the users’
interests and needs.
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Figure 4: The overall design of our proposed re-ranking model. We first build a unified heterogeneous graph, followed by
multiple message propagation steps, which can be decomposed into a global item relationship propagation and a personalized
intent propagation. After obtained the user/item representations, we deploy a feed-forward neural network to generate the
personalized re-ranking list.

3.1 IRGPR Framework
Figure 4 displays the overall design of our proposed IRGPR model.
Given the initial ranking scores of candidate items for each user
and the collected item relationships, we firstly construct a unified
heterogeneous graph that consists of user and item nodes. As users
and items have different semantic meanings in the graph, we design
two featured propagation schemes, i.e., global item relationship
propagation and personalized intent propagation, for item nodes and
user nodes, respectively. The awareness of different types of nodes
allows IRGPR to better preserve useful information for re-ranking.
By performing global item relationship propagation, the global
transitive dependencies among the items across different ranked
lists are encoded into the item representation. Personalized intent
propagation extracts initial scoring information and personalized
user intents from the neighborhoods. We then deploy a multi-layer
perception and utilize a pair-wise loss function to estimate the
re-ranking scores of the items for each user with personalization.
Details are elaborated in the following sections.

3.2 Unified Heterogeneous Graph
For incorporating item relationships into personalized re-ranking,
it is challenging to fuse two completely different sources of informa-
tion, i.e., initial ranking scores and item relationships, effectively to
improve the results of re-ranking. Initial ranking scores quantify the
user’s preferences for each specific item, while item relationships
indicate general transitive relation among items. To address the
challenge, we propose to construct a unified heterogeneous graph
with two types of nodes and multiple types of relations to fuse dif-
ferent sources of information, as shown in Figure 2. The constructed
graph can be viewed as a combination of an item relationship graph
and a user-item scoring graph.

ItemRelationshipGraph. Item relationships such as complemen-
tarity or substitutability explicitly show mutual influences among
items. Based on the collected item relationships, we can construct
an item relationship graph GI , with item feature vector xv ∈ Rd for
each item v ∈ V , and edge feature vector evivj ∈ Rc for the edge

(vi ,vj ) connecting item vi to item vj . Edge feature evivj reflects
the item relationships, e.g., complementarity or substitutability. As
item relationships are not necessarily symmetric, we model the
relationships by a directed graph, which can be easily reduced to
the undirected case.

User-Item Scoring Graph. To exploit the scoring information
provided by the initial ranker, we build the user-item scoring graph
GS , which involves two types of nodes, i.e., user u ∈ U and item
v ∈ V . Each node is associated with a node feature vector, i.e.,
xu ∈ R

d and xv ∈ Rd . The edge connecting v to u indicates that v
is ranked at top positions by the initial ranker for user u, with the
edge feature evu being the initial ranking score. To be consistent
with the item relationship graph GI , the user-item scoring GS is
also directed graph, which can be reduced to undirected graphs.
Edges from items to users ensure information from related items
can be aggregated to users.

Item relationships present certain intrinsic characteristics of the
items which exist in the entire pool of items in the system. Thus, we
propose a global item relationship propagation scheme to find item
representations that encode such relationships. The learned item
representations are shared by the users. On the other hand, users’
preferences on the list of items varies for different individuals. As
such, we propose a personalized propagation scheme with a novel
intent embedding network to learn the personalized user intents.

3.3 Global Item Relationship Propagation
The global item relationship propagation is performed on the item
relationship graph GI , aiming at learning better item representa-
tions to improve the performance of re-ranking. Through multiple
iterations of information propagation on GI , item relational in-
formation propagates along the paths, which effectively imparts
graph topological structures and high-order influences into the
item representations. For flexibility in handling various kinds of
relationships and edge features, rather than performing the propa-
gation separately for each edge type as in [30, 36], we propose to



view item relationships as general edge feature vectors and embed
such features into the propagation operation.

The proposed global item relationship propagation is centered
on the items. Given an item vi and its feature vector xvi ∈ Rd ,
we learn the item representation hvi ∈ R

d by recursively aggre-
gating the information from its multi-hop neighborhood of items.
Firstly, the initial representation h(0)vi is initialized by xvi . Then, the
representation is updated by two steps, i.e., a message aggregation
step which is to capture the relational information from connected
neighbors and a message update step which is to fuse the informa-
tion from the neighbors and information of the item itself. As such,
relational and transitive dependencies among items across different
ranked lists are encoded into the item representation.

3.3.1 Message Aggregation Step. In our design, messages from
neighbors carry both the information of the neighbor items and the
information of the connecting edges. As linear transformation has
been proven to be effective at accumulating and encoding features
from local structured neighborhoods [30], we define the message
from item vj to vi with a linear transformation:

mvi←vj =Wmhvj = fm
(
evjvi ,hvj

)
· hvj , (14)

wheremvi←vj is the message from itemvj to itemvi , with a dimen-
sion of d . The nonlinear function fm (·) embeds edge features and
item features into a hidden continuous space, so that item transitive
and relational influences can be captured. The function fm (·) takes
as input both the edge features evjvi and the previous item rep-
resentations of neighbor items hvj , and outputs a transformation
matrixWm of dimension d × d . Note that the usage of fm makes
the propagation more flexible, allowing edge features to be of any
dimensions and can be either categorical or continuous. Specifically,
in our experiment, we concatenate evjvi and hvj , then employ a
Multi-Layer Perception (MLP) to learn the mapping. We reshape
the output to a matrix of dimension d × d :

fm
(
evjvi ,hvj

)
= MLP

(
evjvi | |hvj

)
, (15)

where | | represents the concatenation operation.
Then, we aggregate messages from the item’s neighborhood with

a Mean aggregator that averages the messages from the neighbors:

mvi =
1
|Nvi |

∑
vj ∈Nvi

mvi←vj , (16)

whereNvi denotes the set of direct neighbors of item vi , and |Nvi |
is the number of neighbors of item v . This Mean aggregator is
similar to the convolutional propagation rule used in transductive
GCN [21]. One could use some more complex aggregators such as
Attention-based aggregator [33].

3.3.2 Message Update Step. After obtaining themessagesmvi from
the neighborhood, we use the previous item representation of the
center node and the newly received neighborhood messages to
update the representation of the center node. We use a Gated Re-
current Unit (GRU) [6] in this update step, which has been proved
to be effective in [22].

h
′

vi = GRU(hvi ,mvi ). (17)

3.4 Personalized Intent Propagation
The personalized intent propagation is proposed to leverage the
scoring information given by the initial ranker to model personal-
ized user intents. We perform similar propagation on the user-item
scoring graph. Different from the global item relationship propa-
gation, the center nodes are users, and the neighbors of users are
items. Edges from the connected items representing the scores es-
timated by the initial ranker. Moreover, to explore users’ implicit
intents, we propose an intent embedding network to incorporate
users’ personalized interests into the propagation.
Intent Embedding Network. As different users may view the list
of items from different perspectives. User features, e.g., historical
behaviors and profile features, implicitly reflect their personalized
intents. We propose an intent embedding network to infer personal-
ized intents by embedding user features into a d ×d transformation
matrix for each user u, so that the personalized intents can be
propagated along the paths in the user-item scoring graph,

Wu = fI (xu ), (18)

where fI (·) is a nonlinear mapping, e.g., MLP. Therefore,Wu ∈

Rd×d represents personalized user implicit intents. Similar toWm
in Eq. (14), we design another mapping fn (evu ) = MLP(evu ) to
transform initial ranking scores, i.e., evu , into a transformation
matrixWn ∈ R

d×d . Then, we combine the nonlinear mappings to
aggregate the messages from the neighbors of user u,

mu =
1
|Nu |

∑
v ∈Nu

WuWnhv (19)

=
1
|Nu |

∑
v ∈Nu

fI (xu )fn (evu )hv , (20)

whereWu is user-specific parameters, Nu is the set of direct neigh-
bors of user u, and |Nu | is the number of neighbors. Basically, this
messagemu carries the information of the user’s preferences to-
wards items, i.e., neighbors Nu , in the initial ranked list where the
item representations encode the global item relationships. Finally,
the user representation is updated as follows h

′

u = GRU(hu ,mu ).

3.5 Personalized Re-Ranking Generation
After obtaining the user and item representations with multiple
propagation steps, we are ready to perform the personalized re-
ranking. For a user u, we concatenate the user representation hu
and an item representation hv ,v ∈ V , and feed it to a feed-forward
neural network to generate the re-ranking score for item v .

ŷuv = σ (MLP(hu | |hv )) , (21)

where σ (x) = 1
1+e−x is the sigmoid function. The user represen-

tation preserves personalized preferences aggregated from the
designed unified heterogeneous graph, the generated results are
thereby personalized.

We optimize IRGPR in an end-to-end manner with a widely
adopted Bayesian Personalized Ranking (BPR) loss [28]. BPR loss
is a pairwise loss that pushes the model to rank positive samples
(interacted items) higher than negative samples (unobserved inter-
actions).

L =
∑

(u ,vi ,vj )∈T

logσ
(
ŷuvi − ŷuvj

)
, (22)



Table 1: Statistics of the Amazon data.

categories #user #item #rating density
(1e-3) #AB #AV #BT #BV

Video Games 2,390 48,938 148,420 1.27 1,143,763 170,107 27,460 117,400
Musical Instruments 565 65,150 31,806 0.86 531,379 480,710 26,955 117,902

Movies & TV 18,193 200,515 1,800,336 0.49 2,766,430 172,940 80,924 224,627
Electronics 16,187 424,116 847,556 0.12 2,550,227 2,823,653 126,166 769,868

Clothing, Shoes, and Jewelry 9,746 755,510 463,774 0.06 2,188,897 5,875,987 208,744 1,693

where T is the training set of positive-negative sample pairs. It is
time-consuming to train GNNs on large-scale graphs [38]. Thus, we
adopt an importance sampling strategy to sample neighbor nodes
when performing information propagation. The importance factor
is computed according to the degree of the nodes [16]. The model
is trained in a mini-batch mode.

4 EXPERIMENTS
We conduct extensive experiments to verify the effectiveness of
our proposed re-ranking model comparing with the state-of-the-art
approaches.

4.1 Datasets
Weuse the e-commerce datasets fromAmazon collected byMcAuley
et al. [23]. The complete dataset has over 1 million products and
42 million co-purchase relationships across around 20 top-level
product categories. Four different types of item relationships are
contained in the datasets:

• Also Bought (AB): Users bought x also bought y across sessions;
• Also Viewed (AV): Users viewed x also viewed y;
• Bought Together (BT): Users frequently bought x and y (x and y
were purchased as part of a single basket);
• Buy after Viewing (BV): Users who viewed x eventually boughty.

According to the description of the datasets [23], AB and BT are
referred to as being complementary, while AV and BV are being sub-
stitutable. We focus on five main categories of products, i.e., Video
Games, Musical Instruments, Movies & TV, Electronics, and Cloth-
ing, Shoes, and Jewelry that cover different areas of interest. The
detailed statistics of the datasets are shown in Table 1. We remove
the isolated users who have less than 30 interactions. Reviews are
adopted as node features as in [27]. We consider implicit feedback
rather than the explicit ratings, namely, all interacted user-item
pairs will be used as positive samples. We randomly select 80%
users and the corresponding ratings as the training set, 10% as the
validation set, and the remaining 10% as the testing set.

4.2 Baselines
To show the effectiveness of re-ranking, we compare our proposed
model with the baseline model that generates the initial ranked
list. We also compare our proposed model with two state-of-the-art
re-ranking models including an RNN-based model, i.e., DLCM, and
a Transformer-based model, i.e., PRM.

• DeepFM: DeepFM [15] is a state-of-the-art point-wise ranking
strategy for commercial use, which combines factorization ma-
chines and deep neural networks. In our implementation, the
initial ranked list is generated by DeepFM.

• DLCM: DLCM is an RNN-based model, which employs a recur-
rent neural network to sequentially encode the top results using
their feature vectors to learn local context features and to re-rank
the top results [1].
• PRM: PRM is the state-of-the-art model for personalized re-
ranking [26]. PRM exploits a Transformer structure to encode
the mutual information among all items in the lists.

4.3 Evaluation Metrics
We adopt Precision@k and MAP@k to evaluate the performance
of different methods, with k ∈ {5, 10, 20}. These metrics are also
adopted by related work [1, 26].
• Precision@k: Precision@k is defined as the fraction of clicked
items in the top-k recommended items for all test samples:

Precision@k =
1
|U|

∑
u ∈U

∑k
i=1 1{Su (i)}

k
, (23)

whereU is the set of all users, Su is the re-ranked list for user u,
Su (i) refers to the i-th item in the list, and 1{·} is the indicator
function, which equals to 1 if item i is positively interacted, and
0 otherwise.
• MAP@k: MAP@k is the mean average precision at cutoff k ,
which is defined by:

MAP@k =
1
|U|

∑
u ∈U

∑k
i=1 Precision@k ∗ 1{Su (i)}

k
. (24)

4.4 Experimental Settings
We use the grid search to select hyper-parameters for all the meth-
ods on the validation set. The details are as follows: the node
embedding size is chosen from {4, 8, 16, 32}, learning rate is in
{0.001, 0.01, 0.1}, the batch size is in {16, 64, 128, 512}, and the opti-
mization method is Adam [20] or Adagrad [9]. For our proposed
IRGPR, the message propagation iterations L is from {2, 3, 4, 5}, the
number of sampled neighbors s is in {3, 5, 10, 15}. All models are
trained for 300 epochs to ensure convergence and we use early
stopping. For a fair comparison, the input node features xv are the
same for all the compared models which are reviews of products.
Reviews are encoded using a doc2vec technique as in [27], followed
by a fully-connected embedding layer mapping raw node features
from the original dimension to the dimension of the node embed-
ding size d . The dimension of the edge feature vector c = 4 for four
different types of item relationships.

4.5 Expermental Results and Analysis
In this section, we present our experimental results toward answer-
ing the following experimental research questions (RQs):



Table 2: Experimental results on Amazon data. DeepFM is the initial ranker.

Precision@5 MAP@5 Precision@10 MAP@10 Precision@20 MAP@20

Video Games

DeepFM 0.7506 0.8137 0.7494 0.7983 0.6967 0.7774
DLCM 0.7554 0.8238 0.7476 0.8047 0.6923 0.7812
PRM 0.7651 0.8310 0.7561 0.8081 0.6795 0.7842

IRGPR 0.8241∗ 0.8956∗ 0.7855∗ 0.8584∗ 0.7019∗ 0.8169
imp.% +7.71% +7.77% +3.89% +6.22% +0.75% +4.17%

Musical
Instruments

DeepFM 0.6056 0.7405 0.5111 0.6893 0.5089 0.5984
DLCM 0.6111 0.7517 0.5528 0.6957 0.4931 0.6201
PRM 0.6233 0.7750 0.5472 0.7152 0.5028 0.6169

IRGPR 0.6751∗ 0.8285∗ 0.5573∗ 0.7607∗ 0.5101∗ 0.7364∗
imp.% +8.31% +6.90% +0.81% +6.36% +0.24% +18.76%

Movies & TV

DeepFM 0.7398 0.8692 0.6724 0.8102 0.6008 0.7419
DLCM 0.7745 0.8428 0.7752 0.8239 0.6493 0.8098
PRM 0.8077 0.8841 0.7544 0.8577 0.6596 0.8216

IRGPR 0.8300∗ 0.8945∗ 0.7862∗ 0.8664∗ 0.6859∗ 0.8239
imp.% +2.76% +1.18% +1.42% +1.01% +3.99% +0.28%

Electronics

DeepFM 0.8068 0.9349 0.6925 0.8675 0.5947 0.7795
DLCM 0.8266 0.8984 0.7726 0.8685 0.6311 0.7875
PRM 0.8261 0.9185 0.7897 0.8705 0.6490 0.8233

IRGPR 0.8776∗ 0.9386∗ 0.8031∗ 0.9026∗ 0.6472 0.8481∗
imp.% +6.17% +0.40% +1.70% +3.69% -0.28% +3.01%

Clothing, Shoes,
and Jewelry

DeepFM 0.5970 0.7859 0.5619 0.7071 0.5281 0.6427
DLCM 0.6872 0.7915 0.6087 0.7463 0.5402 0.6761
PRM 0.6811 0.7989 0.6358 0.7546 0.5748 0.7000

IRGPR 0.7057∗ 0.8426∗ 0.6381∗ 0.7878∗ 0.5628 0.7176∗
imp.% +2.69% +5.47% +0.36% +4.40% -2.09% +2.51%

We conduct a two-sided significant test between the proposed IRGPR and the strongest baseline, where * means the p-value
is smaller than 0.05. imp.% computes the improvement achieved by IRGPR over the strongest baseline.

• RQ1: How well does IRGPR perform comparing to the state-of-
the-art models for re-ranking?
• RQ2: How does the modeling of item relationships, personaliza-
tion, and the initial ranker affect the performance of IRGPR?
• RQ3: What is the impact of hyper-parameters on IRGPR?
• RQ4: Finally, is IRGPR capable of capturing meaningful patterns
from item relationships? What is the difference between the
initial ranked list and the re-ranked list?

4.5.1 RQ1: Overall Performance. Table 2 reports the overall compar-
ison of our proposed IRGPR and baselines on five Amazon datasets.
Bold numbers are the best results and underlined numbers are the
results of the strongest baselines. The initial ranking scores are gen-
erated by DeepFM which is a widely adopted deep neural network
based method with point-wise loss in commercial recommender
systems. From Table 2, we have several important observations.

Firstly, incorporating item mutual influences improves the quality
of re-ranking.We can observe that DLCM and PRM which explicitly
model mutual influences between items outperform DeepFM in
most cases on all the datasets, which validates the positive effect
of modeling mutual influences for re-ranking. Though DeepFM
has been widely adopted by commercial recommender systems, it
assumes that items are independent in a list which is not true. Thus,
the performance of the initial ranker can be improved. Yet, the two
challenges of re-ranking remain unresolved in these methods.

Secondly, the proposed IRGPR consistently outperforms other base-
lines on all the datasets under various metrics. For example, the
proposed IRGPR improves the strongest baseline by 7.71%, 8.31%,
2.76%, 6.17%, and 2.69% in terms of precision@5 on the five datasets,
respectively. DLCM exploits RNN to capture sequential patterns
in the ranked lists, while PRM uses self-attention architecture to

consider influences between pairs of items. Both of them have lim-
itations as we discussed in Section 1. Moreover, DLCM and PRM
are not able to distinguish different types of influences, such as
complementarity and substitutability. The results demonstrate the
effectiveness of the designed global item relationship propagation
and personalized intent propagation. The two-sided significant test
shows the improvements are statistically significant.

4.5.2 RQ2: Ablation Study. In this section, we perform an ablation
study to verify the importance of different components in IRGPR
for re-ranking. IRGPR is composed of several designed components
such as the modeling of item relationships, personalization, as
well as the methods to realize the personalization like the linear
mappings, and the intent embedding network. In Table 3, we present
the performance of several variants of IRGPR by removing one
particular component of IRGPR. We report experimental results in
terms of Precision@10 (P@10) and MAP@10 on the densest and
sparsest dataset, Video Games and Clothing, Shoes, and Jewelry, as
examples.
-Item Relationships: In this experiment, we remove all item re-
lationships from the graph. As such, the proposed heterogeneous
graph is reduced to a bipartite graph with edges connecting users
and items indicating the initial ranking scores. The impact of delet-
ing item relationships can be easily noticed. Precision@10 drops
by 5.36% and 2.13% on Video Games dataset and Clothing, Shoes,
and Jewelry dataset, respectively, proving that item relationships
play a critical role in determining the quality of re-ranking.
-Personalization: In this experiment, we remove the user rep-
resentation in the personalized re-ranking generation, aiming to
validate the usage of personalization for re-ranking,

ŷuv = σ (MLP(hv )) ,



Table 3: Ablation study of designed components for IRGPR.

Video Games Clothing, Shoes,
and Jewelry

P@10 MAP@10 P@10 MAP@10

IRGPR 0.7855 0.8584 0.6381 0.7878

-Item
Relationships

0.7434 0.8416 0.6245 0.7692
-5.36% -1.96% -2.13% -2.36%

-Personalization 0.7357 0.8202 0.5834 0.7413
-6.34% -4.45% -8.57% -5.90%

-Intent Embedding
Network

0.756 0.8439 0.6226 0.7865
-3.76% -1.69% -2.43% -0.17%

-Linear Mappings 0.7489 0.84 0.6166 0.7736
-4.66% -2.14% -3.37% -1.80%

Table 4: IRGPR with different initial rankers.

Video Games Clothing, Shoes,
and Jewelry

Initial Ranker Re-ranking P@10 MAP@10 P@10 MAP@10

DeepFM
NULL 0.7494 0.7983 0.5619 0.7071
IRGPR 0.7855 0.8584 0.6381 0.7878
imp.% 4.82% 7.53% 13.56% 11.41%

SVMRank
NULL 0.5994 0.6255 0.4936 0.6116
IRGPR 0.7831 0.8605 0.6419 0.7824
imp.% 30.65% 37.57% 30.05% 27.92%

LambdaMart
NULL 0.6994 0.7390 0.5487 0.6596
IRGPR 0.7837 0.8577 0.6392 0.784
imp.% 12.05% 16.06% 16.50% 18.86%

where all users share the same item representations. Results show
a large drop in all metrics across datasets by entirely removing the
personalization mechanism. These results provide direct evidence
on the importance of incorporating user personalized preferences
in re-ranking.
-Intent Embedding Network: We remove the intent embedding
network fI (xu ) from Eq.(20) to study the importance of explicitly
modeling user intents in re-ranking, wheremu reduces to

mu =
1
|Nu |

∑
v ∈Nu

fn (euv )hv .

We observe that the accuracy drops on both datasets. For example,
Precision@10 decreases by 3.76% on Video Games dataset. The
results show our proposed IRGPR benefits from the incorporation
of the intent embedding network.
-Linear Mappings: For personalized intent propagation, we then
replace the composition of linear maps in Eq.(19) by an MLP with
a linear concatenation of the user feature and ratings as input,

mu =
1
|Nu |

∑
v ∈Nu

MLP(xu | |euv )hv ,

where | | is the concatenation operation andMLP(·) is a feed-forward
network that outputs the transformation matrix of sized×d . Results
in Table 3 illustrate that matrix multiplication may have better
expressive power than a linear concatenation in re-ranking.
Initial Ranker. Next, we change the initial ranker and study how
the quality of the initial ranker influences the performance of IRGPR.
Apart from the point-wise model DeepFM, we implement two rep-
resentative pair-wise and list-wise ranking models: (i) SVMRank
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Figure 5: Impact of the number of aggregation iteration L of
IRGPR.
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Figure 6: Impact of the number of sampled neighbors s of
IRGPR.

is a variant of the support vector machine algorithm and use the
pair-wise loss to model the scoring function [18]; (ii) LambdaMart
combines LambdaRank and Multiple Additive Regression Trees
(MART) with a list-wise loss to model the ranking function [4]. The
results in Table 4 indicate that the change of initial ranker has a
minor impact on the performance of our proposed IRGPR. Although
the ranking quality of SVMRank and LambdaMart is not as good
as DeepFM due to limited expressive ability, our proposed IRGPR
has the capability of refining and improving the initial rankers by
a great margin.

4.5.3 RQ3: Impact of Hyper-Parameters. We focus here on two
representative hyper-parameters of our proposed IRGPR to discuss
their impact on the performance, namely, the number of iterations L
of each propagation and the number of sampled neighbors s during
the propagation.
The number of iterations L of propagation. The number of
propagation iterations corresponds to the maximal number of hops
of the neighbors in the graph.We report Precision@10 andMAP@10
of IRGPR on Video Games dataset and Clothing, Shoes, and Jewelry
dataset in Figure 5 by varying the number of propagation iterations.
We observe that the number of 2 is sufficient to achieve the best
performance. The accuracy does not improve significantly with a
larger number of iterations. It is probably due to the over-smoothing
problemwhich makes the learned representations indistinguishable
by performing too many propagation iterations [5].
The number of sampled neighbors s. Next, we vary the sample
size of the neighborhood s . Figure 6 demonstrates that the best
results are obtained when s = 5, indicating that the performance
of IRGPR benefits from a suitable size of sampled neighbors. For
example, IRGPR achieves a Precision@10 of 0.7855 and 0.6381 on
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Video Games and Clothing, Shoes, and Jewelry, respectively. Figure
6 suggests that IRGPR suffers from a small sampled size due to the
loss in the neighborhood information. Moreover, it is also worth
noting that a large size may involve noisy neighbors and degrade
the performance.

4.5.4 RQ4: Evidence of the Importance of Item Relationships for Re-
ranking. To investigate how the re-ranking quality relates to item
relationships, we compute the Average Number of different item
Relationships (ANR) occurred at the top positions of the ranked
lists of DeepFM and IRGPR in Figure 7, which is defined by

ANRr@10 =
1
|D|

∑
a∈D

Nr (a),

where D is the lists of items in the test data, |D| is the number of
lists in D, Nr (a) is the number of a specific relationship r (com-
plementary or substitutable) among the top-10 items in list a. As
discussed in Section 4.5.1, IRGPR significantly outperforms the
initial ranker DeepFM. We analyze how the item relationships con-
tribute to the large improvement of performance.

Figure 7 shows that the re-ranking lists generated by IRGPR
contain more complementary and substitutable relationships com-
pared to the initial ranker. In particular, ANR for complementary
relationships of IRGPR is increased by 7.65% and 57.78% on Video
Games, and Clothing, and Shoes, and Jewelry, respectively. While
ANR for substitutable relationships is increased by 2.94% and 55%,
respectively. This illustrates that understanding item relationships
is generally beneficial to re-ranking, although item relationships
are sparse and most of the items are unrelated. For example, for
complementary items, users may be interested in a list displaying
an aesthetically matching shirt and pants outfit together. As for
substitutable items, presenting substitutable items together, like
two pairs of headphones with different prices, may promote the
possibility of purchasing for the one that is more cost-effective.

5 RELATEDWORK
This work draws on the following research areas: (1) re-ranking
and (2) graph neural networks.

5.1 Re-ranking Algorithms
Several existing works have demonstrated the effectiveness of im-
proving recommendation results with re-ranking models [1, 26, 39]
or by fine-tuning the initial ranker [17]. For example, Ai et al. [1] use
a recurrent neural network to sequentially encode the top-ranked

items with their feature vectors, and learn a local context model
to re-rank the top results. Similarly, Zhuang et al. [39] design a
recurrent neural network with an attention mechanism to capture
long-distance influences between items.

However, these approaches based on recurrent neural networks
have constrained expression ability to model the mutual influences
between items in the list. In particular, they are not able to explicitly
relate two items in a list, since all the items in a list are sequentially
aggregated together by recurrent neural networks.

Inspired by the Transformer architecture [33] used in machine
translation, Pei et al. [26] propose to use the Transformer to model
the mutual influences between items. The Transformer structure
uses the self-attention mechanism where the relationship between
any two items is reflected with an attention score. However, the
self-attention mechanism assumes that any two items in a list have
mutual influences, which is probably not true. Moreover, the self-
attention mechanism is not able to distinguish different types of
item relationships which can be modeled by our work.

Other related work, such as Jin et al. [17], proposes a pairwise
approach that considers the problem of refining the initial ranker
for semi-supervised learning. Wang et al. [35] discusses correlation
between pairs of documents for information retrieval.

Pei et al. [26] is most related to our work. However, our work
models the mutual influences in a more explicit and expressive way
by incorporating item relationships and learning multi-hop rela-
tional dependencies among users and items. Personalized intents
of users are also captured by our proposed model.

5.2 Graph Neural Networks
Many recent research efforts have demonstrated the power of Graph
Neural Networks (GNN) to model graph-structured data [3, 7, 8,
12]. For example, Graph Convolutional Neural Networks (GCN)
have achieved the state-of-the-art in node representation for signed
graphs [8], sentence classification [19] and image recognition [12].
Recently, Morris et al. [25] build a k-dimensional GNN which can
consider higher-order graph structures at multiple scales. Bresson
et al. [3] propose a residual graph neural network (ConvNets) which
brings a significant improvement in subgraph matching and graph
clustering, as they illustrated, residuality could better learn multi-
layer architectures in complex graph-structured data.

With the growth of the study of GNN, it is widely applied for
recommendation, including social recommendation [11, 31, 34]
and knowledge graph based recommendation [14, 32]. It is even
adapted to traditional collaborative filtering recommendation meth-
ods [2, 36]. Recently, Fan et al. [11] provide a principled GNN ap-
proach incorporating social connections and user purchase history
to capture the interactions between user-items for recommendation.
Song et al. [31] use a dynamic graph attention network and incor-
porated recurrent neural networks for modeling user behaviors
in session-based social recommendation. Grad-Gyenge et al. [14]
build a graph embedding method that took advantage of the knowl-
edge graph to map users toward items for recommendation. Ying
et al. combine efficient random walks and graph convolutions for
web-scale recommendation [37]. Considering the user-item inter-
action, Wang et al. [36] construct a user-item interaction bipartite
graph and proposed a graph-based collaborative filtering method to
capture higher-order connectivity in the user-item interactions. A



metapath-guided GNN is proposed for search intent recommenda-
tion [10]. However, few of these approaches consider graph neural
networks for personalized re-ranking.

6 CONCLUSION
In this work, we propose a novel GNN-based model, IRGPR, for
personalized re-ranking. We highlight the significance of incorpo-
rating item relationships, such as complements or substitutes, to
model the mutual influences between items in re-ranking. To over-
come the difficulties of fusing initial scoring information and item
relationships, we build a unified heterogeneous graph. We propose
a global item relationship propagation to exploit the global topo-
logical structure and to capture the relational item dependencies,
as well as a personalized intent propagation to explicitly learn user
personalized intentions. Extensive experiments on large real-world
datasets demonstrate the rationality and effectiveness of IRGPR. Be-
sides, further insights are provided on unifying the state-of-the-art
re-ranking models into the GNN framework.
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