Rao tests for distributed target detection in interference and noise

Weijian Liua,b, Jun Liuc, Lei Huangd, Dujian Zoue, Yongliang Wangb

a College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
b Wuhan Radar Academy, Wuhan 430019, China
c National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
d College of Information Engineering, Shenzhen University, Shenzhen 518055, China
e Graduate School at Shenzhen, Tsinghua University, Shenzhen 518060, China

A R T I C L E I N F O

Article history:
Received 3 January 2015
Received in revised form 15 April 2015
Accepted 12 June 2015
Available online 20 June 2015

Keywords:
Adaptive detection
Constant false alarm rate
Distributed target
Interference
Rao test
Subspace model

A B S T R A C T

This paper deals with the problem of detecting a distributed target in interference and noise. The target signal and interference are assumed to lie in two linearly independent subspaces, and their coordinates are unknown. The noise is Gaussian distributed, with an unknown covariance matrix. To estimate the covariance matrix, a set of training data is supposed available. We derive the Rao test and its two-step variant both in homogeneous and partially homogeneous environments. All of the proposed detectors exhibit a desirable constant false alarm rate. Numerical examples show that the proposed detectors can provide better detection performance than their natural counterparts in some scenarios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Detection of a distributed target in unknown disturbance is an interesting research topic. Up to now a large number of approaches have been proposed to solve the problem in various scenarios. Particularly, in [1] a distributed target is embedded in unknown Gaussian noise, and the echoes reflected by the distributed target are assumed to have the same direction. To estimate the unknown covariance matrix, a set of signal-free training (secondary) data is required. When the test (primary) data and secondary data have the identical covariance matrix, it is usually referred to as the homogeneous environment (HE) [1]. In contrast, when the primary and secondary data share the same structure of the covariance matrix, but with unknown power mismatch, it is denoted as the partial HE (PHE) [1]. Based on the generalized likelihood ratio test (GLRT) criterion, several detectors for the HE and PHE are proposed in [1]. The Rao and Wald tests are derived in [2] for the HE and in [3] for the PHE. Remarkably, a milestone in the area of multichannel signal detection in unknown Gaussian noise is the report in [4], where the model is very general and the GLRT-based detectors are proposed and detailed analyzed. More recently, the detection model in [4] is further generalized in [5,6] and many detectors are devised. Some other related work is exploited in [7–14] and the references therein.

It is worth noting that interference is not taken into account in the references mentioned above. However, in many practical applications there usually exists interference due to electronic countermeasure (ECM) systems or civil broadcasting systems. The detection problem is addressed in [15–20] in the presence of deterministic interference under the assumption of white Gaussian noise.
noise or colored Gaussian noise with known covariance matrix. Moreover, the GLRT is derived in [21] for detecting a point-like target in undernull noise-like interference and unknown Gaussian noise. The resulting GLRT is shown to be equivalent to the adaptive coherence estimator (ACE). In [22], the problem of detecting a point-like target in deterministic interference and unknown Gaussian noise is dealt with. The interference lies in the primary and secondary data, and it is confined to a known subspace. The detection problem is solved by the method of sieves. For the distributed target detection, in [23] the echo signals reflected from the target are all assumed to come from the same direction, and the signal steering vector lies in a known subspace with an unknown coordinate. The GLRT and two-step GLRT (2S-GLRT) are proposed in the presence of deterministic interference for the HE. The detection problem in [23] is extended in [24], where the deterministic interference is assumed to lie in an unknown subspace except for the knowledge of the interference subspace dimension. Additionally, in [25] the interference and target signal are assumed to lie in two linearly independent subspaces, and the GLRT and 2S-GLRT are proposed for the HE and PHE.

Note that there exists no uniformly most powerful (UMP) test for the detection problem in [25], since the noise covariance matrix and the coordinates of the signal and interference are unknown. Hence, it may be reasonable to adopt approaches different from the GLRT and 2S-GLRT employed therein to devise detectors. Besides the GLRT criterion, the other two criteria widely used for detector design are the Rao test and Wald test, e.g., [26–30]. In this paper we adopt the Rao test, including the one-step and two-step versions, to design detectors for the detection problem in [25], since the Rao test can achieve best detection performance in some scenarios\(^1\). It is shown that all the proposed detectors are constant false alarm rate (CFAR) with respect to (w.r.t.) the unknown covariance matrix. Moreover, the proposed detectors can achieve better detection performance than the existing ones in some situations.

The rest of the paper is organized as follows. Section 2 formulates the detection problem to be solved. Section 3 derives the one-step Rao test and two-step Rao (2S-Rao) test in the HE and PHE. Section 4 compares the detection performance of the proposed detectors with the existing ones by Monte Carlo simulations. Finally, some concluding remarks are given in Section 5.

Notations: Matrices, vectors, scalars, are denoted by bold-face upper case letters, bold-face lower case letters, and light-face lower case letters, respectively. The superscripts (·)\(^*\), (·)\(^T\), and (·)\(^H\) stands for the conjugate, transpose, and conjugate transpose of a vector or matrix, respectively. The notation \(\otimes\) is the Kronecker product. For a complex number \(a\), \(\text{abs}(a)\) stands for its modulus. For an \(N \times K\) matrix \(A\), \(E[A]\) denotes the statistical expectation of \(A\), \(\text{vec}(A)\) vectorizes \(A\) by stacking its columns, \(P_A\) is the orthogonal projector (projection matrix) onto the subspace spanned by the columns of \(A\), i.e., \(P_A = A(A^H A)^{-1}A^H\), and \(P_A^* = I_n - P_A\). When \(A\) becomes a square matrix, \(|A|\) and \(\text{tr}(A)\) denote its determinant and trace, respectively. Further, when \(A\) turns into a positive definite matrix, \(A^{1/2}\) denotes its square-root matrix (positive definite and satisfying \(A^{1/2}A^{1/2} = A\)), and \(A^{-1/2}\) is the inverse of \(A^{1/2}\), \(\text{min}(a,b)\) denotes the minimum value of \(a\) and \(b\).

\(\ln f\) stands for the natural logarithm of the scalar function \(f\), and \(\partial/\partial \Xi\) is the partial derivative of \(f\) wrt. \(\Xi\), with \(\Xi\) being a vector or matrix. Moreover, \(J_{\Xi}\) is the maximum likelihood estimate (MLE) of \(\Xi\) under hypothesis \(H_i\), \(i = 0, 1\). Finally, \(I_{KL}\) is an \(N \times N\) identity matrix and \(0_{p \times q}\) is a \(p \times q\) null matrix.

2. Problem formulation

Consider a radar system with \(N\) antenna elements. The target, if present, occupies \(K\) successive range cells. Denote the data in the \(k\)th range cell as an \(N \times 1\) column vector \(x_k\), \(k = 1, 2, ..., K\). We try to make a decision between hypothesis \(H_0\) that \(x_k\) only contains disturbance \(d_k\) and hypothesis \(H_1\) that \(x_k\) contains disturbance \(d_k\) and useful signal \(s_k\). The disturbance \(d_k\) consists of colored noise \(n_k\), usually including clutter as well as thermal noise, and interference \(i_k\). The signal \(s_k\) and interference \(i_k\) are both assumed to be deterministic and lie in two linearly independent subspaces [25]. In other words, \(s_k\) and \(i_k\) can be represented by \(s_k = H_p s_k\) and \(i_k = Q_j i_k\), respectively. The \(N \times p\) matrix \(H\) and \(N \times q\) matrix \(J\) are both of full column rank. The columns of \(H\) spans the subspace where the signal lies, while the columns of \(J\) spans the subspace which the interference belongs to. The \(p \times 1\) vector \(p_k\) is the coordinate vector for the signal, and the \(q \times 1\) vector \(q_k\) is the coordinate vector for the interference. Note that the augmented matrix \(B = [H, J]\) is full-column-rank due to the linear independence of the subspaces spanned by the columns of \(H\) and \(J\), and hence \(p + q \leq N\) [15–17,19,23,25]. Moreover, \(n_k\), \(k = 1, 2, ..., K\), is independent and identically distributed (IID), mean-zero, complex circular Gaussian vector, with a covariance matrix \(R_0\), which is positive definitive and unknown. To estimate \(R_0\), it is often assumed that a set of secondary data, denoted by an \(N \times L\) matrix \(X_l\), is available. These secondary data are usually collected in the vicinity of the primary data \(X\). Let the \(l\)th column of \(X\) be \(x_{l,i}\), \(l = 1, 2, ..., L\), which is IID and has the covariance matrix \(R\). In the HE \(R_0 = R\) [32], while in the PHE \(R_0 = \sigma^2 R\) [1], with \(\sigma^2\) being a scaling factor accounting for unknown power mismatch between the primary and secondary data [1].

With the assumption above, the detection problem can be formulated as the following binary hypothesis test

\[
\begin{align*}
H_0: & \quad X = JQ + N, X_L = N_L, \\
H_1: & \quad X = HP + JQ + N, X_L = N_L,
\end{align*}
\]

where \(P = [p_1, p_2, ..., p_K]\) and \(Q = [q_1, q_2, ..., q_K]\) are the unknown coordinate matrices of the signal and interference, respectively. Note that the subspace model in (1) is very general. It either accounts for the multiple targets and/or interferences [33] or corresponds to the

\(^1\) For example, the so-called modified two-step GLRT (M2S-GLRT) in [31], which essentially can be derived according to the Rao test [8], has the best detection performance in some situations.
uncertainty in the steering vector for the target and/or interference [34]. Moreover, the subspace interference model in (1) is a common assumption, widely used in the literature [15–20,22,23,25]. The justification is that in practice this information can be obtained by operating the radar in receive-only mode before the start of transmission [35].

3. The proposed detectors

In this section we develop the Rao test, as well as its two-step variation, for the detection problem in (1) both in the HE and PHE. Let θ be a parameter vector, partitioned as

$$\theta = [\theta^T, \theta_0^T]^T$$

where $\theta_0 = \text{vec}(P)$ and $\theta_1 = \text{vec}(Q), \text{vec}(R)^T$ (in the HE) or $\theta_0 = [\sigma^2, \text{vec}(Q), \text{vec}(R)^T]$ (in the PHE). The θ_0 and θ_1 are usually called the relative and nuisance parameters, respectively. The Fisher information matrix (FIM) w.r.t. θ is given by [36]

$$I(\theta) = E\left\{[\log f_1(X, X_L)/\partial \theta_0^T][\log f_1(X, X_L)/\partial \theta_0^T]^T\right\},$$

where $f_1(X, X_L)$ is the joint probability density function (PDF) of X and X_L under H_1. For convenience, the $I(\theta)$ is often partitioned in the following manner:

$$I(\theta) = \begin{bmatrix} I_{\theta_0, \theta_0}(\theta) & I_{\theta_0, \theta_0}(\theta) \\ I_{\theta_0, \theta_0}(\theta) & I_{\theta_0, \theta_0}(\theta) \end{bmatrix}.$$ (4)

It follows from [36] that the Rao test is

$$I(\hat{\theta}_0) = \frac{\partial}{\partial \theta_0}f_1(X, X_L)^H|_{\theta = \hat{\theta}_0} \frac{\partial I(\hat{\theta}_0)/\partial \theta_0}{\partial \theta_0^T}|_{\theta = \hat{\theta}_0},$$ (5)

where $I^{-1}(\hat{\theta}_0)|_{\theta_0, \theta_0}$ is

$$I^{-1}(\hat{\theta}_0)|_{\theta_0, \theta_0} = [I_{\theta_0, \theta_0}(\theta) - I_{\theta_0, \theta_0}(\theta)I_{\theta_0, \theta_0}(\theta)]^{-1}$$ (6)

evaluated at $\hat{\theta}_0$, i.e., the MLE of θ under H_0.

To derive the Rao test, we need the joint PDF $f_1(X, X_L)$, which is

$$f_1(X, X_L) = \frac{1}{2\pi^{N+K}N^{NL+K}2^{NK}R_{L+K}}\exp\left\{-\text{tr}(R^{-1}S) - \text{tr}\left[R^{-1}(X - BD)(X - BD)^H\right]/\sigma^2\right\},$$ (7)

where S is the sample covariance matrix (SCM) given by

$S = X_LX_L^H$, $B = [H, J]$, and $D = [P^T, Q^T]^H$. Taking the derivative of the logarithm of (7) w.r.t. P and P^* results in

$$\frac{\partial}{\partial P}f_1(X, X_L)/\text{vec}(P) = \text{vec}\left[H^HR_1^{-1}(X - BD)\right],$$ (8)

and

$$\frac{\partial}{\partial P^*}f_1(X, X_L)/\text{vec}(P^*) = \text{vec}\left[H^HR_1^{-1}(X - BD)^H\right],$$ (9)

respectively. Letting $Z = X - BD$, then plugging (8) and (9) into (3) yields

$$I_{\theta_0, \theta_0}(\theta) = E\left\{\text{vec}(H^HR_1^{-1})\text{vec}(Z)\text{vec}(H^HR_1^{-1}Z^*)\right\}$$

$$= E\left\{[I_K \otimes H^HR_1^{-1}]\text{vec}(Z)\left(I_K \otimes H^HR_1^{-1}\right)^T\text{vec}(Z)^*\right\}$$

$$= \left[I_K \otimes H^HR_1^{-1}\right][E\left(\text{vec}(Z)\text{vec}(Z)^*\right)]\left[I_K \otimes H^HR_1^{-1}\right]^H$$

$$= \left[I_K \otimes H^HR_1^{-1}\right][I_K \otimes R_1]\left[I_K \otimes H^HR_1^{-1}\right]^H$$

$$= I_K \otimes H^HR_1^{-1}1,$$ (10)

where we have used $\text{vec}(A^T \otimes A) = (A^T \otimes A)\text{vec}(A)$ ([37], p. 35), $E(\text{vec}(Z)\text{vec}(Z)^*) = I_K \otimes R_1$, and $(A^T \otimes A_3)(A_3 \otimes A_5) = A_3A_5 \otimes A_5A_7$ ([37], p. 32) in the second, fourth, and last equalities, respectively. $A_i, i = 1, 2, ..., 7$, in the equalities above is an arbitrary conformable matrix.

Note that $I_{\theta_0, \theta_0}(\theta)$ is a null matrix. Hence, from (6) we have

$$[I^{-1}(\theta)|_{\theta_0, \theta_0}(\theta) = (I_K \otimes H^HR_1^{-1}1)^{-1}.$$ (11)

Substituting (8) and (11) into (5) and setting $P = 0_{p \times K}$, we obtain Q_R and R.

$$t_{Rao}(Q, R) = \text{vec}\left\{([X - JQ]H^HR_1^{-1}1)^T\left[I_K \otimes (H^HR_1^{-1}1)^{-1}\right] \times [H^HR_1^{-1}(X - JQ)]\right\}$$

$$= \text{vec}\left\{([X - JQ]H^HR_1^{-1}1)^T[H^HR_1^{-1}(X - JQ)]\right\}$$

$$= \text{tr}\left[H^HR_1^{-1}(1)(X - JQ)\right].$$ (12)

3.1. One-step Rao test

In order to obtain the explicit one-step Rao test, we need the MLE of Q, R, and σ^2 under H_0. In light of (7), the MLE of R under H_0 for given Q is

$$\hat{R}_0 = S + (X - JQ)(X - JQ)^H/\sigma^2$$ (13)

Inserting (13) into (7) results in

$$f_0(X, X_L; \hat{R}_0) = ([L + K]/(\pi\sigma^2))^N[S^{((K + L))/2}]^{-1} [\text{vec}(I_K) + (X - JQ)H^HR_1^{-1}(X - JQ)]/\sigma^2$$

$$= (X - JQ)H^HR_1^{-1}(X - JQ)/\sigma^2$$

$$= [L + K]/(\pi\sigma^2)$$

where we have used the identity (A1-2) in [4], i.e.,

$$C_1 + C_2C_3C_4 = |C_1||C_3^* + C_4C_1^*||C_2|$$

with $C_i, i = 1, 2, 3, 4$, being an arbitrary matrix of appropriate orders. Nulling the derivative of (14) w.r.t. Q, after some algebra, yields the MLE of Q under H_0.

$$\hat{Q}_0 = (J^HJ)^{-1}J^H\hat{X}$$

where $\hat{X} = S^{-1/2}X$ and $J = S^{-1/2}J$. In view of (16), we have

$$\hat{X} = J^H\hat{Q}_0 = P_j^\dagger \hat{X}$$

Applying the matrix inversion lemma ([38], p. 534) to (13) and utilizing (17) leads to

$$\hat{R}_0^{-1} = (K + L)(S^{-1/2}[I_{n - p}P_j^\dagger \hat{X}\vec{\sigma}^2I_K + \hat{X}^HP_j^\dagger \hat{X}]^{-1}\hat{X}^HP_j^\dagger S^{-1/2}I_n)^{-1}$$

It follows from (18) that

$$(H^HR_1^{-1}1)^{-1} = \sigma^2[H^HR_1^{-1}1\hat{X}\vec{\sigma}^2I_K + \hat{X}^HP_j^\dagger \hat{X}]^{-1}\hat{X}^HP_j^\dagger H^HR_1^{-1}1$$
where $\hat{H} = S^{-1/2}H$. Plugging (17)-(19) into (12), after some algebra, yields the Rao test for known σ^2

$$t_{\text{Rao}, \sigma^2} = \text{tr} \left\{ \hat{X}^H \hat{P}_j^+ \left[I_N - \hat{X} (\sigma^2 I_K + \hat{X}^H \hat{P}_j^+ \hat{X})^{-1} \hat{X}^H \right] \right\} \hat{P}_j^+ \hat{P}_j$$

(19)

where $\hat{X} = \hat{R}_0^{-1/2}X, \hat{J} = \hat{R}_0^{-1/2}J$, and $\hat{H} = \hat{R}_0^{-1/2}H$.

3.2. Two-step Rao test

For the two-step detector design, it is first assumed that the covariance matrix (in the HE) or only its structure (in the PHE) is known, and a detector according to a certain criterion is devised. Then the covariance matrix or its structure is replaced by a proper estimate [1]. Setting $\sigma^2 = 1$ in (24) and substituting S for the implicitly used R yields the 2S-Rao test in the HE

$$t_{2S-\text{Rao}} = \text{tr} \left\{ \hat{X}_0^H \hat{P}_j^+ \hat{P}_j \hat{X}_0 \right\} / \tilde{\sigma}_0.$$

(26)

To obtain the 2S-Rao test in the PHE, we need to derive the MLE of σ^2 for given R under H_0. Inserting (23) into (7), setting $\mathbf{P} = \mathbf{P}_{\sigma^2}$, and ignoring the PDF of X_i results in

$$f_0(X_0; \hat{Q}_0) = (\sigma^2)^{N/2} |R|^{-K} \exp \left[- \text{tr} \hat{X}_0^H \hat{P}_j^+ \hat{X}_0 / \sigma^2 \right].$$

(28)

Nulling the derivative of (28) w.r.t. σ^2 leads to the MLE of σ^2 for given R under H_0

$$\hat{\sigma}_0^2 = \text{tr} \left(\hat{X}_0^H \hat{P}_j^+ \hat{X}_0 \right) / \tilde{\sigma}^2.$$

(29)

Substituting (29) into (24) and dropping the constant yields the Rao test for given R in the PHE

$$t_{\text{Rao}, \sigma^2} = \text{tr} \left(\hat{X}_0^H \hat{P}_j^+ \hat{P}_j \hat{X}_0 \right) / \tilde{\sigma}_0^2.$$

(30)

Replacing the implicitly used R in (30) by S results in the final 2S-Rao test in the PHE

$$t_{2S-\text{Rao}} = \text{tr} \left(\hat{X}_0^H \hat{P}_j^+ \hat{P}_j \hat{X}_0 \right) / \tilde{\sigma}_0^2.$$

(31)

Remarkably, all the proposed detectors are CFAR. Precisely, the detectors (21) and (27) in the HE are CFAR w.r.t. the noise covariance matrix R, and the detectors (26) and (31) in the PHE are CFAR w.r.t. R and σ^2. This can be proved...
4. Simulation results

In this section, we assess the detection performance of the proposed detectors by Monte Carlo simulation. To obtain the detection threshold for a preassigned probability of false alarm (PFA), 10^4 data realizations are performed. To determine the probability of detection (PD), 10^4 data realizations are used. The signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) are defined as

$$\text{SNR} = \text{tr}(P^H R^{-1} HP)$$

and

$$\text{INR} = \text{tr}(Q^H Q R^{-1} - JQ),$$

respectively. Throughout this section we set $N = 12$ and PFA = 10^{-3}, and the INR is set to be 15 dB in all figures except Fig. 7. Moreover, the (i,j)th element of R is chosen as $0.96^{\text{abs}(j-i)}$. In the PHE, we choose $\sigma^2 = 2$. The matrices H and J are randomly chosen. After being generated, they are fixed in each Monte Carlo simulation.

For comparison purposes, the PDs of the GLRT and 2S-GLRT for the detection problem in (1) are also provided. The GLRT and 2S-GLRT in the HE are [25]

$$t_{\text{GLRT}_{PH}} = \frac{|I_K + \bar{X}^H P_j^+ \bar{X}^\dagger|}{|I_K + \bar{X}^H P_j^+ \bar{X}|}$$

and

$$t_{2S-\text{GLRT}_{PH}} = \text{tr}\left(\bar{X}^H P_j^+ \bar{X}^\dagger / \text{tr}(\bar{X}^H P_j^+ \bar{X})\right),$$

respectively. In (36), σ_0^2 is the sole solution to (22), and σ_1^2 is the sole solution to the equation

$$NK/(K + L) - \sum_{k=1}^{t} \lambda_{k}/(\lambda_{k,1} + x) = 0,$$

where x is the unknown, $t = \min(N, K)$, $\lambda_{k,1}$ is the kth non-zero eigenvalue of $\bar{X}^H P_j^+ \bar{X}$, with $\bar{B} = S^{-1/2} B$ and $B = [H, J]$.

Fig. 1 shows the detection performance of the detectors in the HE. The subscript “HE” indicates that a detector is proposed for the HE. Similarly, “PHE” denotes a detector is devised for the PHE. It is seen that the 2S-Rao test offers the highest PD for $q = 5$. Moreover, the PD of each detector decreases with the increase of q. Essentially, this is due to the increase of the loss of the signal energy projected onto the interference subspace.

Fig. 2 displays the detection performance of the detectors in the PHE. The results show that for the chosen parameters the 2S-Rao test achieves a higher PD than the other detectors. Noticeably, the PD of the Rao test in the PHE for $q = 3$ is not a monotonically increasing function of the SNR. This phenomenon is more clearly shown in Fig. 3. This result is consistent with that in [40,41]. An intuitive interpretation is that the Rao test is originally proposed for the case of low SNR and a large number of secondary data ([38], p. 208–217, p. 232–234).

The aforementioned phenomenon disappears when the number of the secondary data is large enough, as shown in Fig. 4. Precisely, Fig. 4 indicates that for the case of sufficient secondary data the PDs of the Rao test in the HE and PHE monotonically increase as the SNR becomes larger.

Fig. 5 compares the performance of the Rao test and GLRT in the HE with known matrix R^3. The values of p, q, and K are the same as Fig. 1. It is indicated in Fig. 5 that the Rao test in the HE for known R is superior to the GLRT when $q = 1$ or $q = 5$.
Fig. 6 is analogous to Fig. 5, but it is for the PHE. It is shown that the Rao test in the PHE for known R has higher PD than the GLRT. Particularly, at PD = 0.9 the performance improvement of the Rao test over the GLRT in terms of SNR is nearly 5 dB.

Fig. 7 depicts the PDs of the detectors for different INRs. It is seen that the PDs are nearly unaltered with the increase of the INR. In other words, all the detectors can successfully reject the interference. Together with the results in Figs. 1–6, we see that the detection performance of the detectors are mainly affected by the dimension of the interference subspace, instead of the power of the interference.

Note that the number of the range bins that the distributed target occupies, i.e., K, is assumed to be exactly known in the simulations above. However, there may be a mismatch between the actual value of K, denoted as K_a, and the nominal one, denoted as K_n. In particular, the phenomenon of signal contamination would happen if $K_a > K_n$, i.e., the data collected from some range bins the target occupies are taken as a portion of the training data. To quantify the mismatch, we define the contaminated SNR (cSNR) as $\text{cSNR} = \sum_{k=1}^{\Delta K} s_k^H R^{-1} s_{c,k}/L$, where $\Delta K = K_a - K_n$ and $s_{c,k}$ lying in the subspace spanned...
Fig. 5. PD versus SNR in the HE for known R. $p = 7$, $K = 4$, and INR = 15 dB. (a) $q=1$, (b) $q=5$.

Fig. 6. PD versus SNR in the PHE for known R. $p = 8$, $K = 4$, and INR = 15 dB. (a) $q=1$, (b) $q=3$.

Fig. 7. PD versus INR. $p = 4$, $q = 3$, $K = 6$, $L = 2N$, and SNR = 20 dB. (a) HE, (b) PHE.
by the columns of \mathbf{H}, is the signal component in the kth signal-contaminated range bin.

Fig. 8 investigates the detection performance of the detectors when signal contamination occurs, where "no mis." and "mis." denote the matched and mismatched cases, respectively. Only the 2S-Rao and 2S-GLRT are shown to avoid squeezing too many curves in Fig. 8. It is seen that the signal contamination degrades detection performance of the detectors, and the 2S-Rao can provide a slightly higher PD than the 2S-GLRT in the HE and PHE. Essentially, the performance degradation is owing to the raise of the detection thresholds, caused by the signal-contaminated training data.

5. Conclusions

In this paper, we have considered the distributed target detection in interference and noise. We have derived the one-step Rao test and two-step Rao test both in the HE and PHE, all of which have the CFAR property. It is shown that the detectors can effectively reject the interference and detect a target. However, the detection performance degrades with the increase of the interference subspace dimension. The proposed 2S-Rao test in the HE can provide higher PD than the existing GLRT and 2S-GLRT in some situations. Similarly, the proposed 2S-Rao test in the PHE can achieve the best detection performance.

Appendix. Derivation of (21)

In the HE (i.e., $\sigma^2 = 1$), (20) becomes

$$t_{\text{Rao}_0} = \text{tr} \left[\mathbf{X}^H P_j \left((I - E)P_j^H P_j (I + F)P_j P_j^H (I - E)P_j^H \mathbf{X} \right) \right],$$

where

$$E = \mathbf{X} (I_K + \mathbf{X}^H P_j^H \mathbf{X})^{-1} \mathbf{X}^H.$$

$$F = P_j^H \mathbf{X} (I_K + \mathbf{X}^H P_j^H \mathbf{X})^{-1} \mathbf{X}^H P_j.$$

It is straightforward to extend (39) as

$$t_{\text{Rao}_\text{p}} = \text{tr} (\mathbf{G}_1 + \mathbf{G}_2 - \mathbf{G}_3 - \mathbf{G}_4),$$

where

$$\mathbf{G}_1 = \mathbf{X}^H P_j^H P_h P_j \mathbf{X} - \mathbf{X}^H P_j^H P_h P_j P_h P_j^H \mathbf{X},$$

$$\mathbf{G}_2 = \mathbf{X}^H P_j^H P_h P_j P_h P_j^H \mathbf{X} - \mathbf{X}^H P_j^H P_h F P_h P_j EP_j^H \mathbf{X},$$

$$\mathbf{G}_3 = \mathbf{X}^H P_j^H EP_j P_h P_j^H \mathbf{X} - \mathbf{X}^H EP_j^H P_h P_j^H P_h P_j^H EP_j \mathbf{X},$$

$$\mathbf{G}_4 = \mathbf{X}^H EP_j^H EP_j P_h P_h P_j^H EP_j^H EP_j P_h F P_h P_j EP_j \mathbf{X}.$$
\[G_1 - G_3 = (I_k + \hat{X}^H P_j^+ \hat{X})^{-1} \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ \hat{X})^{-1}. \]

\[G_2 - G_4 = (I_k + \hat{X}^H P_j^+ \hat{X})^{-1} \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ \hat{X})^{-1}. \]

Furthermore, it follows from (41) that
\[\hat{X}^H P_j^+ P_R P_j^+ \hat{X} + \hat{X}^H P_j^+ P_R H P_j^+ \hat{X} = \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ P_R H P_j^+ \hat{X})^{-1} \hat{X}^H P_j^+ P_R P_j^+ \hat{X} \]
\[= \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ P_R P_j^+ \hat{X})^{-1} \hat{X}^H P_j^+ P_R P_j^+ \hat{X} \]
\[= \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ P_R P_j^+ \hat{X})^{-1} (I_k + \hat{X}^H P_j^+ P_R P_j^+ \hat{X}). \]

where we have used (48) in the last equality. According to (54)-(56), we have
\[G_1 + G_2 - G_3 - G_4 = (I_k + \hat{X}^H P_j^+ \hat{X})^{-1} \hat{X}^H P_j^+ P_R P_j^+ \hat{X}(I_k + \hat{X}^H P_j^+ \hat{X})^{-1}. \]

Plugging (57) into (42) results in (21). This finishes the derivation.

References

