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Abstract

Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information
processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with phys-
iological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This
method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains,
without any arbitrary choices or any operator judgment. When the mean value of several successive inter-spike intervals is not larger than
the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured
neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused
by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval
method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Many neurons fire action potentials in brief bursts of
high-frequency discharge. Bursts are the particular electrical
activity pattern of single neurons (in which the intrinsic prop-
erties of neuronal membrane might be involved), which rep-
resent a particular mode of neuronal signaling and have a
distinct function in sensory information transmission [1].
The functional importance of generating bursts is to increase
the reliability of communication between neurons and to
avoid synaptic transmission failure. Bursts of action poten-
tials might afford more precise information than action
potentials that arrive singly, and they also provide effective

mechanisms for selective communication between neurons
[2], and produce long-term synaptic plasticity and informa-
tion processing [3,4]. Furthermore, bursting behavior is the
most important property for analyzing the dynamics of elec-
trical activity during the development of neuronal networks
[5–7], and for investigating the modification of neuronal net-
works which are induced by alteration of the physiological
environment [8,9] (such as chemical exposure and electrical
stimuli). The analysis of the inter-spike interval (ISI) within
a burst is of important biological significance for under-
standing the characteristics of temporal coding in spike
trains of neuronal networks [10–12].

Because of the complexity of the background spiking,
detecting bursts is a long-standing challenge in investigating
the dynamics of burst activity. Legendy and Salcman [13]
assumed that the frequency of spike trains had a Poisson dis-
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tribution and defined bursts of spikes by the value of the
‘Poisson surprise’ parameter. Cocatre-Zilgien and Delc-
omyn [14] used an inter-spike interval (ISI) histogram to
detect critical interval values in the distribution represented
by the break between short intervals within a burst and the
longer intervals between bursts. Both of them defined a burst
on statistical arguments of ISIs of a spike train. Kaneoke and
Vitek [15] adopted a higher number of discharge density (the
number of spikes in a short interval) to define a burst. Turn-
bull et al. [16] applied only two parameters, a minimum num-
ber of spikes per burst and a maximum ISI, to define a burst
as a string of spikes, and this method has the virtue of sim-
plicity and intuitiveness. Some researchers defined a burst
as a number of inter-spike intervals all shorter than a given
value [4,17]. However, all these methods depend on the
parameters assumed for burst detection.

Due to the enormous variety of burst structures and
burst patterns associated with neuronal plasticity, behavior
and the involvement of external stimulation, it is difficult to
predetermine appropriate parameters for experimenters
when they use the parametric methods to detect bursts
from spike trains. It is important to use a self-adaptive
algorithm for burst detection and objective analysis, so
Tam [18] presented an auto-adaptive method in which a
burst was defined by inter- and intra-burst intervals. How-
ever, this method is only valid for typical burst patterns in
neuronal spike trains. Here, we describe an automatic
method using ‘mean inter-spike interval’ (MISI) for burst
detection, which identifies bursts through an auto-adaptive
procedure. This method is based on characteristics of ISI
sequences and identifies bursts as ‘many’ spikes with a
‘small’ interval (spike cluster). Although it is very simple,
and can rapidly and accurately extract relevant features
of the burst patterns to elucidate the dynamical changes
in electrophysiological activity of neuronal networks.

2. Experimental methods

2.1. Cell culture

Animal care was in accordance with guidelines approved
by the Animal Use Review Committee of Huazhong Uni-
versity of Science and Technology. Hippocampal cells were
isolated from 18-day-old embryonic rats and were cultured
on a multi-electrode array (MEA) dish (Fig. 1a) according
to the method previously reported [7]. Cultures were main-
tained in an incubator at 37 �C with 5% CO2, and a part of
the medium was replaced by fresh medium every three
days. Bursts activity usually appeared when networks
formed after being cultured for 2–3 weeks.

2.2. Recording system and stimulation

Electrical activities were recorded with a square array of
60 titanium nitride electrodes (Multi Channel Systems,
Reutlingen, Germany) in contact with the base of the cul-
ture, each was 30 lm in diameter, with 200 lm spacing

between them (Fig. 1a and 1b). Stimuli were generated
using a four channel stimulator (Multi Channel Systems,
Reutlingen, Germany). After 1200� amplification, signals
of electrophysiological activity were collected at a fre-
quency of 50 kHz and were simultaneously recorded in
60 channels for 30–300 s using a multi-channel data acqui-
sition card. The whole process was controlled through MC-
Rack software. Experiments were performed when neuro-
nal networks formed 2–6 weeks later.

The 0.2 Hz low-frequency electrical stimulus was
applied to the neuronal network through a pair of active
electrodes (42 and 44). The voltage stimulation mode with
biphasic rectangular voltage pulses was used (positive
phase first), and the strength was 500 mV and the pulse
length was 200 ls. After a series of 300 stimuli, the sponta-
neous electrophysiological activity was recorded.

2.3. Inter-spike interval sequences

A prerequisite to any analysis method is the extraction
of the spike times from the recorded electrophysiological
activity by means of a standard spike detection algorithm.
This transforms the continuously recorded signals into a
discrete series of spikes. Each spike train can then be
expressed as a series of d functions

aðtÞ ¼
XN

n¼1

dðt � tnÞ; ð1Þ

with t1; . . . ; tN denoting the series of spike times, and N

being the number of spikes.
In this study, the spike detection algorithm was used to

extract the spike times from the recorded signals, with the
threshold for acceptance of a signal set at 5r to 7r (where
r is the standard deviation of the quiescent signal during
500 ms at the beginning of each measurement). A single
electrode on a multi-electrode array may pick up electro-
physiological signals from one or several neurons (Fig. 1c).
Hence, the multiple neuronal spikes can be sorted by ampli-
tude and waveforms as discriminators in a hierarchical
clustering algorithm or principal component algorithm

Fig. 1. Multi-electrode arrays. (a) Circular plate on top of microelec-
trodes. (b) Cultured hippocampal neurons (18 days in vitro) on a multi-
electrode array plate. The solid black circles are microelectrodes with a
diameter of 30 lm; the distance between adjacent electrodes is 200 lm.
The neurons grew on the plate and developed a network. (c) Spontaneous
electrophysiological activity from one recording electrode. (d) Raster plot
showing the spikes detected. Spikes are represented by thin vertical lines.
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[19]. To provide an example of spike distribution, a raster
plot is used for describing the electrical activity of neurons,
in which each line denotes a spike (Fig. 1d).

The inter-spike interval sequences (ISIn) are defined as
the history of time intervals between consecutive spikes in
the spike train. Let tn be the occurrence time of the nth
spike in a set of N spikes. Then the ISIn is a variable:

ISIn ¼ tnþ1 � tn; n ¼ 1; 2; . . . ;N � 1: ð2Þ

3. Burst definition method

In this section, we introduce a quantitative method for
burst definition. Before describing this method, the features
of different neuronal spike firing patterns need to be illus-
trated by plots of ISI distributions. Four neuronal firing
patterns are commonly observed in the recorded data,
including typical bursts, alternate single spikes and bursts,
tonic spikes, and sporadic spikes. Raster plots of these four
typical spike trains recorded over 100 s are shown in
Fig. 2a (each vertical line denotes the occurrence of an
identified spike). Clearly, the neuronal spike trains are
organized in very dissimilar ways in these four cases. In
addition, the ISI histogram [20,21] was used to characterize
the ISI distribution for these four cases. The ISI histograms
of the tonic firing and the sporadic firing indicated that no
bursts existed in these two cases, as shown in Fig. 2b3 and
b4. In contrast, the ISI histograms of the alternate single
spikes and bursts firing and the typical bursts firing showed
strong peaks at 7–20 ms and 1–10 ms, respectively
(Fig. 2b1 and b2), and the profiles of ISI histogram con-

formed to an exponential distribution. These features
reveal that spikes are highly organized in bursts. We pro-
pose a new burst detection method according to intrinsic
properties of the detected burst spike trains, and the scope
of application of this method is burst firing pattern (such as
Fig. 2a1 and a2).

In an inter-spike interval sequence (ISIn), the mean
inter-spike interval is given by

Mean ¼
XN�1

n¼1

ISIn

,
ðN � 1Þ: ð3Þ

Because bursts are high-frequency spike episodes within a
spike train, it follows that the inter-spike intervals within
a burst will be small, less than the mean value of the ISIn.
Here, the new method to detect bursts consists of the fol-
lowing steps:

1. Determine the mean value of the ISIn from formula (3).
2. Construct a new ISI sequence, L(n), which can be

extracted from the original ISIn sequence. If the ISIn

< mean, then put it into the sequence L(n). So each ele-
ment of the L(n) is less than the mean. The elements of
L(n) are mainly ISIs within bursts but some are ISIs
between two spikes.

3. Calculate the mean of L(n) from formula (3) and term
this value ML. The value of ML is used as a parameter
to define bursts. ML is an auto-adaptive parameter
derived from measured spike trains.

4. Define bursts as two or more successive ISIs in the ori-
ginal ISIn sequence with a mean value smaller than
ML (Eq. (4)).

Fig. 2. The ISI histograms for different firing patterns. (a) Raster plot of spike trains for four different firing patterns: a1 – typical bursts, a2 – alternate
single spikes and bursts, a3 – tonic spikes, and a4 – sporadic spikes. (b) ISI histograms of the four firing patterns (b1–b4) recorded over 100 s, bin = 1 ms.
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1

k

Xiþk

n¼i

ISIn 6ML; k ¼ 2; 3; . . . ð4Þ

5. Confirm the beginning and the end of each burst period
from the original spike train, the burst duration as the
sum of ISIs within the burst, and the number of spikes
per burst as k + 1.

6. Construct a graph which illustrates the time of burst
emergence, burst duration and number of spikes per
burst.

4. Results

4.1. Identifying bursts within two different firing patterns

The ‘mean inter-spike interval’ method was applied to
the extraction of bursts from two of the spontaneous elec-
trophysiological activities of neurons (typical bursts firing
pattern – a1, and alternate single spikes and bursts firing
pattern – a2, as shown in Fig. 1). Bursts were identified fol-
lowing the steps in Section 3. The values of ‘ML’ were 4 ms
and 39 ms for a1 and a2, respectively, shown as dashed
lines in Fig. 3a and b. The plots of joint inter-spike interval
histograms, in which the ordinate and abscissa are on a
logarithmic scale, are helpful to demonstrate the ISI distri-
bution within a spike train. In Fig. 3, the initial spikes in
bursts are shown at bottom right; the final spikes in bursts
are on top left, spikes within bursts are at bottom left, and
sporadic spikes are at top right. It is clear that most spikes
within bursts are located near the mean value (dashed line,
ML).

Using the above-mentioned values of ML, bursts have
been automatically identified. Parts of the identified bursts
are shown in Fig. 4a and b (a period of 20 s). Fig. 4a and b
shows burst variables including burst duration, inter-burst
intervals, the number of bursts and the number of spikes

per burst. In a typical burst, as shown in Fig. 4a, the max-
imum number of spikes is 36, but it is only 11 in the bursts
alternating with single spikes (Fig. 4b). These figures show
the average frequency of spikes within a burst, and they
also display the position and distribution of bursts within
spike trains. Fig. 4c and d shows the cumulative spike num-
ber versus the time at which the spike occurred. Many
groups of spikes are arranged nearly vertically as described
by Turnbull et al. [13] who labeled them as ‘strings’ and
defined them as bursts. It is obvious that the bursts identi-
fied by ‘mean inter-spike interval’ method correspond per-
fectly to these ‘strings’ which are easily picked out by visual
inspection.

To apply the string method, a parameter ts (the maxi-
mum inter-spike interval between adjacent spikes in a
burst) was selected, and on this basis a burst was identified.
We also analyzed our data using the string method and
compared the result with those obtained from our mean
inter-spike interval method. When ts was set at 34 ms or
104 ms for the two firing patterns, the burst characteristics
obtained from the string method were similar to those
obtained from the ‘mean inter-spike interval’ method. Four
characteristics of bursts are compared in Tables 1 and 2,
which demonstrate that the values of these characteristics
obtained by the two methods are approximately the same,
the difference between the values being not more than 5%
(Tables 1 and 2). However, our method has the virtue that
the values of parameters used in the analysis (ML, etc.) are
obtained by an objective process.

4.2. Changes of spontaneous burst activity by electrical
stimulus

Electrical stimulus may influence spontaneous activity
of the neuronal network. The ‘mean inter-spike interval’
method was used to detect bursts to see whether there

Fig. 3. The joint inter-spike interval histograms of two burst firing patterns (a1, typical bursts; a2, alternate single spikes and bursts in Fig. 1). Each plot
shows the inter-spike interval following a spike (ISIi + 1) as a function of the preceding one (ISIi), with the ISI on a logarithmic scale on the ordinate and
abscissa. Each ‘s’ denotes a spike. The values of ML are shown as dashed lines.
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was a change in spontaneous burst activity evoked by elec-
trical stimulus.

Fig. 5a shows spontaneous spike trains from channels
14, 27, 68 and 77 in the multi-electrode arrays, which were
recorded for 40 s before and 80 s after the electrical stimu-
lation. It can be seen that the distribution and density of
spikes before stimulation are obviously different from those
after stimulation. The average spontaneous spike rate of
these four channels changed from 9.9 ± 1.2 to 10.9 ±
1.0 spikes/s (mean ± SD) by the stimulation, and the mean
burst rate (bursts/s) increased by 71.6%. This indicates that
the burst rate has a wider dynamic range than the spike
rate.

The two histograms in Fig. 5 show the changes in burst
parameters before and after electrical stimulation. Burst
duration and the number of spikes per burst are markedly
decreased (**p < 0.01) for channels 14, 27 and 77, and so as
for channel 68 (*p < 0.05). After stimulation, the average
burst duration and number of spikes per burst for the four
channels decreased by 74% and 62%, respectively. These
changes show that the characteristics of bursts have altered

after electrical stimulation, that is, long bursts occurring
with low frequency have changed into short bursts of high
frequency (Fig. 5a).

5. Discussion

In this paper, we introduce a mathematical method to
automatically identify bursts of spikes in neurons. This
method is based on the characteristic of spike trains, that
is, the nature of inter-spike intervals within bursts rather
than the shape of ISI histograms or the discharge density
of ISI [14,15]. In this method, the distribution of inter-spike
intervals does not have to be assumed to have a Poisson
distribution and does not need to be characterized by fit-
ting an equation to the experimental data [13]. The ‘mean
inter-spike intervals’ method can auto-adaptively set a
parameter (mean inter-spike interval) according to intrinsic
properties of the detected burst spike trains, and can adap-
tively identify bursts from the spike trains without any
prior assumptions about the parameters of identified
bursts (the characteristic time scales of bursts or inter-burst

Fig. 4. Bursts identified in the typical burst firing pattern and in the alternate single spikes and bursts firing pattern (recorded over 100 s). (a) and (b)
Duration and number of spikes in bursts. The width of a bar denotes the burst duration and its height represents the number of spikes per burst. (c) and (d)
Cumulative activities of the two firing patterns, in which a vertical string of spikes are defined as a burst based on Ref. [16].

Table 1
Results of bursts detection by mean inter-spike interval method for two burst firing patterns.

Parameters ML (ms) Number of bursts Mean burst duration
(ms)

Spikes in bursts/total
spikes

Mean ISI in bursts (ms)

Typical bursts 4 17 103 621/625 2.89
Alternate single spikes and

bursts
39 42 91 238/329 19.6

Table 2
Results of bursts detection by string method for two burst firing patterns.

Parameters ts (ms) Number of bursts Mean burst duration (ms) Spikes in bursts/total spikes Mean ISI in bursts (ms)

Typical bursts 34 17 104 622/625 2.91
Alternate single spikes and bursts 104 44 91 245/329 20.0
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intervals [13–17]). When the mean value of several succes-
sive inter-spike intervals is not larger than the parameter,
a burst can be identified. The ‘mean inter-spike intervals’
method presented in this paper performs a complete search
of bursts within a spike train for different burst firing pat-
terns. Moreover, this method performs in a robust way
based on a very general definition of a burst. This method
is easy to monitor statistical changes in burst variables,
such as burst duration, number of spikes in a burst and
burst period in real time.

This method also performs well in identifying bursts in
datasets recorded from multi-electrode arrays, this will
benefit to obtain different types of burst organization under
different physiological conditions [4–7,11]. The characteris-
tics of four different firing patterns shown in Fig. 2a, and
the ISI histograms and the joint ISI histograms from others
[13,14,20,21] demonstrate that bursts genuinely exist in
these spike trains (Figs. 2b1, b2 and 3). Fig. 4a and b prove
that the bursts detected by this method accurately reflect
the detected physiological activity of neurons, and the
results also agree with those from visual inspection
(Fig. 4c and d) and are similar to the results obtained by
the ‘string’ method (Tables 1 and 2).

Furthermore, this method is a sensitive technique for
revealing the changes in spike and burst patterns induced
by environmental alterations (pharmacological exposure
or electrical stimulation). For example, we found that
the spontaneous burst firing patterns changed significantly
after a series of 300 0.2 Hz electrical stimulations
(Fig. 5a). In the case that the assumed parameters
[4,14,16,17] were used, it would be difficult for the exper-
imenter to determine parameters that reflect the variety of
burst activity. However, our new method can objectively
adjust ‘ML’ values for identifying bursts from spike trains
under different physiological conditions. When bursts
have been identified, burst parameter values can be

calculated to quantify these differences, such as the mean
burst duration and the number of spikes per burst
(Fig. 5b and c).

It has been shown that ‘mean inter-spike intervals’
method works well in identifying bursts with most spike
trains. However, there are two limitations to this method.
First, when it is applied to spike trains which contain a per-
iod of sporadic spikes with long ISIs, or numerous short
ISIs (a burst firing pattern), it will lead to a large ML value
and a long artificial ‘burst’. Therefore we suggest that it
would be better to select the periods in which bursts are
obviously present before calculating ML to identify bursts.
Secondly, if the first ISI of a burst is much larger than the
following ISIs within the burst and the mean value of two
successive ISIs is larger than ML, then this ISI may be not
considered as a component of the burst.

This new method is a technique for automatically
detecting bursts in neuronal activity and for quantitatively
characterizing the dynamic changes of complex bursts in
cultured neuronal networks. It displays robustness in
identifying bursts under different physiological conditions.
All these demonstrate that the mean inter-spike interval
method should be useful to detect changes in burst pat-
terns and characteristics under a wide variety of
conditions.
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Fig. 5. The variety of spontaneous burst activities after electrical stimulation. (a) Raster plot from before and after a series of 300 electrical stimulations
applied. Synchronized bursts occurred before stimulation and a lot of short bursts appeared after it (tissue was cultured for 20 days in vitro). (b) Effects of
stimulation on burst duration. (c) Effects of stimulation on the number of spikes per burst (significance of differences between before and after stimulation
were tested using Student t-tests **p < 0.01; *p < 0.05).
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