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Abstract

In order to fulfill the energy and power demand of battery electric vehicles, a hybrid battery system with a

high-energy and a high-power battery pack can be implemented as the energy source. This paper explores

a cloud-based multi-objective energy management strategy for the hybrid architecture with a deep deter-

ministic policy gradient, which increases the electrical and thermal safety, and meanwhile minimizes the

system’s energy loss and aging cost. In order to simulate the electro-thermal dynamics and aging behaviors

of the batteries, models are built for both high-energy and high-power cells based on the characterization

and aging tests. A cloud-based training approach is proposed for energy management with real-world vehicle

data collected from various road conditions. Results show the improvement of electrical and thermal safety,

as well as the reduction of energy loss and aging cost of the whole system with the proposed strategy based

on the collected real-world driving data. Furthermore, processor-in-the-loop tests verify that the proposed

strategy can achieve a much higher convergence rate and a better performance in terms of the minimization

of both energy loss and aging cost compared with state-of-the-art learning-based strategies.

Keywords: energy management, vehicle-to-cloud, reinforcement learning, battery aging, lithium-ion,

battery safety

1. Introduction

The popularity of electric vehicles (EVs) provides a promising solution to the increasingly severe green-

house effect in the world [1]. Compared with hybrid electric vehicles (HEVs) and plug-in hybrid electric
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vehicles, battery electric vehicles (BEVs) produce zero carbon dioxide emissions through electrification with

high powertrain efficiency and renewable-energy integration possibility. However, challenges are still existing

regarding system cost reduction and performance increase. In order to fulfill the energy and power demand

of BEVs, using a single type of battery as the energy source may lead to an oversized configuration of the

battery system if the power-to-energy ratio of the cell does not match with that of the system requirement.

In contrast, less system weight and volume are achievable by utilizing different energy sources via power

electronics, which has been considered widely in the literature [2]. To cover the power requirement in the

hybrid energy storage system, different energy storage technologies, e.g., batteries [3], fuel cells [4], and

super-capacitors [5], have been used. Hybrid energy storage systems with lithium-ion batteries and super-

capacitors have been developed for electric vehicles [6], electric ships [7], and electric trains [8], etc. With the

technological progress in high-power lithium-ion batteries, e.g., batteries with lithium-titanate-oxide (LTO)

anode [9], hybrid battery systems (HBSs) are attracting more and more attention from both industry and

academia [10]. Compared with the single battery system (SBS), an HBS constructed with a high-energy

(HE) pack and a high-power (HP) pack is able to balance the power and energy demand of the BEVs for

the system scalability [11]. However, an efficient energy allocation between the battery packs relies on a

reliable and robust energy management system (EMS).

Generally, the state-of-the-art EMSs for hybrid energy sources can be divided into three categories:

rule-based, optimization-based, and learning-based EMSs [12]. Due to the simplicity and the low demand

for computational cost, rule-based methods, such as thermostatic strategy [13] and fuzzy logic controller

[14], have gained great success for HEVs. Nonetheless, rule-based strategies optimized the performance

of each component of the system individually on the basis of the predetermined rule, which may lead

to solutions far away from the optimality. Hence, they can be tuned to be only suitable for a specific

driving cycle. Optimization-based methods, e.g., particle swarm optimization [15], equivalent consumption

minimization strategy (ECMS) [16], dynamic programming (DP) [17], and model predictive control (MPC)

[18], have shown the ability to achieve globally optimal control based on the prior knowledge of future

driving conditions. The goal of these approaches is the optimization of the predefined objective values,

considering system constraints. Kollmeyer et al. [19] developed a DP-based EMS for the optimal control

of a hybrid energy storage system. In Ref. [20], a parallel DP-based energy management algorithm was

designed for a battery and fuel cell hybrid train based on the matrix calculation. However, future scenarios

are usually unavailable in real driving conditions, limiting the DP-based strategy to an offline benchmark for

performance evaluation of other approaches. In Ref. [21], model predictive control was applied to explore

the appropriate power-split strategy for hybrid energy sources, where the cost function is minimized through

the calculation of optimal control sequence in a prediction horizon. However, the determined control action

is sub-optimal as the problem was divided into several time steps.

Learning-based methods, e.g., reinforcement learning (RL), can learn from historical experiences and
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Nomenclature

C1,2 polarization capacitances

CN nominal capacity

Cheat heat capacity

I current

IDC−DC current in DC-DC converter

N size of the mini-batch

NE size of the replay buffer

Pt power

Q critic network

Q′ target critic-network

QDC−DC energy loss in DC-DC converter

R0 ohmic resistance

R1,2 polarization resistances

T battery temperature

Tamb ambient temperature

Vt terminal voltage

α reward weight

αC aging weight

αR aging weight

β reward weight

βC aging weight

βR aging weight

Q̇ heat generation rate

η coulomb efficiency

γ discount factor

γ1 reward weight

γ2 reward weight

γ3 reward weight

γ4 reward weight

γ5 reward weight

γ6 reward weight

µ action network

µ′ target actor-network

ν soft update of the target network

ψ reward weight

τ replacement cost

θ network weights

at action

h heat transfer coefficient

la learning rate for the actor-network

lc learning rate for the critic-network

p aging weight

pC aging weight

pR aging weight

rt reward

st state

t time

vt velocity

List of abbreviations

BEV battery electric vehicle

DDPG deep deterministic policy gradient

DNN deep neural network

DoD depth of discharge

DP dynamic programming

DQL deep Q-learning

DRL deep reinforcement learning

ECM equivalent circuit model

ECMS equivalent consumption minimization strategy

EM electric motor

EMS energy management system

EV electric vehicle

HBS hybrid battery system

HE high energy

HEV hybrid electric vehicle

HP high power

LMO lithium-manganese-oxide

LTO lithium-titanate-oxide

ML machine learning

MPC model predictive control

NCA lithium-nickel-cobalt-aluminum-oxide

OCV open-circuit voltage

PiL processor-in-the-loop

RL reinforcement learning

SoC state of charge

optimize the control scheme gradually through the interaction with the environment, which provides self-

adapted energy management strategies concerning different driving conditions [22]. With the support of

cloud computing and the internet of things, EV data can be measured and transmitted to the cloud seamlessly

[23], where learning-based methods show significant advantages over the other methods facing the operation-

related big data [24]. As a popular RL method, tabular Q-learning (QL) was first introduced to EMS

to control the power-split in HEVs [25]. The implemented Q-table contains all possible Q-values of the
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discretized state-action pairs, which need to be updated continuously by exploring the estimated maximum

total reward before the convergence is reached. However, RL is not suitable for optimization problems with

high dimensional state- and action-spaces on account of the ‘curse of dimensionality.’ Compared to RL,

deep reinforcement learning (DRL) methods, such as deep Q-learning (DQL), use deep neural networks

(DNNs) to approximate Q-values, avoiding the limitation of state-space discretization efficiently. Therefore,

the DQL outperforms the QL for solving the optimization problem with multi-dimensional states [26]. In

Ref. [27], DQL-based EMS was introduced to minimize the fuel consumption of an HEV. In order to further

stabilize the training results of the Q network, the experience replay buffer [28] and the target network [29]

were adopted. Li et al. [30] introduced the prioritized experience replay buffer to improve the quality of the

sampled data for the parameter update of the Q network, whereas the computational burden was significantly

increased. In Ref. [31], a DQL-based energy management strategy was introduced for a hybrid battery system

in electric vehicles consisting of an HE and an HP battery pack. The energy loss was minimized and both the

electrical and the thermal safety of the system was guaranteed by the EMS. Although the DQL-based EMSs

have been proven to be suitable for a continuous state space, their performance can be influenced by the

discretization of the action space, which constrains their applications in continuous action scenarios. In order

to apply the DRL to solve the continuous control problems, the actor-critic strategy, e.g., deep deterministic

policy gradient (DDPG), was developed [32], in which the actor is the decision-maker and the critic evaluates

its taken action. Although in Ref. [33], the DDPG-based EMS for HEVs was developed to minimize the

fuel consumption while maintaining the state of charge (SoC) of the battery at an appropriate level, they

only adapted a simplified battery model concerning the battery’s electrical behaviors. However, battery

dynamics are affected by the temperature as well. To address this problem, Li et al. [34] used an equivalent

circuit model (ECM) coupled with a thermal model to simulate the dynamics of the battery system. To

further develop a health-conscious EMS, some research work [35] implemented a dynamic semi-empirical

battery degradation model [36] considering the battery’s capacity loss during usage. In Ref. [37], the state

of health of the battery was updated utilizing a look-up table concerning temperature, cell capacity, and

cycle number. However, these methods only consider the capacity loss caused during the battery operation,

neglecting other aging factors such as the inspected time range and the increase of the internal resistance.

To the best knowledge of the authors, no efforts have been made to develop a learning-based health-

conscious energy management strategy for HBSs in BEVs. This paper aims to bridge the aforementioned

research gap and proposes a continuous DRL-based EMS for HBSs in BEVs considering battery aging.

A DDPG-based energy management strategy was proposed to explore the optimal continuous power-split

scheme for hybrid battery packs in a BEV for the first time. A novel reward function was designed in-

corporating multi-objective reward terms, including the electrical and thermal constraints, the energy loss

and the aging cost of the whole system. Electro-thermal models and aging models were developed based

on experiments to simulate the real dynamics of the battery packs with high accuracy. The proposed aging

4



models consider both the capacity fade and power fade of the battery in the calendar and cyclic aging.

Based on a vehicle-to-cloud energy management framework, we carried out the training process on the

cloud-server with real-world vehicle data under different dynamics collected from various road conditions.

Processor-in-the-loop (PiL) tests were carried out with a machine learning (ML)-capable embedded device

to validate the DDPG-based EMS and verify its low computation burden. The proposed strategy can con-

tinuously control the power-split between two battery packs, guaranteeing the safe and efficient operation

and prolonged longevity of the entire system. Compared with QL and DQL-based EMSs, the proposed

DDPG-based strategy achieved a much higher convergence rate as well as less energy loss and aging cost.

The remainder of this paper is structured as follows. In Section 2, the topology of the HBS in the BEV is

introduced, followed by the electro-thermal and aging modeling details. In Section 3, the framework of the

DDPG-based EMS with collected real-world driving data is introduced. The training results in the cloud

and validation results in PiL tests are shown and discussed in Section 4. Section 5 draws the conclusions.

2. Hybrid battery system model

2.1. Vehicle modeling and HBS topology

The study focuses on an HBS for a compact all-wheel-drive vehicle, where each axle is propelled by

an electric motor (EM), as shown in Fig. 1. The HBS is constructed with an HE pack and an HP pack,

as derived from [38], where the HE pack serves as the primary energy source and the HP pack supplies

the vehicle with additional power to fulfill high power demands. The connection of each battery pack to

the DC-link can be realized in either a direct or indirect way. The latter requires an additional DC-DC

converter, which offers the flexibility to scale the battery pack regarding the voltage range at the expense

of increased system costs and complexity. As a compromise between the flexibility and system cost, one

DC-DC converter is implemented in the HBS to connect the HP pack to DC-link, whereas the HE pack is

connected to DC-link directly. This HBS topology contributes to the stabilization of the DC-link voltage

at highly dynamic loads [11]. The implemented DC-DC converter is Brusa BDC546, whose energy loss

concerning the input current is derived from [19] and can be calculated with a second-order polynomial as

follows:

QDC−DC = 1.56× 10−2I2
DC−DC − 1.44IDC−DC + 388.90 (1)

where QDC−DC and IDC−DC are the energy loss and current of the DC-DC converter, respectively.

Two different battery types are utilized to construct the HE and HP pack, in which the differences be-

tween battery cells in each pack are neglected. Based on the range requirement and peak power requirement

of the vehicle under standard driving cycles, different system configurations with various hybridization ratios

were simulated with the simulation tool, considering the differences in the system weight. With increased

5



Fig. 1. The topology of the HBS in the BEV.

hybridization radio (HP pack energy / HE pack energy) and reduced total system weight, the energy con-

sumption decreases but the system cost increases. The final optimized system configuration is determined

based on the trade-off between energy consumption and system cost. The total energy capacity of the

battery system is 27.3 kWh. As summarized in Table 1, the HE pack contains total energy of 25.4 kWh,

which is constructed with 1440 HE cells with a nominal capacity of 4.9 Ah for each cell.

With their graphite anode and lithium-nickel-cobalt-aluminum-oxide (NCA) cathode, the HE cells are

cylindrical cells of the new 21700 format similar to the cell format used in the Tesla Model 3, and have a

high energy density but a limited power capacity. In contrast, the HP pack with 1.9 kWh is composed of

270 HP cells with a nominal capacity of 2.9 Ah for each cell. With lithium-titanate-oxide (LTO) as the

anode material and lithium-manganese-oxide (LMO) as the cathode material, the HP cells possess a high

power density despite the relatively low energy density (45 Wh/kg). Due to the high lithiation potential of

1.55 V vs. Li in LTO, safety critical lithium plating, the formation of a solid electrolyte interface, and the

growth of dendritic lithium is prevented, even at low temperatures. LTO offers good thermal stability and

no mechanical stress occurs in the material during the charge and discharge processes (zero-strain behavior),

leading to an excellent cycle lifetime. The weight of the HE pack and the HP pack is 139.1 kg and 56.7 kg,

respectively.

2.2. Battery modeling

2.2.1. Electro-thermal modeling

In order to ensure the accuracy without increasing the computational burden greatly, we use an extended

Thevenin model with two RC pairs, rather than electrochemical models [39], to simulate the electrical

dynamics of each battery cell, as shown in Fig. 2, where Vt is the terminal voltage, OCV is the open-circuit

voltage, I is the current, R0 is the ohmic resistance, R1,2 and C1,2 are the polarization resistances and

polarization capacitances, respectively. The change rate of SoC is calculated by

˙SoC =
η

CN
I (2)
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Table 1

Specifications of the HBS.

HE cell HP cell

Cell Manufacturer Samsung Toshiba

Chemistry (Cathode / Anode) NCA / C LMO / LTO

Cell nominal capacity 4.9 Ah 2.9 Ah

Cell nominal voltage 3.6 V 2.4 V

Cell voltage limits (min / max) 2.5 V / 4.2 V 1.5 V / 2.9 V

Cell current limits (DCH / CHA) 2 C / 1 C 70 C / 70 C

Energy density 250 Wh/kg 45 Wh/kg

Power density (10 s, DCH / CHA)
1.3 kW/kg /

0.5 kW/kg

3.2 kW/kg /

3.2 kW/kg

Cell weight 69 g 150 g

Pack configuration 90s 16p 90s 3p

Pack energy 25.4 kWh 1.9 kWh

Pack weight 139.1 kg 56.7 kg

Fig. 2. An extended Thevenin model of a battery cell.

where η is the Coulomb efficiency and CN is the nominal capacity. The change rate of the voltage over each

polarization resistance is determined by

V̇i = − 1

Ri(SoC, T )Ci(SoC, T )
Vi +

1

Ci(SoC, T )
I (3)

where i = 1, 2, the values of resistance and capacitance are dependent on SoC and temperature. The

terminal voltage is then calculated as follows:

Vt = OCV (SoC) + V1 + V2 +R0(SoC, T )I (4)

where OCV is dependent on the SoC with a nonlinear function that can be measured experimentally. The

OCV was determined by measuring the terminal voltage of the fully relaxed cell on different SoC levels

in the OCV test. In order to determine the parameters in this ECM, we carried out pulse tests under

different temperatures varying from - 25◦C to 40◦C and various SoCs between 0% and 100%. A fourth-

order polynomial is used to represent each element of ECM regarding temperature and SoC based on the

experiment data [40].
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Considering the influence of temperature on the values ECM elements observed in the experiments, we

adopt a thermal model developed in [41] in this work to characterize the dynamic of battery temperature.

The energy balance of the cell is described as follows:

Cheat
∂T

∂t
= −h(T − Tamb) + Q̇ (5)

where Cheat is the heat capacity, h is the heat transfer coefficient, T , Tamb, Q̇ are the battery temperature,

surrounding temperature, and heat generation rate, respectively. The heat generation rate can be further

calculated by

Q̇ = I(OCV − Vt) + IT
∂Vt
∂T

(6)

where the first part of the equation on the right side indicates the irreversible heat, while the second part

represents the reversible entropic heat. In this work, the heat capacity, Cheat, for HE and HP cells are

950 J/K and 1120 J/K, respectively, and the heat transfer coefficient, h, for HE and HP cells is 12 W/K

[31].

2.2.2. Aging modeling

Since the power output of the battery pack is influenced by cell degradation, we implemented aging models

based on aging tests to simulate the degradation of both HE and HP cells in driving tasks. Generally, the

degradation of the lithium-ion battery can be divided into calendar and cyclic aging. The calendar aging

mainly comprises the formation of passivation layers at the electrode-electrolyte interfaces, such as the solid

electrolyte interphase (SEI) at the anode, which is the predominant aging factor for batteries when their

idle interval is longer than their operation period [42]. In contrast, cyclic aging indicates the aging during

discharging and charging processes. While calendar aging is influenced by temperature and cell voltage, as

well as the inspected time range, cyclic aging relies on average cell voltage and depth of discharge (DoD)

[43]. Both aging processes lead to capacity loss and resistance increase.

In this work, the aging model for HE cells is derived from the previous work of our research group [44],

in which an aging model concerning both capacity fade and resistance increase was developed. Based on

the same modeling methodology, an aging model for HP cells [45] is developed based on experiments in this

work and will be introduced as follows.

To determine the calendar aging, we stored multiple battery cells in two different scenarios for 700 days,

considering the effects of both temperature and voltage on calendar aging. In the first scenario, the aging of

battery cells at 2.57 V was tested at three different temperatures. In contrast, the batteries with five different

voltages were stored at 45◦C in the second scenario. The capacity and resistance concerning calendar aging

is determined by

Ccalendar = (1− αCtp)Cinit (7)
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(a) (b)

(c) (d)

Fig. 3. The developed calendar aging model for HP cells compared with measurement data at the constant voltage of 2.57 V:

(a) capacity fade, (b) resistance increase. The calendar aging model at 45◦C: (c) capacity fade, (d) resistance increase.

Rcalendar = (1 + αRt
p)Rinit (8)

where weights αC and αR are dependent on temperature and voltage, t is the time in day, p is the time-

related weight, which is determined by fitting the curve to the measurement data. Cinit and Rinit are

the initial capacity and resistance, respectively. The parameterization results of the calendar aging are

summarized in Table 2. The whole calendar aging model of the HP cell is shown in Fig. 3. Fig. 3(a), (b)

depict the capacity fade and resistance increase in different temperatures and the mean absolute errors are

1.50% and 3.38%, respectively. Fig. 3(c), (d) illustrate the capacity fade and resistance increase at different

voltages, where the mean absolute errors are 0.89% and 2.57%.

The cyclic aging experiment was carried out under 10 C at 25◦C. Since calendar aging occurs during

the measurements of cyclic aging, we calibrated all test data of the capacity and resistance by getting rid

of the calendar aging part to acquire the authentic cycle aging. The capacity fade and resistance increase

caused by cyclic aging are described as follows:

Ccyclic = (1− βCQpCc )Cinit (9)
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Table 2

Parameterization results of the aging model for the HP cell.

Parameter Value

αC 5× 1017(0.0058V 4
t − 0.049V 3

t + 0.15V 2
t − 0.21Vt + 0.1)e

−15.782
T

αR 6.92× 107(0.1V 4
t − 0.93V 3

t + 3.25V 2
t − 4.98Vt + 2.84)e

−7.771
T

p 0.82

βC 6.67× 10−7

βR 9.77× 10−7

pC 0.98

pR 0.97

(a)

(b)

Fig. 4. The developed cyclic aging model for HP cells compared with measurement data at 25◦C with 10 C current: (a)

capacity fade, (b) resistance increase.

Rcyclic = (1 + βRQ
pR
c )Rinit (10)

where Qc is the charge throughput, βC , βR, pC , pR are parameters that are determined based on the test

data and are summarized in Table 2. The fitting results of the cyclic aging are shown as follows and depicted

in Fig. 4. The mean absolute error for capacity fade and resistance increase is 0.45% and 0.36%, respectively.

Thus, the overall aging model for the HP cells can be described by the superposition of calendar and
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cycle aging as follows:

C = (1− αCtp − βCQpCc )Cinit (11)

R = (1 + αRt
p + βRQ

pR
c )Rinit. (12)

3. Deep deterministic policy gradient-based EMS

For most of the learning-based methods, e.g., QL and DQL, the state or action space needs to be

discretized, which may lead to less efficient control due to discretization errors. In order to guarantee the

optimal power-split between the HE and HP pack, a DDPG-based EMS is explored in this work, which can

deal with continuous multi-dimensional state and action space.

3.1. Deep deterministic policy gradient

DDPG is an off-policy, model-free DRL method, which is developed based on the actor-critic architecture

[32]. Utilizing the high potential of DNNs in dealing with high-dimensional states, DDPG can explore

the most favorable strategy to solve the optimization problems with continuous state and action spaces.

The actor-network µ(s|θµ) with weights θµ behaves like the policy in conventional RL methods, which

determines the action regarding the observed environmental states. The critic-network Q(s, a|θQ) with

weights θQ evaluates the taken action with the estimated total reward. Specifically, the inputs of the actor

are continuous multi-dimensional environmental states, and the output is a continuous action. At the same

time, the critic takes both the states and actions as its inputs and outputs the Q-value.

Moreover, an experience replay buffer and two more networks are adopted in DDPG to increase the

stability and speed up the convergence. The experience replay buffer breaks the temporal correlation of

continuous transition pairs, which contributes greatly to the smaller variance of the Q-value by ignoring the

unsatisfied prediction in a short time range. Since it is likely to cause divergence by merely using the Q-value

of the single critic-network and the estimated action of the actor-network, a target critic-network Q′(s, a|θQ′)

and a target actor-network µ′(s|θµ′) are applied to calculate the temporal difference error between the target

and the evaluation value. The estimated optimal Q-value is determined by

yt = rt + γQ′(st+1, µ
′(st+1|θµ

′
)|θQ

′
) (13)

where rt is the immediate reward, and γ ∈ (0, 1) is a discount factor to assure the convergence of the

estimated Q-value. The update of the critic follows the rule as follows:

L =
1

N

N∑
t=1

(yt −Q(s, a|θQ))2 (14)
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Critic

Target Q network

Actor

Target network

HE HP

Hybrid battery

Environment

DDPG based EMS

Noise + 

State 𝑆𝑡

New State 𝑆𝑡+1,  reward 𝑟𝑡

Normalization

Minibatch

Action 𝑎𝑡

Replay memory

(𝑆1, 𝑎1, 𝑟1, 𝑆2)
(𝑆2, 𝑎2, 𝑟2, 𝑆3)

…

(𝑆𝑡, 𝑎𝑡, 𝑟𝑡, 𝑆𝑡+1)

Actor network

𝜇′(𝑠|𝜃𝜇′)

𝜇(𝑠|𝜃𝜇)

𝑄′(𝑠, 𝑎|𝜃𝑄′)

𝑄(𝑠, 𝑎|𝜃𝑄)

Q network

Fig. 5. The framework of the DDPG-based EMS for the hybrid battery packs in electric vehicles.

where L is the mean loss, N is the fixed size of a mini-batch, which is randomly selected from the experience

replay buffer. Since the objective of the optimal policy is to maximize the expected Q-value, the actor-

network µ(s|θµ) can be updated in the direction of maximum Q-value with the help of the derivative of the

Q-value regarding the parameters θµ in the actor-network, where the chain rule is applied as follows:

5θµJ = 5θµE[Q(st, at)] ≈ 5atQ(st, at)5θµ µ(st|θµ). (15)

The update of parameters in the target network follows the soft update. It guarantees the stability of the

trained networks by slowly tracking the weights of the evaluation network as follows:

θ′ ← νθ + (1− ν)θ′, ν << 1 (16)

where ν is the soft update factor, θ′ and θ are the parameter in target networks and original networks,

respectively. The overall algorithm of DDPG is summarized in Algorithm 1.

3.2. The architecture of the DDPG-based EMS

The objective of the energy management for the HBS is to find the optimal power-split scheme between

the HE and HP pack. After each decision-making of the power allocation, the driving condition and vehicle

states will change, and the allocation method should be updated consequently. Thus, this energy manage-

ment problem can be formulated as the Markov decision process problem, which can be solved by DDPG.
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Algorithm 1 DDPG-based EMS

1: Initialization of the experience replay buffer E

Initialization of the action network µ(s|θµ) with random weights θµ

Initialization of the weights of the target actor-network µ′(s|θµ′) with θµ
′

= θµ

Initialization of the critic-network Q(s, a|θQ) with random weights θQ

Initialization of the weights of the target critic-network Q′(s, a|θQ′) with θQ
′

= θQ

2: for epoch = 1 to M do

3: Reset the environment state to s0

4: for time = 1 to N do

5: Select an action at = µ(st|θµ) + εN(0, 1)

6: Clip the action to the range of [0,1]

7: Get the reward rt and new state st+1 from the environment

8: Store transition(st, at, rt, st+1) in memory E

9: Select a fixed-size mini-batch from E if E is full

10: yt = rt if time = N , otherwise

yt = rt + γQ′(st+1, µ
′(st+1|θµ

′
)|θQ′)

11: Update the weights of actor-network using sampled policy gradient

5θµJ ≈ 1
N

∑N
t=15aQ(st, at|θQ)5θµ µ(st|θµ)

12: Update the weights of the critic-network by minimizing the loss

L = 1
N

∑N
t=1(yt −Q(s, a|θQ))2

13: Update the weights of the target actor-network

θµ
′ ← νθµ + (1− ν)θµ

′

14: Update the weights of the target critic-network

θQ
′ ← νθQ + (1− ν)θQ

′

15: end for

16: end for

The overall architecture of the proposed DDPG-based EMS is illustrated in Fig. 5, where the vehicle and

the surrounding driving conditions act as the environment and the DDPG-based EMS serves as the agent.

The essential elements of DDPG, i.e., states, action, reward, need to be carefully designed to address the

energy management problem for the HBS.

The states indicate the status of the environment, from which the agent learns the surroundings and

makes a proper decision. In this work, we consider not only the electrical and thermal safety of the whole

system but also the energy loss and balance of the aging effect between the HE pack and the HP pack. SoC,

temperature as well as the relative capacity of HE and HP cells considering aging are selected as the states
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of the HBS. The vehicle’s speed and total power demand of the HBS are chosen to represent the dynamics

of the vehicle. The total state space S is shown as follows:

S = [SoCt,HE , SoCt,HP , Tt,HE , Tt,HP , Ct,HE , Ct,HP , vt, Pt] (17)

where SoCt,HE , SoCt,HP , Tt,HE , Tt,HP are SoC and temperature of each battery pack at time t. Ct,HE and

Ct,HP represent the actual capacity of the HE and HP pack, respectively, vt is vehicle speed, and Pt is the

total power demand.

Since the objective of the proposed DDPG-based EMS is to split the power between the HE and HP pack

optimally, the power ratio of the HE pack in the total power is adopted as the action, which varies within

the range of [0, 1]. The power extracted from the HP pack can be determined under the consideration of

the DC-DC converter’s efficiency.

Through the interaction with the environment, the agent can improve its power-split scheme by maxi-

mizing the long-term accumulative reward. In this work, the reward function is defined as follows:

r =α(QHE +QHP +QDC−DC) + βP 2
HPsgn(Ptotal)

+ γ1max(IHE,min − IHE , 0)

+ γ2min(IHE,max − IHE , 0)

+ γ3min(THE,max − THE , 0)

+ γ4max(IHP,min − IHP , 0)

+ γ5min(IHP,max − IHP , 0)

+ γ6min(THP,max − THP , 0)

+ ψG (18)

where QHE , QHP , and QDC−DC are the energy loss of HE pack, HP pack, and DC-DC converter, respec-

tively. Compared with the HE pack, the HP pack contains a relatively smaller internal resistance. Therefore,

the first reward term will encourage the use of the HP pack while reducing the total energy loss. In or-

der to explore the optimal operating range of the HP battery pack, we introduce the second reward term,

P 2
HPsgn(P total), to balance the discharging trend caused by the first reward term. The positive P total indi-

cates the recuperation phase and its negative value stands for the power consumption phase of the BEV. The

physical constraints of the cells are also considered in the reward function to ensure both the electrical and

thermal safety of the battery systems, where IHE,min, IHE,max and THE,max are the maximum discharging

and charging currents and maximum temperature limit of the HE cells. Similarly, IHP,min, IHP,max, and

THP,max are the maximum discharging and charging currents and maximum temperature limit of the HP

cells. The idea of these reward terms is to penalize the agent when the current or the temperature is beyond

the safety range. When the current and the temperature are within the safety range, no penalization will
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Table 3

Hyperparameters of DDPG-based EMS.

Hyperparameters Description Value

ν Soft update of the target network 0.0214

la Learning rate for the actor-network 10−3

lc Learning rate for the critic-network 10−4

γ Discount factor 0.99

NE Size of the replay buffer 105

N Size of the mini-batch 64

be given to the agent. We name the reward term regarding the current and temperature as electrical safety

term and thermal safety term for simplification. Furthermore, G is the reward term regarding equivalent

aging cost, which represents the immediate replacement cost caused by capacity fade, calculated by

G = (
τHE(CHE,t−1 − CHE,t)

20%CHE,init
+
τHP (CHP,t−1 − CHP,t)

20%CHP,init
) (19)

where weights τHE and τHP represent the replacement cost of each battery pack. Utilizing the BacPac

tool [46], τHE , which is calculated to be 5715 $ with 225 $/kWh and τHP is calculated to be 2850 $ with

1500 $/kWh. CHE,init and CHP,init are the initial capacity of HE pack and HP pack, respectively. CHE,t−1,

CHP,t−1 are the capacity of two packs at time t − 1. The EoL of each pack is defined if 20% of capacity

degradation is reached. The replacement cost regarding battery aging is distributed into each time interval

of 1 s. Different weights, i.e., α, β, γ1, γ2, γ3, γ4, γ5, γ6, ψ are implemented to balance the influence of each

reward term.

To speed up the convergence during the training process, we normalize the environmental states in the

range of [0, 1] before feeding them into the actor-network and the critic-network at each time point. Through

trial and error, the hyperparameters of the proposed system are determined and summarized in Table 3.

The actor-network, µ(s|θµ), contains two hidden layers with 400 and 300 neurons, where rectifier (Relu) is

used as the activation function. The sigmoid function is implemented in the output layer to limit the action

in the range of [0, 1]. The actor-network’s outputs and the normalized states are inputs of the critic-network

and they are combined in the critic-network’s second layer with 300 neurons. The construction of the actor

and critic-network are shown in Fig. 6. The target actor-network µ′(s|θµ′) and the target critic-network

Q′(s, a|θQ′) have the same architecture as µ(s|θµ) and Q(s, a|θQ), respectively. Adam optimizer [47] is

chosen to train the networks. At the beginning of the training process, a random action chosen from the

uniform distribution is implemented to the environment before the buffer is full. To balance the exploration

and exploitation, we add additional noise to the output of the actor-network. In this work, the additive

Gaussian noise is applied.
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Fig. 6. The construction of the actor- and the critic-network.
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Fig. 7. The framework of the cloud-based training and employment of the EMS.

3.3. Cloud-based energy management based on real-world driving data

Considering the high computational demand in the training process, we propose a vehicle-to-cloud frame-

work for the training and implementation of learning-based energy management strategies, as shown in Fig. 7.

The final performance of the DDPG-based EMS relies significantly on the quality of training data. In order

to explore the real dynamics of the HBS, such as temperature and aging development under real-world

operation, we collected a large amount of real-world driving data to generate the application-oriented load

profiles for the HBS. To accelerate the training process, we implement suitable hardware with high com-

putational power is in the cloud platform to train the DRL-based strategies based on the collected data.
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(a)

(b)

Fig. 8. (a) Collected real-world data, (b) Distribution of different road conditions.

Finally, the trained DRL model will be implemented and validated on the local embedded device in BEVs.

In this work, various real-world data were collected from 27 trips on various road conditions in Aachen

and nearby cities in Germany. To further increase the diversity of training data for the proposed EMS, the

logged data is classified into three categories based on GPS information concerning the road conditions, i.e.,

urban, rural, highway. The driving lengths and the distribution of road conditions within the logged data

are shown in Fig. 8.

The gathered data was uploaded to the cloud server to train the EMS, which is equipped with two Tesla

V100 GPUs. In each training epoch, the driving data concerning different road conditions were randomly

extracted from the trips and combined to train the proposed EMS. One of the combinations of the real-world

driving data in one training epoch is shown in Fig. 9(a). Once the training of the DRL-based strategy is

accomplished, parameters of the trained EMS can be transmitted to the ML-capable embedded device in

BEVs to perform the power-split between the HE and HP pack. In this work, a PiL test with a relatively

low-cost embedded device manufactured by Nvidia Corporation, Jetson Nano, is carried out to verify the

performance and the real-time feature of the proposed strategy under new load profiles, as shown in Fig. 9(b).
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Fig. 9. The combined real-world driving data for training and validation: (a) A combination of the driving data for the

training, (b) Driving data for the validation.

4. Results and discussion

As introduced in Section 3.3, the real-world data regarding various road conditions were randomly

combined in each epoch to train the EMS in the cloud server. In each training epoch, the initial SoCs of

the HE pack and HP pack are set to be 90% and 60%, respectively, enabling the absorption of recuperation

energy even at the beginning of the driving profile. The ambient temperature and the initial temperature

of the battery packs are assumed to remain constant at 35◦C to simulate the environment in summer.

According to the cell’s specifications, the maximum safe operating temperatures, 45◦C for the HE cell and

55◦C for the HP cell, are selected as the temperature limit. In the validation process within the PiL test,

the trained EMS is tested with the same initial environment states.

4.1. Results of the training process

After 120 training epochs, the DDPG-based EMS converged and the training results are illustrated in

Fig. 10 and Fig. 11. Fig. 10(a) depicts the total power and the power of the HP pack, where the positive value

represents the energy recuperation and the negative value represents the power demand for propelling the

vehicle. A large amount of recuperation power and high power consumption are supported by the HP pack.

Fig. 10(b) illustrates the tendencies of each pack’s SoC. The SoC of the HE pack decreases continuously,

18



(a) (b)

(c) (d)

Fig. 10. Training results of the DDPG-based EMS. (a) Total power of the HBS and power of the HP pack. (b) The SoC

tendencies of HE and HP packs within the last training epoch. (c) Comparison between the SBS and HBS in terms of the HE

cell’s current. (d) Temperature profiles of each pack in SBS and HBS.

which accords with the fact that the HE pack serves as the primary energy source. In contrast, the HP

pack’s SoC varies around 55% with a limited range, demonstrating the effectiveness of the balancing between

the first two reward terms in Eq. (18) and avoiding the overcharging and overdischarging of the HP pack.

To verify the improvement of the electrical and thermal safety of the HBS compared with the single

battery system (SBS), we implement an SBS with an increased number of the same HE cell to have the

same total energy capacity as that of the HBS under identical load profile as a benchmark. Fig. 10(c)

compares the HE cell’s current in SBS with that in HBS. While the HE cell’s current in SBS exceeds the

electrical safety limit, the HE cell in HBS works in the safe area over the entire driving distance, which

demonstrates the improvement of the electrical safety of the system with the proposed EMS. Fig. 10(d)

illustrates the temperature profiles of the SBS and HBS. While the temperature of the HE pack in SBS

exceeds the temperature limit, utilizing the HBS with the proposed EMS guarantees the thermal safety of

the HE pack. The difference between the HE and HP pack’s temperature lies in a higher heat generation

within the HE pack because of its larger internal resistance and the larger energy supply for the vehicle.

In order to further look into the performance of the EMS in terms of temperature control, an additional
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(a) (b)

(c) (d)

Fig. 11. Training results of the DDPG-based EMS. (a) Comparison of HP pack’s power using strategies with and without

thermal safety reward term. (b) Comparison of HP pack’s SoC using strategies with and without thermal safety reward term.

(c) Comparison of HP pack’s power using strategies with and without the aging reward term. (d) Comparison of HP pack’s

SoC using strategies with and without the aging reward term.

EMS without considering thermal safety is adopted as a benchmark and trained with the same data set.

Since thermal safety is not critical with the HP pack, the HP pack was used more frequently when thermal

safety is taken into consideration, especially in the recuperation phase, as shown in Fig. 11(a). As more

regenerated power is absorbed by the HP pack, the SoC of the HP pack is higher than that of the HP pack

without thermal safety term in the reward function, as shown in Fig. 11(b). To verify the effectiveness of

the minimization of the aging cost, we further design a new DDPG-based EMS without considering the

aging cost. Using the same data set to train the new EMS for 120 epochs, the comparison results regarding

the HP pack’s power and SoC are presented in Fig. 11(c) and (d). Because of the slower aging process of

the HP pack, the HP pack can be operated more actively, absorbing and delivering more energy when the

aging cost is taken into account. Accordingly, its SoC varies more dynamically compared with that without

considering the aging cost. In order to further explore the reduction of the aging cost, the sum of immediate

aging cost G, as defined in Eq. (19), over the whole driving distance is evaluated as the total aging cost.

As summarized in Table 4, the aging cost per 10000 km of the EMS, considering aging reduction is 47.7 $
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Table 4

Aging cost per 10000 km by using different strategies in training results.

With consideration of

aging cost ($)

Without consideration

of aging cost ($)

1440.5 1488.2

Trained parameters

Cloud Server

AI-based

EMS
Action State

Hybrid battery system

Power

Data monitoring

Fig. 12. Schematic of the processor-in-the-loop test with Jetson Nano.

lower than that without aging consideration in the reward function. The longevity of the entire system is

prolonged since the aging cost is reduced. The energy loss due to the heat dissipation of the packs and

DC-DC converter decreases by 6.015 kJ. This can be explained by a more active operation of the HP pack.

Consequently, the energy supplied by the HE pack decreases, which contributes to the lower heat generation

of the system.

4.2. Results of the processor-in-the-loop test

After the training process in the cloud server, the trained DDPG-based EMS is further validated in the

PiL test with a low-cost embedded device, Nvidia Jetson Nano, as shown in Fig. 12, which demonstrates not

only the effectiveness and reliability of the power-split scheme but also the onboard performance, computa-

tional burden, and real-time feature. The trained parameters are transmitted to the local embedded device

through wireless transmission. The onboard EMS performs the decision-making of the power-split for the

HBS under new load profiles, as shown in Fig. 9(b). The validation process and results can be monitored

through an additional screen.

The PiL test results are illustrated in Fig. 13 and Fig. 14. Fig. 13(a) shows that the HP pack absorbs a

large amount of the regenerated power and delivers sufficient power back to the vehicle under high power
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(a) (b)

(c) (d)

Fig. 13. Validation results of the DDPG-based EMS with the PiL test. (a) Total power of the HBS and power of the HP

pack. (b) The SoC tendencies of HE and HP packs within the last training epoch. (c) Comparison between the SBS and HBS

in terms of the HE cell’s current. (d) Temperature profiles of each pack in SBS and HBS.

Table 5

Aging cost per 10000 km by using different strategies in validation results.

Considering the aging

cost ($)

Without considering

the aging cost ($)

1441.6 1523.1

demand. From Fig. 13(b), we can see the tendency of each pack’s SoC over the entire driving range. In

contrast to the continuous decrease of the HE pack’s SoC, the SoC of the HP pack fluctuates around 65%,

which accords with the fact that the HP pack works as the secondary energy source, even under new load

conditions. As shown in Fig. 13(c), unlike the HE cell’s overlarge current at some peaks in SBS, the safe

operation of the HE pack in HBS is guaranteed by the DDPG-based EMS. Fig. 13(d) depicts the temperature

profiles of each battery pack in both SBS and HBS. The HE pack’s temperature in HBS is lower than that in

SBS, demonstrating that the proposed EMS can constrain the temperature of the HE pack within the safe

area. On account of the lower resistance and smaller energy throughput over the validated driving distance,

the temperature of the HP pack varies slightly.
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(a) (b)

(c) (d)

Fig. 14. Validation results of the DDPG-based EMS with the PiL test. (a) Comparison of HP pack’s power using strategies

with and without thermal safety reward term. (b) Comparison of HP pack’s SoC using strategies with and without thermal

safety reward term. (c) Comparison of HP pack’s power using strategies with and without the aging reward term. (d)

Comparison of HP pack’s SoC using strategies with and without the aging reward term.

Fig. 14(a) and (b) compare the proposed DDPG-based strategy with its thermal safety-ignored bench-

mark. With the consideration of thermal safety, the HP pack delivers larger power to the BEV and absorbs

more regenerated power, which generated a significant variance of its SoC. With a more active operation

of the HP pack, the temperature rise of the HE pack slows down. Fig. 14(c) and (d) show the results with

the EMS without consideration of the aging cost. When the equivalent aging cost is taken into account, the

HP pack is operated more actively through the absorption and release of the larger amount of the power,

contributing to the larger variance of its SoC. Because of the intrinsic stability and longer lifetime of the HP

pack, the load imposed on the HE pack is mitigated, contributing to the extended longevity of the entire

system. Table 5 summarizes the improvement of the aging cost with the designed reward term. In contrast

to the EMS without considering the aging cost of the battery pack, the proposed EMS achieves a reduction

of the aging cost of 81.5 $ per 10000 km before the HBS reaches its EoL, representing the prolonged lifetime

of the HBS.

Furthermore, the computation burden of the proposed DRL-based strategy was also investigated in the
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Table 6

Differences in different learning-based EMSs.

Strategy Epochs before conver-

gence

Energy loss (kJ)

QL 8000 3479.3

DQL 150 3478.0

DDPG 120 3428.5

Table 7

Aging cost of the DDPG-based EMS per 10000 km compared with that of QL and DQL-based EMSs.

QL ($) DQL ($) DDPG ($)

1579.1 1546.2 1441.6

PiL test. The total elapsed time with the embedded device is 46.93 s for the driving task of length 6555 s

with 1 s resolution. On average, 7.16 ms is needed for each decision-making with the EMS, which is 0.12%

of the time resolution, verifying the real-time feature of the proposed strategy. It can be concluded that

the proposed strategy offers the possibility to be applied to the energy management of an electric vehicle in

real-time.

4.3. A comparative study with QL and DQL-based EMSs

To further validate the effectiveness of the DDPG-based EMS, QL and DQL-based EMSs were addition-

ally developed. Both of them share the same discretized action space, from 0% to 100%, with 10% intervals.

For QL-based EMS, only the total power and the power of the HP pack were adopted as the states to speed

up its convergence. The DQL-based EMS utilizes the same state space as the DDPG-based strategy. The

same training data is applied to train these strategies. The results concerning convergence rate and energy

loss are summarized in Table 6. The DDPG-based EMS achieves not only the fastest convergence rate but

also the minimum energy loss, which is 49.5 kJ and 50.8 kJ less than that of DQL-based EMS and QL-based

EMS, respectively.

On account of the accumulated aging cost over the driving distance in the validation process, as summa-

rized in Table 7, the DDPG-based EMS achieves the minimum aging cost among three EMSs with the most

active operation of the HP pack so that the prolonged longevity of the entire battery system is guaranteed.

The aging cost reductions achieved by the DDPG-based EMS per 1000 km are 137.5 $ and 104.6 $ compared

with QL-based and DQL-based EMSs, respectively.
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4.4. Outlook and applications

In future work, the proposed DDPG-based energy management framework can also be applied to other

hybrid energy sources in BEVs and HEVs. Efforts will be put to further increase the algorithm performance

by implementing new continuous DRL algorithms. Different configurations of the hybrid battery systems

will be considered to optimize the entire system cost considering electrical, thermal, and aging effects. The

performance of the learning-based methods will also be compared with the optimization-based methods

with experimental tests considering performance and computation efficiency. Another key expansion to the

model is the investigation of the energy management strategy by implementing high-fidelity physics-based

electrochemical-thermal models [48].

The proposed vehicle-to-cloud energy management framework provides excellent opportunities for im-

proving the energy efficiency and reducing the total life-cycle system cost based on the data collected from

the transportation infrastructure, e.g., traffic information, weather information, and charging station infor-

mation. Future trip information can be forecasted from the historical data for the real-time adaption of the

strategy according to the dynamic driving conditions [49].

5. Conclusions

This paper proposed a deep deterministic policy gradient-based health-conscious energy management

strategy to achieve the continuous control of the power-split for a hybrid battery system in an electric

vehicle. Apart from the electro-thermal model, the experiment-based aging model of the cells considering

both capacity fade and power fade in the calendar and cyclic aging was implemented, aiming at simulating

the real dynamics of the battery accurately. A new reward function was designed, which comprises the

reward terms to increase electrical and thermal safety on the one hand and decrease the energy loss and

equivalent aging cost of the whole system on the other hand. The proposed health-conscious strategy is

trained under the vehicle-to-cloud framework and validated on a low-cost embedded system with the real-

world driving data, which contains different dynamics from various road conditions. Comparative studies

with state-of-the-art learning-based energy management strategies have been performed in terms of training

efficiency, energy loss reduction and degradation attenuation. The major conclusions are drawn as follows.

• The proposed vehicle-to-cloud energy management strategy can continuously control the power-split

between two battery packs, guaranteeing the safe and efficient operation and prolonged longevity of

the entire system.

• Compared with the energy management strategy without the consideration of thermal safety, the

high-power pack absorbs more regenerated power and the temperature rise of the high-energy pack is

slower.
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• Compared with the energy management strategy without the consideration of battery aging, the overall

aging cost related to the battery replacement of the proposed strategy is lower.

• The proposed strategy reduces the training epochs by 98.5% and 20.0% compared to Q-learning and

deep Q-learning-based strategies in processor-in-the-loop tests, indicating a highly improved conver-

gence property.

• The proposed strategy also achieves 50.8 kJ and 49.5 kJ less energy loss, respectively, compared to the

Q-learning and deep Q-learning-based strategies. Furthermore, the aging cost of the proposed strategy

is also lower than that of Q-learning and deep Q-learning-based strategies.
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[39] W. Li, D. Cao, D. Jöst, F. Ringbeck, M. Kuipers, F. Frie, D. U. Sauer, Parameter sensitivity analysis of electrochemical

model-based battery management systems for lithium-ion batteries, Applied Energy 269 (2020) 115104. doi:10.1016/j.

apenergy.2020.115104.
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