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1 INTRODUCTION

With the evolution of Internet of Things (IoT) technology and rapid urbanisation, many significant challenges have
been raised for city management and sensor data analytic. The combination of the IoT, AI solutions, and big data is a
booming research area in urban planning that has brought new, interesting challenges towards the goal of future smart
cities [5, 40].

Parking violation is one common problem in the daily life, which plays a critical role in traffic management of the
city. Recently, the Melbourne City Council has installed thousands of in-ground sensors on the on-street car parking
lots in the Melbourne CBD that are used to detect car parking and in violation. The sensors record the parking situation
of each parking lot and upload records to the cloud server. The cloud system can notify nearby parking officers the
location of the parking violation if the car has overstayed the maximum permitted period. Parking officers will place
parking infringement notices on cars in violation if the officer can arrive to the specific location before the car in
violation leaves. Since vehicles in breach are likely to leave within a short period, parking officers need to find a path to
travel over those cars in violation before those cars escaping from parking lots.

The Travelling Officer Problem (TOP) is a new variant of Travelling Salesman Problem (TSP). Compared to the TSP,
it also considers the time constraint and the state of the graph changes during the parking officer travelling process
[26, 32]. The TOP was used to model the parking officer patrolling problem. During lunch and dinner time, many cars
in the different locations in the CBD are likely to be in violation at the same time. Parking officers needs to arrive at
each location and stick infringement notices to each car in violation before it leaves. Therefore, it is necessary to design
a reasonable patrolling path for parking officers to catch cars in violation in time. As illustrated in Fig. 1, there are
five parking violations occurring around the Argyle Square, the officer needs to visit each violation location and the
travelling tour is formed differently according to the algorithm. The red tour is suggested by Ant Colony Optimisation
(ACO) and the blue one is generated by First-come First-serve.

Traditional optimisation solutions to the TSP are not suitable for the TOP because those methods do not consider the
time constraint and dynamic states of the graph [18] [29] [30] [39]. Therefore, it is necessary to propose some heuristic
solutions which take both the historical data and time constraints into consideration. Shao et al. proposed two heuristic
solutions, ACO and greedy with leaving probability estimation, to solve this problem [32]. Nevertheless, the problem is
not completely solved because of many factors such as different leaving probability distributions of each area in the
city, real-time performance, and the cost of human resources not being considered. Specifically, the leaving probability
estimation model, which estimate the leaving probability of cars in violation when the parking officer arrives at the car
in violation, is the essential component to solve TOP.

It is challenging to predict the parking violation event due to uncertainty. Furthermore, using a single probability
model to estimate thousands of car parking spaces is inappropriate because the leaving probability model is heavily
influenced by the spatial and temporal context of the certain parking lot. Previous research have been conducted
to generate useful features to traditional solutions such as rule-based system or single optimisation methods [3, 4].
However, it is difficult to extract useful features from spatio-temporal information since the spatial and temporal
information are from two different Euclidean spaces [33].

In this paper, we propose a framework with three steps: extracting features from historical data, clustering features
and building the leaving probability model, and path planning using optimisation methods together with leaving
probability model. We first propose Long Short-Term Memory (LSTM) auto-encoder model to extract features from
spatio-temporal data and use the existing clustering methods to divide spatial space into sub-spaces. Finally, we
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Fig. 1. Demonstration of finding path for officer via different algorithms in the Travelling Officer Problem.

incorporate four popular optimisation solutions – the Greedy algorithm, ant colony optimisation (ACO), the Genetic
algorithm (GA) and simulated annealing (SA) and different leaving probability estimation model to solve the TOP.
We found that different probability models have significantly different results on the performance of the optimisation
solutions in TOP.

We conduct extensive experiments on a large-scale real-world parking dataset. The experimental results show that
the combination of our proposed models outperforms other solutions and our proposed heuristic methods are capable
of solving the TOP. Additionally, we also compare the cost of human resources with the solutions generated from
different combinations of optimisation solutions and probability estimation models.

In summary, this paper makes the following contributions:

• We establish a data-driven framework combined with feature extraction, clustering and optimisation methods to
solve an orienteering problem – the Travelling Officer Problem (TOP).
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• We propose a LSTM Auto-encoder based solution to extract essential features for parking violation leaving
probability estimation.

• We conducted extensive comparison experiments on a real-world large scale dataset to show the different
combination of clustering methods, optimisation methods and feature extraction methods on Travelling Officer
Problem.

The organisation of this paper is as follows: Section 2 discusses the related works in both optimisation area and
smart parking system area. In Section 3, we will introduce the background knowledge and our previous studies. The
framework of solutions and the corresponding algorithms are described in Section 4. In Section 5, we present and
discuss the experimental results. Section 7 concludes the paper.

2 RELATEDWORK

Parking services are becoming increasingly important to providing citizens with high-quality living experiences in
major cities worldwide. Many efforts have been devoted to establishing an intelligent parking system to enhance parking
services [7]. With the technological progression in wireless networks, sensor communication and smart devices, an
Intelligent Parking Assistant (IPA) architecture was established by Barone et al. to facilitate the management of public
parking and improve the urban mobility. The system can detect the state of any on-street parking slots in real time,
which enables the customers to reserve parking bays effectively and also helps deal with overstaying cars timely. An
architecture of integrated smart parking system that brings multiple parking service providers under a unified platform
to provide one-stop parking information services is proposed in [2]. Ji et al. developed a new car parking system
that could be integrated into the IoT architecture of smart cities [23]. In this system, the sensor layer utilises sensing
technologies for car parking access control. In addition, the communication layer is responsible for transmitting car
access information via wireless network to the application layer, where a number of parking services are provided to the
public. To further enhance the experiences of searching free car parking space, Caicedo et al. proposed a methodology
for predicting real-time availability of parking spaces in the intelligent parking reservation systems [9]. Rahaman et

al. studied real-time parking situations considering various contexts (e.g. weather, time, congestion) to better manage
airport ground transport movements [27, 28, 31].

Previous studies show that an inefficient parking service could lead to an increase in urban traffic congestion and
air pollution, and illegal parking is a main cause to intensify this impact [7] [12]. Furthermore, it has been pointed
out by Cullinane and Polak that illegal parking on the street could also cause a loss of revenue from parking bays,
non-compliance with laws and even accidents [12]. Thus, Cullinane and Polak studied the causes and patterns of illegal
parking, and the possible relationships between illegal parking and enforcement. The results shown that inadequate
resources that deployed for parking enforcement could undermine the effectiveness of the management. In 2012, a
similar study was conducted by Spiliopoulou and Antoniou to analyse illegal parking behaviours in several cities in
Greece [37]. The investigation recommended the authorities to apply a certain level of enforcement at different regions
to ensure compliance to parking regulations. The solutions for a smart parking management system have brought a
great deal of benefits to the citizens. However, there is a very few literature that aim at assisting the parking officers to
deal with on-street parking violations of vehicles. Recently, Dinh and Kim developed a new IoT-cloud-base system for
enhancing the administration of cat parking violations in the City of Melbourne [14]. When the violations are detected
by on-ground sensors at parking bays, the system records and computes the travelling distance between an officer and
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the violation locations, then recommends the shortest path for the officer to handle the parking violation. The results
show that the system can improve the work of officers in finding parking violations and fines collection.

The TOP can be regarded as a variant of the TSP which is a well-known NP-hard problem. TSP has been solved
by many meta-heuristic algorithms that could be the potential solutions of finding optimal path for an officer in TOP.
A parallel genetic algorithm was used by Miihlenbe and Kindermann to solve TSP in 1989, which can simulate each
individual of population on a separate processor [25]. Two important differences in this parallel genetic algorithm
are that the selection is conducted locally on a neighbourhood and each individual of solutions is improved by hill
climbing. To further improve the efficiency of finding optimal solution on TSP, Braun enhanced the underlying basic
operators, such as making the offspring consists of two sub-strings from the parents via the order crossover and applied
2-opt and or-opt heuristic as the local optimisation [8]. In 2003, Simulated Annealing (SA) was developed by Song et al.

based on Grand Canonical Ensemble for the TSP. The experimental results show that SA is a simple algorithm and
has an excellent performance on finding high-quality solutions [36]. Moreover, an artificial Ant Colony algorithm was
used by Dorigo and Gambardella on solving both symmetric and asymmetric TSP in 1997. The results indicate that the
algorithm can successively create shorter feasible tours by using a pheromone trail as information that accumulated on
the edges of the TSP graph [15].

Most of the route planning problems can be seen as a generalisation of TSP. One well known query called the
Trip Planning Query (TPQ), which aims at finding the best trip from two different locations that passes at least one
point from each given category such as a gas station or a post office. To evaluate the efficiency of TP queries, Soma et
al. proposed a new algorithm to refine the search space as an elliptical region using geometric properties, with the
protection of location privacy of the users [35]. Haryanto et al. proposed an efficient indexing technique called IG-Tree
to accelerate the efficiency on best path planning. The new indexing technique incorporates both keywords about
locations and spatial information of road networks when searching the best tour[20].

3 BACKGROUND

3.1 On-Street Parking Infringements

The in-ground sensor system has been set up to monitor the states of parking bays around Melbourne CBD and the
parking dataset is available online for the public to use and study. In 2016, there are approximately 399,000 parking
violations occurred in the city centre. Each record contains the information of a parking event, such as area name, bay
id, arrive time, departure time and parking rule. Furthermore, the coordinates of each parking bay is published on the
platform along with the sensor records. The entire CBD is divided into different regions by the city council, and each
region is monitored by a parking officer.

Fig. 2 is the heat-map of the yearly parking violations distribution around Melbourne CBD in 2016. Totally, the
parking events of 1,120 parking bays are covered in this data. And the position in deep red colour is the area where the
degree of parking violation is specially intensive. As we can see that, many places with heavy parking infringements
are located in the west and east of the map. The relatively dispersed distribution of parking violations renders us an
opportunity to apply the technique of clustering in building probabilistic models and finding optimal path for officer.

3.2 Travelling Officer Problem

Shao et al. proposed Travelling Officer Problem (TOP) to modelling the procedure that parking officers seeking for
cars in violation within limited time. [32]. Formally speaking, the parking nodes are modelled as a graph G =
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Fig. 2. Distribution of yearly parking violations around Melbourne CBD areas in 2016.

(V, C(u, w)), u, w ∈ V, where V denotes the parking nodes, and C(u, w) denotes the time consumption for a parking
officer walk from node u to w. For each node xi ∈ V, there are two possible state: 0 denotes there is no car in violation
at the node xi , otherwise 1. Let fj,t ∈ {0, 1} denotes the state of node j at time t.

Let T be the total time budget. Solution S = {(x1, t1), (x2 , t2), ..., (x |S | , t |S |)} is a path consists of nodes and timestamps,
where xi ∈ v and denote the ith node in the path, and ti ∈ Time denote arriving time at the node xi . We simplify our
path s to x1,x2, . . . ,x |S | . Let R denote the fines parking officer collected. In this paper, we assume the R is a constant
value.

A formal definition of this problem is as follows:
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argmax
S

∑
xi ∈S

fi,t · R

s.t. ∑ |S |−1
i=1 C(xi , xi+1) ≤ T (1)

tk =
∑k
i=2 C(xi , xi+1), for 1 < k < |S| (2)

t1 = 1 (3)

4 METHODOLOGY

In this section, we will describe the framework used in this paper. As illustrated in Fig. 3, there are mainly three
components of the proposed framework. The first component is the feature extraction. We use a deep learning neural
network called LSTM auto-encoder to extract and predict the spatio-temporal features from historical data. In the
second component, we apply two clustering methods to features of each parking lot and group the leaving probability
model of each parking space. At last, we combine four different optimisation methods and probability model, and test it
on the real-world dataset. We will introduce the details of each component in the following sections.

4.1 LSTM Auto-encoder

In this paper, we are using an LSTM auto-encoder to extract latent features from the violation time distribution data.
The main reasons that we choose the LSTM auto-encoder are listed below:

(1) The dimensionality of the original violation time distribution data is too high, a dimension reducing method is
needed to prevent the potential occurrence of the ‘curse of dimensionality’.

(2) Since the next section in our architecture, is an unsupervised clustering section, a method that can self-evaluate
is needed to help improve the performance of this feature extraction during the training process.

(3) The violation time distribution data in this section is a sequence data, the chosen method should have the ability
to preserve the sequence characteristics of the input data.

An auto-encoder is a feed-forward neural network model which try to learn a compressed representation of its input
[21]. Since the input is also used as the label to evaluate the performance of the model, it is technically an unsupervised
learning method which using the supervised learning manner. This model provides a way to evaluate the performance
of the feature extraction model without any label [6].

The typical design of an auto-encoder is in an Encoder-Decoder structure. Intuitively, the purpose of the first part in
this 2-phase structure is to extract features from the input which contains all that is needed to reproduce the input
in the second phase. After each round of the training process, the error between this reconstructed output and the
original input is calculated to evaluate the performance of this model.

Once the model is trained, the reconstruction aspect of the model can be discarded. The output of the remaining part
is a fixed length vector representation that provides a compressed extraction of the input and can be used as input of
other models.

The reason we choose the LSTM auto-encoder instead of the ordinary one is that the violation time distribution data
in this paper is a sequences data, the compressed representation should also contain the potential sequence information.
The normal auto-encoder structure might not satisfy this criteria the LSTM, which is a type of recurrent neural network,
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2016/4/27 7:30 11:51 6219W 4P RPA M-F 7:30-18:30 11:30 

… … … … … 

 

LSTM

Fig. 3. Framework of proposed model

is specifically designed to fit the sequence input data [22]. It is capable of learning the complex dynamics within the
temporal ordering of input sequences, which in our case, is the potential length of the violation.

As shown in the Fig. 4, by following the architecture used by Srivastava et al. [38], there are two separate LSTM
layers, the first one is the auto-encoder part that maps our input into a vector representation and the second one takes
the output of the encoder to reconstruct the input. Intuitively, the more close the reconstructed target sequence is to
the original input data, the better extraction this vector representation is. This model will be pre-trained for 200 epochs
and once this model achieves a desired level, the decoder part of this model is removed. The left part can produce a
fixed length vector from the original sequence data and it will be used as the input of the following clustering section.

4.2 Clustering

Clustering methods used in the spatio-temporal prediction problem has been proved effective [18, 34]. It is because that
clustering methods can summarise the sparse data and distinguish different groups of temporal data. In parking system,
parking events for some parking lots are sparse. It is difficult to predict the parking event time using only a couple of
parking records in a complete year.
Manuscript submitted to ACM
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Fig. 4. The LSTM Auto-encoder model structure
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Fig. 5. The difference among the distribution of violation time during different time period

As shown in Fig. 5, four sections in this graph represent the average parking violation time distribution on weekday
morning, weekday afternoon, weekend morning, weekend afternoon respectively and the difference among those lines
are be easily spotted. Therefore, a rigid universal probability model might not the fit the real-world need at some certain
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Fig. 6. The DBSCAN clustering result for all parking bays in the morning of the weekend after LSTM Auto-encoder.

periods of time. Besides the significant difference among the distribution of the violation in different time periods,
the difference between different parking bays is also noticeable, due to some specific factors such as location; traffic
density around it; special parking rules and etc. It might be helpful for the officer to determine its next target if they are
partitioned based on their hidden characteristics, rather than use a universal equation for all parking bays [32].

In this paper, we choose two clustering method, K-means and Density-based spatial clustering of applications with
noise (DBSCAN), to cluster the parking bays. K-means is an algorithm that partitions all node in the space based on
their distances to all the cluster cores and updates the core each iteration [19]. It is fairly simple but requires some
insights about the dataset itself to determine how many clusters work best. Silhouette index was used to select the
number of cluster. DBSCAN, on the other hand, uses the concept of reachability [16] and can self-determine the number
of clusters in the result. But it might fail if there are clusters with different density exists in the dataset.

For comparison, we will perform these two methods on the raw input data, i.e. the violation time distribution data
without LSTM auto-encoder and do the same clustering based on the vector representation from auto-encoder as well.
Fig. 6 shows the clustering result, and the parking bays located in the same street are usually put into the same cluster,
since they tend to share the same circumstances. However, the parking bays that in the same cluster is not necessarily
located closely in case of geographical locations. That is possibly due to the hidden sequence features they shares,
which are preserved by the LSTM auto-encoder.
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(a) K-means clustering
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(b) DBSCAN clustering
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(c) K-means clustering with LSTM auto-encoder
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(d) DBCSAN clustering with LSTM auto-encoder

Fig. 7. Leaving probability model of each cluster.

4.3 Dynamic Temporal Probability Model

As mentioned previously in section 3, the distribution of violation time changes even for the same parking bay during
the different time periods, a universal probability model mentioned in [32] might lose its effectiveness at certain
circumstances. In this paper, we used a method to construct the dynamic temporal probability model based on historical
violation data.

After the previous clustering section, we group the nodes that in the are in the same cluster and use their grouped
up historical statistic violation time data to construct a dynamic temporal probability model for this cluster during this
specific time period. So the time-based probabilistic model can be described as Eq. 4:

Pmvj = Pmci (t) = Pmci (tdep − tvio ) (4)

where vi is a target node and ci is the label of the cluster this node belongs to. Andm denotes the different time
period when the violation occurs.

Besides using this method on the clustering output, we also calculate the dynamic temporal probability model on
the whole dataset without any clustering method which can show insights about the effectiveness of the clustering.
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The exponential distribution mentioned in [32] is also used in this experiment as the baseline. As illustrated in Fig.
7, we segment the temporal space into four categories: weekday morning, weekday afternoon, weekend morning
and weekend afternoon. From observation, we found that the distribution of each temporal segment are significantly
different from each other. Therefore, it also proves that it is necessary to clustering the parking space in terms of both
spatial space and temporal space.

4.4 Path-Finding Algorithm

In this section, we revise the two solutions mentioned by Shao et al., which is greedy and ant colony based optimisation
framework, and proposed two new solutions - the simulated annealing algorithm and a genetic algorithm solution. All
four of them are based on the probability estimation model we get from the previous section.

4.4.1 Greedy Algorithm. The greedy heuristic is a fairly simple heuristic which will always choose the local optimum
at every decision-making point [11]. Although there is no guarantee on finding the global optimum, greedy algorithm is
still the most popular and sometime even the best solution for solving a NP-hard problem [10]. As shown in Algorithm
1, in our experiment, the patrolling officer will count the expected reward for all nodes that are currently having a
violation event, and then choose the node with the highest expected reward as its next destination, which suggests the
highest possible fines per minute he expected to get. And then it will perform the action of moving to that location and
select its next target using the same method.

Algorithm 1 The Greedy Algorithm with Probability Estimation Model

Input: a given graph G = (V ,E)
a start node vc

Output: a solution S
1: init solution S = ϕ
2: while Cost(S) < Tmax do
3: calculate Ci = Cost(Vi ,vc ), i ∈ [1,n],n is the number of nodes and Vc is the current node
4: updates pi (ti ) for all nodes, ti = tvio +Ci is the time that has been violated
5: update the possible target set Ω
6: if Ω = ϕ then
7: stay at the current location vc for a certain period of time
8: else
9: calculate Ei =

pi (ti )
ti for all possible targets in Ω

10: select the node with the highest expectation Et
11: end if
12: add the next location to S
13: perform the moving action and update the current state
14: end while

4.4.2 Simulated Annealing Algorithm. The simulated annealing algorithm (SA) is a meta-heuristic algorithm derived
from a statistical mechanics [24] and the main concept of this algorithm is that it will accept a worse solution which
might help to avoid falling into a local optimum. And this acceptance rate will decrease over time in simulating the
cooling process, which will provide unnecessary ‘teleport’ while the solution space is revealed more and more. Since in
TOP, the search space is discrete, SA can be used and the precise algorithm is shown in Algorithm 2:
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Algorithm 2 The Simulated Annealing Algorithm with Probability Estimation Model

Input: a given graph G = (V ,E)
a start node vc
a cooling rate r
a start temperaturem

Output: a solution S
1: init a solution set S = {v1,v2,v3, ...vm } based on Greedy Algorithm,m is the length of solution S
2: calculate the benefits for this solution B(S)
3: whilem > mmin and not reach the max iterationM do
4: randomly select two nodes vi ,vj from S, 1 ≤ i ≤ j ≤ m

5: exchange their order to construct the new solution S
′
= {vi , ...,Vj , ...,vi , ...,vn }

6: trim or extend solution S
′
to make Cost(S ′) close to but still under Tmax

7: calculate the benefits B(S ′) for new solution
8: if B(S) < B(S ′) then
9: S = S

′

10: else
11: accept new solution S

′
with Metropolis Algorithm

12: end if
13: m =m ∗ r
14: end while

The first thing is to obtain a basic solution based on the Greedy algorithm. At each iteration, randomly choose two
nodesvi ,vj in the solution S , and then swap their place. Trim or extend the solution to make it as close to the maximum
time limit as possible while still under it. And using the total benefits of the new solution, if it is higher than the benefits
this officer can get from the old one, it will accept it. It the total benefit of the new solution is lower, then the officer will
use the Metropolis Algorithm to determine whether to accept it or not [17].

4.4.3 Genetic Algorithm. Genetic algorithm (GA) is an algorithm inspired by biological operators, and inherit the term
fitness, mutation and crossover [13]. The algorithm will exploit the current knowledge by choosing the parents who
have a high fitness value, while keep exploring new solutions which might help to avoid local optimum by applying
random mutations and crossovers when forming its next generation.

As shown in Algorithm 3, it will be firstly initialized with a basic set which has a population size of k . For each
generation, the fitness of every individual will be calculated and the ones with higher fitness will more likely to be
chosen as parents. After a bootstrap sampling procedure, where data are sampled randomly with replacement, some
mutation and crossover actions will be performed based on their respective rate and results in the next generation. The
algorithm will return the best solution with the highest benefit in the last generation.

4.4.4 Ant Colony Optimization Algorithm. The name of the ant colony algorithm (ACO) is very self-explanatory, which
is derived from the path-finding method using by ant colonies [15]. A real ant is capable of finding the shortest path to
the food base on the pheromone trace previously left by other ants. The ACO imitate the strategies used by ant colonies,
maintaining exploring other solutions by roulette selecting, and exploit the current knowledge by choosing the path
with the highest pheromone value, which means it is chosen by most other ants.

The complete algorithm is shown is Algorithm 4. At each round there will be a total number of l ants, each ant will
get a solution, with is a set of nodes based on the previous knowledge, i.e. the pheromone matrix. And at the end of this
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Algorithm 3 The Genetic Algorithm with Probability Estimation Model

Input: a given graph G = (V ,E)
a start node vc

Output: a best solution Sb
1: init a solution Φ(S) = {S1, S2, S3, ...Sk } based on Greedy Algorithm, k is the population size
2: calculate the benefits for this solution B(Si ), i ∈ [1,k]
3: Sb = arдmax(B(Si ))
4: while iter < itermax do
5: for i = 1 to k do
6: calculate the fitness fi = exp(B(Si ))
7: bootstrap select k solution to form a new solution set Φ(S ′) with probability pi =

fi
Σki=1fi

for each solution Si in

Φ(S)
8: end for
9: for i = 1 to k do
10: rc is a random number between 0 and 1, pc is the crossover probability.
11: if rc < pc then
12: Randomly select another solution S

′
j ∈ ϕ(S ′)

13: Randomly choose partial solutions from both S
′
i and S

′
j and concatenate them to obtain a new solution S

′′
i

14: S
′
i = S

′′
i

15: else
16: S

′
i = S

′
i

17: end if
18: for index = 1 to the length of S

′
i do

19: rm is a random number between 0 and 1, pm is the mutation probability.
20: if rm < pm then
21: Randomly select two point in S

′
i and swap those two point and obtain a new solution S

′′
i

22: S
′
i = S

′′
i

23: else
24: S

′
i = S

′
i

25: end if
26: end for
27: end for
28: record new best solution Sb
29: Φ(S) = Φ(S ′)
30: iter+ = 1
31: end while

round, this matrix will be updated with the solutions constructed by the ants in this round. And after all ants finished
their actions, we will get the best solution so far, using the final pheromone matrix. More details are explained below:

Q(pathi j ) =
[τ (pathi j )]α [η(pathi j )]β

Σk ∈V [τ (pathik )]α [η(pathik )]β
(5)

η(pathi j ) =
[

1
Cost(vi ,vj )

]α
[Ej ]β (6)
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Algorithm 4 The Ant Colony Optimization Algorithm with Probability Estimation Model

Input: a given graph G = (V ,E)
a start node vc
the ant count l for each iteration

Output: a best solution Sb
1: init the pheromone matrix τi j = 1

Cost (vi ,vj ) ,Cost(vi ,vj ) is the travel time between two nodes vi ,vj
2: while iter < itermax do
3: for i = 1 to l do
4: while Cost(S) < Tmax do
5: selected next node by probability roulette Q()
6: end while
7: calculate the benefit B(Si ) for this ant’s solution Si
8: update the best solution Sb
9: end for
10: update the pheromone matrix τ
11: iter+ = 1
12: end while

where Si j means the potential path from node i to node j, V is the set of all vertices. Ej is the reward per unit time
from node vi to vj . α and β are two constants represent the weight of pheromones and weight of visibility, respectively.
This equation is used to calculate the probability an ant will explore other routes based on the two preset constants α
and β .

τi j (iter ) = (1 − ρ)τi j (t − 1) + Σlk=1τ
k
i j (iter ) (7)

= (1 − ρ)τi j + Σlk=1τ
k
i j (iter − 1) + ω ∗ Pj (8)

where ρ is the pheromone evaporation coefficient andω is the pheromone enhancement coefficient. And this equation
shows how to update the pheromone matrix after each iteration.

5 EXPERIMENT RESULTS

In this section, we discuss the improvement achieved by addressing TOP with the methods proposed. We will first
describe the experimental settings include running environment, evaluation metric and simulation settings. Then we
will show and discuss two sets of experiments. The first set of experiment shows the weekly results yield from different
combination of probability model and optimisation methods. The second experiments shows the average performance
by different combination of probability models and optimisation methods using three different criteria.

5.1 Evaluation Settings

In this section, we will show our experimental environment, simulation conditions and parameters settings.1

5.1.1 Evaluation Environment. Optimisation methods are complied and tested on a Linux server (CPU: Intel(R) Xeon
E5-2690 2.60GHz). Features extraction and clustering are executed on Google Colab. We do grid search to select

1https://github.com/zschaoihen/LSTM-Autoencoder-Parking
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the hyper-parameters of all models. Grid search is a brutal force hyper-parameters searching method which test all
combinations of different hyper-parameters and select the best one.

For LSTM auto-encoder model, we test the Batch_size = {32, 64, 128, 256}, Learning rate = {0.01, 0.03, 0.001, 0.003}.
For K-means clustering, andwe test theK = {2, 3, 4, 5, 6, 7, 8, 9, 10}. And for DBSCAN clustering, we test themin_samples =

{5, 6, 7}, eps = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
Table 1 lists all hyper-parameter of models and methods we used in the experiments. For fair comparison, we select

parameters for LSTM auto-encoder based model and without LSTM auto-encoder based model, respectively. Table 1
only shows the parameter setting of the best performance.

5.1.2 Evaluation Metric. In TOP, the most important criterion is the number of rewards R. Except the rewards obtained
everyday, some other factors such as human resource cost and catch accuracy should also be taken into account
because City Council also need to reduce the workload of parking officers. Therefore, we propose two other criteria:
Rewards/Visited nodes and Rewards/Distance. The former one suggests the accuracy of chosen path, and the latter
one denotes the cost-effective of chosen path. Additionally, we choose the rewards/The number of total car parking
violations (Rewards/Total Vio Num) instead of rewards because the number of violations varies everyday. Although we
propose three evaluation metrics to measure the performance of different approaches, only Rewards/Total Vio Num is
the critical criteria in our problem. Therefore, our problem is a single-objective problem.

For all experiments, we use the real-world data extracted from Melbourne in-ground parking space sensors which is
available through City of Melbourne’s Open Data Platform [1]. We have discussed with Melbourne City Council and
simulate the parking officer patrolling process. We select a complete year data from 2016. We select 10 month data for
training and 1 month data for validation. Regarding the working conditions of the simulations, they are the followings:

• Parking officer speed: 70 meter/minute
• Working hours from 7am to 7 pm per day
• The start position is the central railway station
• In order to simplified the problem, we assume parking officers will only change the direction when they are at
the parking space.

• All distance are calculated by drive distance from Google Map.

5.2 Experimental Results

In the first set of experiment, we random select one week data from November which is only used for validation.
We leverage parking data from other 11 month in this year as the training dataset. Fig. 8 shows the overall daily
performance for different combinations of optimisation solutions and leaving probability model in a week. For each
subfigure, we show the ratio of rewards obtained to total potential rewards using one probability model combined
with four optimisation methods. From the observation of Fig. 8, we can draw a couple of conclusion as follows: 1) All
experiments show that all combination of methods perform best on Sunday.We have investigated from dataset and found
that parking violations are more dense because the parking rule on Sunday is different from other days. Therefore, the
parking officers can collect more fines from cars in violation on Sunday. 2) Ant colony optimisation (ACO) outperforms
other optimisation methods with any probability model, and GA perform worst among all optimisation solutions.
3) Clustering method boost the performance of all results compared with optimisation methods with exponential
probability model and average model. 4) Overall, the combination of LSTM auto-encoder method, clustering method
and optimisation perform better than other combinations.
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Table 1. Parameter configuration

Encoder LSTM auto-encoder
Pre-train epochs 200
Batch size 256
Optimiser type Adam
Learning rate 0.001

Time Period Weekday morning Weekday afternoon Weekend morning Weekend afternoon

Clustering Method K-means
n_clusters 6 6 6 6

Clustering Method LSTM+K-means
n_clusters 6 6 6 6

Clustering Method DBSCAN
eps 1.3 0.4 1.3 1
min_samples 7 5 7 6

Clustering Method LSTM+DBSCAN
eps 0.3 0.3 0.3 0.3
min_samples 7 7 7 7

Optimisation Method SA
r 0.995
m 33.5857
mmin 0.00001
M 5000

Optimisation Method GA
pc 0.7
pm 0.3
k 500
itermax 50

Optimisation Method ACO
l 10
itermax 20
α 1.0
β 10.0
ρ 0.5
ω 10

The second experiment shows the comparable experiments with different combination of four optimisation solutions
and six leaving probability model. We evaluate the experimental results with three different criteria. The results are
shown in Table 2. We conducted the experiments weekly and repeated it for one month. The average performance of the
combination of DBSCAN, LSTM auto-encoder and ACO outperform other combinations in the term of rewards/visited
nodes. The average performance of the combination of K-means, LSTM auto-encoder and ACO outperform other
combination in terms of the second and third criterion. In brief, the LSTM auto-encoder approach yields better results
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(a) The result using the exponential distribution
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(b) The result using the average distribution of the historical data
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(c) The result using K-means clustering
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(d) The result using DBSCAN clustering
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(e) The result using K-means clustering after LSTM auto-encoder

Mon

Tue

Wed

ThuFri

Sat

Sun

0

0.05

0.1

0.15

Greedy
SA
GA
ACO

(f) The result using DBSCAN clustering after LSTM auto-encoder

Fig. 8. The comparison result of different combination of optimisation methods and probability model in a week.

for all experiments relative to other approach without feature extraction. We prove therefore that integrating spatio-
temporal features extraction step using LSTM auto-encoder and clustering methods to summarise leaving probability
model can yield better results than their simple optimisation solution version. It is clear that establishing a proper
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leaving probability model for each car parking lot is significantly important to improve the performance of optimisation
solutions.

Table 2. Pairwise comparison

Algorithm Greedy SA GA ACO

Leaving Probability Model Rewards/Visited Nodes
K-means+LSTM auto-encoder 0.903643 0.875328 0.662555 0.902561
DBSCAN+LSTM auto-encoder 0.908119 0.875273 0.586463 0.914410
K-means 0.909446 0.886700 0.636853 0.909301
DBSCAN 0.893755 0.875273 0.551561 0.906447
Exponential 0.888761 0.869388 0.432583 0.890102
Average 0.903504 0.857803 0.649487 0.899305

Leaving Probability Model Rewards/Distance

K-means+LSTM auto-encoder 0.004789 0.004167 0.001466 0.005721
DBSCAN+LSTM auto-encoder 0.003933 0.003933 0.001226 0.005709
K-means 0.004526 0.003800 0.001325 0.005643
DBSCAN 0.004975 0.003834 0.001348 0.005683
Exponential 0.003572 0.003141 0.001031 0.004101
Average 0.004087 0.003982 0.001101 0.005161

Leaving Probability Model Rewards/Total Vio Num

K-means+LSTM auto-encoder 0.088325 0.077291 0.026300 0.099095
DBSCAN+LSTM auto-encoder 0.094621 0.072967 0.022810 0.098863
K-means 0.085825 0.071614 0.024298 0.097455
DBSCAN 0.091021 0.072218 0.023086 0.098780
Exponential 0.068097 0.062479 0.015147 0.076413
Average 0.077569 0.074297 0.021541 0.091200

To show the robustness of the proposed technique, we apply ANOVA test (n = 10) to different approaches, and show
the result in Table 3. We can conclude that there is a statistically significant difference in the evaluation metric between
the different probability models since the F ratio is greater than critical value (p < 0.05) for all methods. Meanwhile, it
also concludes that there is no statistically significant difference in the performance of the same approaches with the
same probability model for every time (p < 0.05).

6 DISCUSSION AND FUTUREWORK

There are still have some weakness of the work. First, our method does not rely on any specific dataset, and our
framework can be generalised to other spatio-temporal dataset. In the future, we plan to apply our framework to more
spatio-temporal datasets. Second, a deeper data analytic is needed. Although we have shown that our proposed method
performs well, it also needs to explain the reason and the correlation between the data distribution and the performance
of different combinations of methods. Third, our model consists many different inconsistent steps. In the future, we plan
to propose an end-to-end deep learning model with optimisation approaches to search for uncertain spatio-temporal
events. Fourth, in this paper, we assume that paring slots are independent. However, we investigated that the parking
states are influenced by neighbour parking slots. Therefore, the performance is likely to be improved if we take it into
account.
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Table 3. ANOVA results

Algorithm Greedy SA GA ACO

Evaluation Metrics F
Rewards/Visited Nodes 4.32E+28 2.79E+5 3.46E+1 5.86E+4
Rewards/Distance 7.79E+30 7.12E+6 1.87E+1 1.19E+3
Rewards/Total Vio Num 1.34E+31 3.05E+6 7.39E+1 1.17E+3

Evaluation Metrics P-value

Rewards/Visited Nodes 0 7.69E-118 1.13E-15 1.63E-99
Rewards/Distance 0 8.54E-156 1.01E-10 6.62E-54
Rewards/Total Vio Num 0 7.31E-146 6.64E-23 9.85E-54

7 CONCLUSION

This paper propose a new framework to address Travelling Officer Problem. Unlike previous studies, where the focus
was on optimisation methods and a simple exponential probability leaving probability estimation, we first extract spatio-
temporal features from historical data and establish a more accurate probability model using clustering methods. We
also applied more optimisation methods to larger dataset and combined with different leaving probability model. Based
on extensive multiple comparison experiments, the results shows that LSTM auto-encoder and clustering algorithm
could significantly improve the performance of each optimisation solution. Our proposed framework outperforms
previous work.
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