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In this paper, the modeling and vibration control problem of a
satellite with two flexible solar panels are addressed. Symmetric
flexible solar panels attached to the center body are used to represent
the dynamics of a flexible satellite system. The left and the right
panels are modeled as two Euler-Bernoulli beams, and the main
body of the satellite is modeled as a lumped mass in the center of two
panels. The single-point control input is applied at the center body to
suppress the vibrations of both panels. Based on the construction of
a physically motivated Lyapunov function, exponential stability is
proved with the proposed control. Both the control design and the
stability analysis are based on the original infinite-dimensional
dynamic equations. Numerical examples illustrate the effectiveness
of the proposed control scheme.
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I. INTRODUCTION

Satellites have gained considerable interest in the past
decades as a result of applications in communication,
remote sensing, etc. Under a complex environment, space
mission constraints have pushed demands such as lighter
weight structure, limitation of mass, low energy
consumption, and reduced launch cost. A number of
satellites with a rigid hub and long flexible solar panels are
used in space missions. However, due to the flexible
property of solar panels, the deflection of the flexible
panels has a significant influence on the dynamics and
control performance of the satellites. Therefore, vibration
suppression is an important research topic related to
flexible spacecraft. Recently, a number of approaches have
been developed for the vibration control of flexible
satellites, including positive position control [1], sliding
mode control [2, 3], linear quadratic regulator control [4],
and adaptive control [5]. In [5], the vibration stabilization
problem is addressed for a flexible spacecraft described by
a cantilever flexible beam by using adaptive output
feedback sliding-mode control techniques. In [6], a novel
control strategy combining both the command input
shaping and the sliding mode output feedback control
techniques is proposed to suppress the vibrations of a
flexible spacecraft. However, the papers mentioned above
consider only one flexible panel, and the control design is
based on the convention of changing the original partial
differential equations (PDEs) into ordinary differential
equation (ODEs) by using spatial discretization.

For a highly flexible satellite, the flexibility effect
should be directly accommodated into the control design.
The control of flexible structures described by hybrid
PDEs-ODEs need to provide the control effort to suppress
vibrations [7–15]. Thus, many conventional control
methods for ODE systems cannot be directly used for
flexible structures. Mathematically, flexible structures are
infinite dimensional systems [16–20]. One of the control
strategies is the discretization of original PDE model into
a system of finite dimensional ODEs by neglecting the
higher frequency modes. However, due to the high
dimensionality of the original model, the model reduction
will lead to spillover instability [21, 22], which should be
avoided in the control design. In recent years, there are
significant research efforts for flexible structures where
the control design is based on the original distributed
parameter systems [23–26]. In [23], a flexible marine riser
is modeled as an Euler-Bernoulli beam, and boundary
control at the top of the riser is proposed for suppressing
the vibrations of the riser. In [24], adaptive boundary
control is proposed to regulate the moving beam with
varying traveling speed. In [25], a complete framework of
dynamical analysis and control design is developed for
various marine mechanical systems such as flexible riser
system, installation system, and mooring system. In [26],
adaptive boundary control is designed at the top and
bottom boundaries of the riser to position the subsea
payload to the desired set point and suppress the vibration
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Fig. 1. Diagram depicting satellite with flexible panels.

of the riser. However, the model of flexible satellite with
two solar panels is different from the models in [23–26],
and the previous control methods cannot be applied to the
problem in this paper. A single Euler-Bernoulli beam is
considered in [23–26], but the flexible satellite consists of
two Euler-Bernoulli beams, making the control problem in
this paper more difficult to handle compared to the
previous works.

In this paper, we aim to deal with the active vibration
suppression problem for flexible structures. The
configuration of the flexible satellite with two solar panels
is shown in Fig. 1. The effect of rotation angle for the
flexible satellite is not considered. Two Euler-Bernoulli
beams connected to a center body are used to model the
dynamics of flexible satellite. The left and the right panels
are modeled as two beams, and the center body of the
satellite is modeled as a lumped mass in the center of two
panels. The flexible satellite systems can be actually
regarded as a free-free beam with a point load in the
center. The structure dynamics of flexible satellite belongs
to the distributed parameter systems described by hybrid
PDEs-ODEs, shown in Section II. The control and
control-related issues are presented through theoretical
analysis and simulations. A single-point control input is
proposed on the basis of the original distributed parameter
system to control the deformation of both flexible panels.
With the proposed control, the closed-loop system is
exponentially stable via the Lyapunov’s direct method.
The control performance of the system is guaranteed by
suitably tuning the control parameters.

The outline of the paper is as follows. In Section II, the
dynamic model of flexible satellite and some lemmas are
given for the subsequent development. Based on the
Lyapunov stability theory, boundary control schemes are
proposed to control the deformation of panels in Section
III, where it is shown that the exponential stability of the
closed-loop system can be achieved by the proposed
control. Simulations are carried out to illustrate the
performance of the proposed control in Section IV. The
conclusion of this paper is presented in Section V.

II. PROBLEM FORMULATION

The satellite dynamic model is composed of a center
body with two identical flexible panels. Hamilton’s
principle [27] is used to derive the equations of motion for
the satellite, starting from the expression of the kinetic and
potential energy of the system. Let wL(x, t) and wR(x, t)
denote the transverse displacements of the left and right
panels from their initial equilibrium position at position x
and time t, respectively, w(l/2, t) denotes the transverse
displacements of the lumped mass, ρ is the density of the
beam material, A is the cross-sectional area of the beam, E
is Young’s modulus, I is the area moment of inertia of the
beam, γ 1 is the coefficient of viscous damping, m is the
mass of the center body, and u(t) is a single-point
controller at the center body. The actuator is located at the
center body to regulate the vibrations of two flexible
panels.

The kinetic energy of the beam Ek(t) can be
represented as

Ek(t) = 1

2
ρA

∫ l/2

0

(
∂wL(x, t)

∂t

)2

dx

+1

2
m

(
∂w(x, t)

∂t

)2
∣∣∣∣∣
x=l/2

+1

2
ρA

∫ l

l/2

(
∂wR(x, t)

∂t

)2

dx, (1)

where x and t represent the independent spatial and time
variables, respectively. The potential energy Ep(t) due to
the bending can be obtained from

Ep(t) = 1

2
EI

∫ l/2

0

(
∂2wL(x, t)

∂x2

)2

dx

+1

2
EI

∫ l

l/2

(
∂2wR(x, t)

∂x2

)2

dx. (2)

The virtual work done by damping on the system is
represented by

δWd = −
∫ l/2

0
γ1

∂wL(x, t)

∂t
δwL(x, t)dx

−
∫ l

l/2
γ1

∂wR(x, t)

∂t
δwR(x, t)dx. (3)

The virtual work done by the axial control force u(t)
that produces a transverse force for vibration suppression
can be written as

δWu(t) = u(t)δw(l/2, t). (4)

Then, we have the total virtual work done on the
system as

δW (t) = δWd (t) + δWu(t). (5)
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The variations of (1) and (2) are obtained as

δEk(t) = ρA

∫ l/2

0

∂wL(x, t)

∂t
δ
∂wL(x, t)

∂t
dx

+ m
∂w(x, t)

∂t
δ

∂w(x, t)

∂t

∣∣∣∣
x=l/2

+ ρA

∫ l

l/2

∂wR(x, t)

∂t
δ
∂wR(x, t)

∂t
dx, (6)

δEp(t) = EI

∫ l/2

0

∂2wL(x, t)

∂x2
δ
∂2wL(x, t)

∂2x
dx

+ EI

∫ l

l/2

∂2wR(x, t)

∂x2
δ
∂2wR(x, t)

∂x2
dx, (7)

and we further obtain∫ t2

t1

δEk(t)dt = −ρA

∫ t2

t1

∫ l/2

0

∂2wL(x, t)

∂t2
δwL(x, t)dxdt

−m

∫ t2

t1

∂2w(x, t)

∂t2
δw(x, t)

∣∣∣∣
x=l/2

dt

−ρA

∫ t2

t1

∫ l

l/2

∂2wR(x, t)

∂t2
δwR(x, t)dxdt,

(8)

∫ t2

t1

δEp(t)dt = EI

∫ t2

t1

∫ l/2

0

∂4wL(x, t)

∂x4
δwL(x, t)dxdt

+EI

∫ t2

t1

∫ l

l/2

∂4wR(x, t)

∂x4
δwR(x, t)dxdt

+EI

∫ t2

t1

[
∂2wL(x, t)

∂x2
δ
∂wL(x, t)

∂x

−∂3wL(x, t)

∂x3
δwL(x, t)

]∣∣∣∣
l/2

0

dt

+EI

∫ t2

t1

[
∂2wR(x, t)

∂x2
δ
∂wR(x, t)

∂x

−∂3wR(x, t)

∂x3
δwR(x, t)

]∣∣∣∣
l

l/2

dt. (9)

Applying Hamilton’s principle∫ t2
t1

δ[Ek(t) − Ep(t) + W (t)]dt = 0 [25, 27, 28], we obtain
the following structure dynamics of the spacecraft with the
governing equations as

ρAẅL(x, t) + EIw′′′′
L (x, t) + γ1ẇL(x, t) = 0 (10)

∀x ∈ [0, l/2], t ∈ [0, ∞), and

ρAẅR(x, t) + EIw′′′′
R (x, t) + γ1ẇR(x, t) = 0 (11)

∀x ∈ [l/2, l], t ∈ [0, ∞), and boundary conditions as

w′
L (l/2, t) = w′

R (l/2, t) = 0, (12)

w′′
L (0, t) = w′′

R (l, t) = 0, (13)

w′′′
L (0, t) = w′′′

R (l, t) = 0, (14)

wL (l/2, t) = wR (l/2, t) = w (l/2, t) , (15)

mẅ(l/2, t)=EIw′′′
L (l/2, t)−EIw′′′

R (l/2, t)+u(t) (16)

∀t ∈ [0, ∞).

REMARK 1 For clarity, notations (·)′ = ∂(·)/∂x and
(
.·) = ∂(·)/∂t are used throughout this paper.

REMARK 2 Boundary condition (16) is a motion equation
of the center body in the satellite system. ẅ(l/2, t) denotes
acceleration of the center body, EIw′′′

L (l/2, t) describes
the shear force from the left panel, EIw′′′

R (l/2, t)
describes the shear force from the right panel, and u(t) is
the control force from the actuator.

LEMMA 1 Poincaré inequalities: For any φ(x, t)
continuously differentiable on [L1, L2], we have

∫ L2

L1

[φ(x, t)]2dx ≤ 2(L2 − L1)φ2(L2, t)

+4(L2 − L1)2
∫ L2

L1

[φ′(x, t)]2dx, (17)

∫ L2

L1

[φ(x, t)]2dx ≤ 2(L2 − L1)φ2(L1, t)

+ 4(L2 − L1)2
∫ L2

L1

[φ′(x, t)]2dx. (18)

PROOF Using integration by parts, we have

2
∫ L2

L1

(x − L1)φ(x, t)φ′(x, t)dx

= (x − L1)φ2(x, t)|L2
L1

−
∫ L2

L1

[φ(x, t)]2dx

= (L2 − L1)φ2(L2, t) −
∫ L2

L1

[φ(x, t)]2dx. (19)

We further have∫ L2

L1

[φ(x, t)]2dx

= (L2 − L1)φ2(L2, t) − 2
∫ L2

L1

(x − L1)φ(x, t)φ′(x, t)dx

≤ (L2 − L1)φ2(L2, t) + 1

2

∫ L2

L1

[φ(x, t)]2dx

+ 2
∫ L2

L1

(x − L1)2[φ′(x, t)]2dx

≤ (L2 − L1)φ2(L2, t) + 1

2

∫ L2

L1

[φ(x, t)]2dx

+ 2(L2 − L1)2
∫ L2

L1

[φ′(x, t)]2dx. (20)
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Then we obtain
∫ L2

L1

[φ(x, t)]2dx ≤ 2(L2 − L1)φ2(L2, t)

+ 4(L2 − L1)2
∫ L2

L1

[φ′(x, t)]2dx. (21)

Inequality (18) is obtained in a similar fashion.

REMARK 3 From Poincaré inequalities (17) and (18), we
further have

∫ L2

L1

[φ(x, t)]2dx ≤ 2(L2 − L1)φ2(L2, t)

+ 8(L2 − L1)3φ′2(L2, t)

+ 16(L2 − L1)4
∫ L2

L1

[φ′′(x, t)]2dx,

(22)

∫ L2

L1

[φ(x, t)]2dx ≤ 2(L2 − L1)φ2(L1, t)

+ 8(L2 − L1)3φ′2(L1, t)

+ 16(L2 − L1)4
∫ L2

L1

[φ′′(x, t)]2dx.

(23)

III. CONTROL DESIGN

The control objective is to propose an active control
law to regulate the deformation of the two flexible panels.
A single-point control force u(t) is applied on the center
body of the satellite. Consider the Lyapunov candidate
function as

V (t)=V1(t) + V2(t) + �(t), (24)

where V1(t), V2(t), and �(t) are defined as

V1(t)= β

2
ρA

∫ l/2

0
[ẇL(x, t)]2dx+ β

2
EI

∫ l/2

0
[w′′

L(x, t)]2dx

+ α

2
γ1

∫ l/2

0
[wL(x, t)]2dx+ β

2
ρA

∫ l

l/2
[ẇR(x, t)]2dx

+ β

2
EI

∫ l

l/2
[w′′

R(x, t)]2dx+ α

2
γ1

∫ l

l/2
[wR(x, t)]2dx,

(25)

V2(t) = β

2
mS2(t) + βkp

2
[w(l/2, t)]2, (26)

�(t) = αρA

∫ l/2

0
ẇL(x, t)wL(x, t)dx

+ αρA

∫ l

l/2
ẇR(x, t)wR(x, t)dx, (27)

where α and β are positive weighting constants, kp is the
control gain, and

S(t) = α

β
w(l/2, t) + ẇ(l/2, t). (28)

V1(t) is bounded as

V1(t) ≥ θ1

[ ∫ l/2

0

(
[ẇL(x, t)]2 + [wL(x, t)]2

)
dx

+
∫ l

l/2

(
[ẇR(x, t)]2 + [wR(x, t)]2) dx

]
, (29)

where θ1 = min
(

βρA

2 ,
αγ1

2

)
> 0.

From the definition of �(t), we know �(t) is bounded as

|�(t)| ≤ αρA

[ ∫ l/2

0

(
[ẇL(x, t)]2 + [wL(x, t)]2) dx

+
∫ l

l/2

(
[ẇR(x, t)]2 + [wR(x, t)]2

)
dx

]

≤ θ2V1(t), (30)

where θ2 = αρA

θ1
. Considering θ1 > αρA, we have

0 ≤ θ4V1(t) ≤ V1(t) + �(t) ≤ θ3V1(t), (31)

where θ3 = 1 + θ2 > 1 and 0 < θ4 = 1 – θ2 < 1. Then
considering the Lyapunov candidate function (24), we
have

0≤λ2 [V1(t) + V2(t)] ≤ V (t) ≤ λ1 [V1(t) + V2(t)] , (32)

where λ1 = max(θ3, 1) = θ3 and λ2 = min(θ4, 1) = θ4.
Differentiating V(t) leads to

V̇ (t)=V̇1(t) + V̇2(t) + �̇(t), (33)

where V̇1(t) is given as

V̇1(t) = βρA

∫ l/2

0
ẇL(x, t)ẅL(x, t)dx

+ βEI

∫ l/2

0
w′′

L(x, t)ẇ′′
L(x, t)dx

+ αγ1

∫ l/2

0
wL(x, t)ẇL(x, t)dx

+ βρA

∫ l

l/2
ẇR(x, t)ẅR(x, t)dx

+ βEI

∫ l

l/2
w′′

R(x, t)ẇ′′
R(x, t)dx

+ αγ1

∫ l

l/2
wR(x, t)ẇR(x, t)dx. (34)

Substituting the governing equations (10) and (11), we
obtain

V̇1(t) = A1(t) + A2(t) + A3(t) + A4(t), (35)
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where

A1(t) = −βEI

∫ l/2

0
ẇL(x, t)w′′′′

L (x, t)dx

+ βEI

∫ l/2

0
w′′

L(x, t)ẇ′′
L(x, t)dx, (36)

A2(t) = −βEI

∫ l

l/2
ẇR(x, t)w′′′′

R (x, t)dx

+ βEI

∫ l

l/2
w′′

R(x, t)ẇ′′
R(x, t)dx, (37)

A3(t) = −βγ1

∫ l/2

0
[ẇL(x, t)]2dx

− βγ1

∫ l

l/2
[ẇR(x, t)]2dx, (38)

A4(t) = αγ1

∫ l/2

0
wL(x, t)ẇL(x, t) dx

+ αγ1

∫ l

l/2
wR(x, t)ẇR(x, t) dx. (39)

Using integration by parts and boundary conditions
(12) and (13), we have

A1(t) = −βEIẇL(l/2, t)w′′′
L (l/2, t)

+ βEIẇL(0, t)w′′′
L (0, t)

+ βEIẇ′
L(l/2, t)w′′

L(l/2, t)

− βEIẇ′
L(0, t)w′′

L(0, t)

= −βEIẇL(l/2, t)w′′′
L (l/2, t), (40)

A2(t) = −βEIẇR(l, t)w′′
R(l, t)

+ βEIẇR(l/2, t)w′′′
R (l/2, t)

+ βEIẇ′
R(l, t)w′′

R(l, t)

− βEIẇ′
R(l/2, t)w′′

R(l/2, t)

= βEIẇR(l/2, t)w′′′
R (l/2, t). (41)

Combining A1(t)–A4(t) and applying boundary
conditions (12), (14), and (15), we obtain the derivative of
V1(t) as

V̇1(t) ≤ −γ1β

∫ l/2

0
[ẇL(x, t)]2dx

− γ1β

∫ l

l/2
[ẇR(x, t)]2dx

+ αγ1

∫ l/2

0
wL(x, t)ẇL(x, t)dx

+ αγ1

∫ l

l/2
wR(x, t)ẇR(x, t)dx

− βẇ(l/2, t)
[
EIw′′′

L (l/2, t) − EIw′′′
R (l/2, t)

]
.

(42)

The derivative of V2(t) is given as

V̇2(t) = βmS(t)Ṡ(t) + βkpw(l/2, t)ẇ(l/2, t). (43)

Using boundary condition (16), we have

V̇2(t) = βS(t)[u(t) + EIw′′′
L (l/2, t) − EIw′′′

R (l/2, t)

+ α

β
mẇ(l/2, t)] + βkpw(l/2, t)ẇ(l/2, t). (44)

Design the proposed control law as

u(t) = −kS(t) − α

β
mẇ(l/2, t) − kpw(l/2, t), (45)

where k > 0 and kp > 0 are the control gains. Using the
above control, we have

V̇2(t) = [αw(l/2, t) + βẇ(l/2, t)][EIw′′′
L (l/2, t)

− EIw′′′
R (l/2, t)] − kβS2(t) − αkp[w(l/2, t)]2.

(46)

The derivative of �(t) is given as

�̇(t) = αρA

∫ l/2

0
ẅL(x, t)wL(x, t)dx

+ αρA

∫ l/2

0
[ẇL(x, t)]2dx

+ αρA

∫ l

l/2
ẅR(x, t)wR(x, t)dx

+ αρA

∫ l

l/2
[ẇR(x, t)]2dx. (47)

Substituting the governing equations (10) and (11), we
obtain

�̇(t) = B1(t) + B2(t) + B3(t), (48)

where

B1(t) = −αEI

∫ l/2

0
wL(x, t)w′′′′

L (x, t)dx

− αEI

∫ l

l/2
wR(x, t)w′′′′

R (x, t) dx, (49)

B2(t) = αρA

∫ l/2

0
[ẇL(x, t)]2dx

+ αρA

∫ l

l/2
[ẇR(x, t)]2dx, (50)

B3(t) = −αγ1

∫ l/2

0
wL(x, t)ẇL(x, t) dx

− αγ1

∫ l

l/2
wR(x, t)ẇR(x, t) dx. (51)

Using integration by parts and boundary conditions
(12), (14), and (15), we obtain

B1(t) = −αw(l/2, t)
[
EIw′′′

L (l/2, t) − EIw′′′
R (l/2, t)

]

− αEI

∫ l/2

0
[w′′

L(x, t)]2dx

− αEI

∫ l

l/2
[w′′

R(x, t)]2dx. (52)
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Combining B1(t)–B3(t), we obtain

�̇(t) ≤ −αw(l/2, t)
[
EIw′′′

L (l/2, t) − EIw′′′
R (l/2, t)

]

− αEI

∫ l/2

0
[w′′

L(x, t)]2dx

− αEI

∫ l

l/2
[w′′

R(x, t)]2dx

+ αρA

∫ l/2

0
[ẇL(x, t)]2dx

+ αρA

∫ l

l/2
[ẇR(x, t)]2dx

− αγ1

∫ l/2

0
wL(x, t)ẇL(x, t)dx

− αγ1

∫ l

l/2
wR(x, t)ẇR(x, t)dx. (53)

Therefore, we have the derivative of the Lyapunov
candidate function as

V̇ (t) ≤ − (γ1β − αρA)
∫ l/2

0
[ẇL(x, t)]2dx

− (γ1β − αρA)
∫ l

l/2
[ẇR(x, t)]2dx

− αEI

∫ l/2

0
[w′′

L(x, t)]2dx−αEI

∫ l

l/2
[w′′

R(x, t)]2dx

− kβS2(t) − αkp[w(l/2, t)]2. (54)

From inequalities (22) and (23) and applying boundary
conditions (12) and (15), we have
∫ l/2

0
w2

L(x, t)dx ≤ l[wL(l/2, t)]2 + l3[w′
L(l/2, t)]2

+ l4
∫ l/2

0
[w′′

L(x, t)]2dx

≤ l[w(l/2, t)]2 + l4
∫ l/2

0
[w′′

L(x, t)]2dx,

(55)

∫ l

l/2
w2

R(x, t)dx ≤ l[wR(l/2, t)]2 + l3[w′
R(l/2, t)]2

+ l4
∫ l

l/2
[w′′

R(x, t)]2dx,

≤ l[w(l/2, t)]2 + l4
∫ l

l/2
[w′′

R(x, t)]2dx.

(56)

Then we can obtain the following inequalities

− η1l[w(l/2, t)]2 ≤ −η1

∫ l/2

0
w2

L(x, t)dx

+ η1l
4
∫ l/2

0
[w′′

L(x, t)]2dx, (57)

− η2l[w(l/2, t)]2 ≤ −η2

∫ l

l/2
w2

R(x, t)dx

+ η2l
4
∫ l

l/2
[w′′

R(x, t)]2dx, (58)

where η1 and η2 are positive constants. Then we obtain

V̇ (t) ≤ − (γ1β − αρA)
∫ l/2

0
[ẇL(x, t)]2dx

− (
αEI − η1l

4) ∫ l/2

0
[w′′

L(x, t)]2dx

− η1

∫ l/2

0
w2

L(x, t) dx − (γ1β − αρA)

×
∫ l

l/2
[ẇR(x, t)]2dx

− (
αEI − η2l

4
) ∫ l

l/2
[w′′

R(x, t)]2dx

− η2

∫ l

l/2
w2

R(x, t)dx − kβS2(t)

− (
αkp − η1l − η2l

)
[w(l/2, t)]2. (59)

We further have

V̇ (t) ≤ −λ3[V1(t) + V2(t)], (60)

where

λ3 =min

(
2γ1β−2αρA

βρA
,

2αEI −2η1l
4

βEI
,

2αEI −2η2l
4

βEI
,

2η1

αγ1
,

2η2

αγ1
,

2k

m
,

2αkp−2η1l−2η2l

βkp

)
> 0, (61)

Combining (32) and (60), we have

V̇ (t) ≤ −λV (t), (62)

where λ = λ3/λ1. From the above statement, the control
design for the flexible panels subjected to external loads
can be summarized in the following theorem.

THEOREM 1 For the dynamical system described by
governing equations (10) and (11) and boundary
conditions (12)–(15), under the proposed boundary
control (45), if the initial conditions are bounded, then the
closed-loop system is exponentially stable.

REMARK 4 In the real system, the distributed disturbance
along the flexible satellite system is relatively small. Thus,
we neglect the influence of the distributed disturbance in
this paper. If there is a distributed disturbance in the
flexible satellite system, we can only ensure uniform
ultimate boundedness for the closed-loop system with the
proposed boundary control.

REMARK 5 How to construct the control law from the
Lyapunov function is the main issue of this paper. First,
we can obtain the energy term V1(t) from the analysis in
Section II. Because the Lyapunov candidate function V(t)
needs to be positive definite and V̇ (t) satisfies
V̇ (t) ≤ −λV (t), we design an auxiliary term V2(t) and a
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TABLE I
Parameters of the Flexible Satellite System

Parameter Description Value

l/2 Length of panel 10 m
m Mass of the center body 100 kg
ρ Density of the material 2.700 × 103 kg/m3

A Cross-sectional area of the panel 0.12 m2

E Young’s modulus 6.894 × 1010 N/m2

I Area moment of inertia of the panel 1.734 × 10−7 m4

γ 1 Viscous damping 0.005 kg/(ms)

crossing term �(t). We can then design the control law
u(t) for vibration suppression and substitute it in V̇2(t). In
turn, substitute the governing equations and boundary
conditions in V̇ (t) and see what term should be added in
the Lyapunov function V(t) and control law u(t) in order to
satisfy V̇ (t) ≤ −λV (t). After continuous revision and
calculation of the Lyapunov function and control law, we
can obtain the appropriate V(t) and u(t) to achieve the
control objective.

IV. SIMULATION

Several numerical methods such as finite difference
method, assumed mode method, finite element method,
and Galerkin method can be used to discretize the PDE
system for simulations. In this paper, we select the finite
difference method to simulate the system performance
with the proposed boundary control. It is hard to find the
mode functions for the system described by (11)–(17) for
the assumed modes method. For the Galerkin method, it is
not easy to calculate the eigenvalues. Many research
studies of PDE systems have performed simulations by
using the finite difference method, for example, [29–35].
In this paper, by choosing the proper temporal and spatial
step size to approximate the solution of the PDE model,
the performance of the proposed control is well
demonstrated via the finite difference method.

In order to verify the effectiveness of the proposed
control schemes, simulations have been performed and
presented in this section by using the finite difference
method. It should be noted that the finite difference
method is not used for the control law design, and
spillover instability will not arise. Parameters of the
system are listed in Table I.

The corresponding initial conditions of the flexible
satellite are given as wL(x, 0) = –0.3x, wR(x, 0) = 0.3x,
ẇL(x, 0) = ẇR(x, 0) = 0. Deformation of the flexible
satellite without control (i.e., u(t) = 0) are given in Fig. 2.
For the results presented here, we can observe that there
are large vibrations along the two panels. Moreover, we
can obtain |w(x, t)|max = 3.4721 m.

Fig. 3 shows the actual closed-loop profiles of
evolution of w(x, t) for the flexible satellite by using the
proposed control derived in (45). The values of the control
gains are given as k = 1250, kp = 37.5, and weighting
constants α and β are chosen as 1 and 100, respectively. It
can be seen that the designed control scheme is able to

Fig. 2. Deformation of flexible satellite without control.

Fig. 3. Deformation of flexible satellite with proposed control.

Fig. 4. Boundary displacement w(0, t) of flexible satellite: without
control and with control.

regulate the vibration greatly within 30 seconds and w(x, t)
numerically converge to the zero after 40 seconds, which
means good convergence of the transverse vibration w(x, t)
can be achieved with the proposed control.

For comparison, the tip deformation of the flexible
panels w(0, t) and w(l, t) are shown in Figs. 4 and 5,
respectively. In addition, the transverse displacement of
the center body w(l/2, t) is shown in Fig. 6. It can be
observed that the transverse displacements w(0, t), w(l/2,
t), and w(l, t) converge to zero, illustrating that control
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Fig. 5. Boundary displacement w(l, t) of flexible satellite: without
control and with control.

Fig. 6. Displacement of center body w(l/2, t) of flexible satellite:
without control and with control.

Fig. 7. Control input.

performance is ensured. Fig. 7 depicts the time histories of
the control signal u(t).

V. CONCLUSION

In this paper, the control problem of a satellite with
flexible solar panels has been addressed by using a
single-point control input. The panels with flexibility have
been modeled as a distributed parameter system described
by hybrid PDEs-ODEs. The control input has been

proposed on the original PDE dynamics to suppress the
vibrations of two panels. Then exponential stability has
been proved by introducing a proper Lyapunov function.
The effectiveness of the proposed control has been verified
by simulations.

In this paper, we have addressed the vibration
problems of a flexible satellite system in one-dimensional
space. Future work includes control design for a flexible
satellite system in three-dimensional space. In addition,
we plan to extend the proposed control method for the
flexible satellite system with input saturations.
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