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Abstract

Human mobility patterns can provide valuable information in understanding the impact
of human behavioral regularities in urban systems, usually with a specific focus on traffic
prediction, public health or urban planning. While existing studies on human movement
have placed huge emphasis on spatial location to predict where people go next, the time di-
mension component is usually being treated with oversimplification or even being neglected.
Time dimension is crucial to understanding and detecting human activity changes, which
play a negative role in prediction and thus may affect the predictive accuracy. This study
aims to predict human movement from a spatio-temporal perspective by taking into account
the impact of activity changes. We analyze and define changes of human activity and pro-
pose an algorithm to detect such changes, based on which a Markov chain model is used to
predict human movement. The Microsoft GeoLife dataset is used to test our methodology,
and the data of two selected users is used to evaluate the performance of the prediction. We
compare the predictive accuracy (R?) derived from the data with and without implementing
the activity change detection. The results show that the R? is improved from 0.295 to 0.762
for the user with obvious activity changes, and 0.965 to 0.971 for the users without obvious
activity changes. The method proposed by this study improves the accuracy in analyzing
and predicting human movement and lays a foundation for related urban studies.

Keywords:  Activity change, Human mobility prediction, Spatial-temporal pattern,
Markov chain, Spatio-temporal clustering

1. Introduction

Predicting human movement becomes viable with increasingly available human mobility
data, which can be obtained through various channels (e.g., GPS-enabled smart and wear-
able devices, social networks, and even interviews and surveys). Numerous literatures have
been dedicated to the identification of human mobility patterns and prediction of human
movement from different fields based on this kind of mobility data. Brockmann et al. (2006)
estimated individual displacement by analyzing circulations of bank notes in USA and pro-
posed a scaling law for modeling human mobility patterns. They addressed that the jumping
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size and waiting time in user-generated trajectories follow a scale-free distribution, where
long travel distances and stay time are rare while short ones are common. Such patterns
are claimed to be consistent at any reasonable spatio-temporal scale. Gonzalez et al. (2008)
used phone calls or text messages and the location of the signal towers to reconstruct users’
time-resolved trajectories. Their research found that people are intended to return to a few
most frequently visited locations, which can be characterized by a single spatial probabil-
ity distribution that indicates the dynamics behind the reproducible scaling patterns. By
using similar data presented in Gonzalez et al. (2008), Song et al. (2010a,b) proposed two
generic mechanisms, i.e., occasional exploration and preferential return that govern human
trajectories from a microscopic perspective, and they further claimed that 93% of potential
predictability in human mobility.

As more detailed and fine-grained user mobility data became available, a series of studies
shed a deeper light on understanding and predicting human movement rather than just
modeling general mobility patterns. Ashbrook and Starner (2003) suggested that the most
significant places where a user stays should be those the user spends some of his/her time
(i.e., a user stays somewhere for a certain amount of time to do something). They extracted
user activities with a given time threshold (e.g., 20 minutes) and then clustered the spatial
location of activities into groups, based on which a graph was created and a Markov model
was applied to predict. Similarly, Liao (2006) extracted and clustered user activity locations
and proposed sophisticated Markov models to recognize and infer human activities. Their
method is capable of learning specific motion patterns of transportation routines to detect
user errors. Besides, Asahara et al. (2011) proposed a state-space modeling method to
predict pedestrian mobility using a mixed Markov Chain model (MMM). Gambs et al.
(2012) developed a mobility model called the Mobility Markov Chain (MMC) to predict the
next place to travel. Mathew et al. (2012) proposed a predictive model based on Hidden
Markov model (HMM), which uses a timestamp (i.e., 7 a.m. to 7 p.m. of weekday, 7 p.m. to
7 a.m. of weekday, and weekend) to associate the places in sequences. Coincidentally, Zheng
et al. (2011, 2009) defined the concept of stay point to extract user activities based on two
randomly and empirically determined time and distance thresholds (e.g., 20 minutes and 200
meters), and created a hierarchical structure to infer the top interested user locations and
travel sequences. Despite the above efforts on human movement prediction, time dimension
is usually being treated with oversimplification or even being neglected. To our knowledge,
the study by Mathew et al. (2012) that does consider time dimension in prediction roughly
is the only one that determines three time slots in a manual way, but calls for more proper
ways to determine time dimension in its recommendations for future work.

In order to better predict human mobility in a more precise manner, time dimension
should be considered to detect human activity changes because such historical human mo-
bility changes (home change, school transfer or job change) have negative impacts on move-
ment prediction. For example, Song et al. (2006) introduced an aging mechanism to reduce
the negative impact of changed locations toward improving the prediction performance. A
multiplicative factor was proposed to intervene in the process of sample training, and to
reduce the contribution of old samples where changed locations are involved. Etter et al.
(2013) proposed an algorithm that is able to detect home changes. In these two studies, the
datasets with semantic information were used to detect home changes. The authors assumed
that each person has a single home, and once another home is subsequently detected during
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the model training, the detected home is flagged as the new home. Although these stud-
ies investigated the historical changed locations (actually they attempted to detect home
changes only), they can only deal with datasets with semantic information, which is not ap-
plicable for most user-generated trajectory datasets such as the Microsoft GeoLife dataset.
Inspired by the related studies, we develop a methodology that can detect human activity
changes from a non-semantics human trajectory dataset (Microsoft GeoLife dataset), based
on which we apply a Markov chain model to predict human movement.

The paper is organized as follows. Section 2 introduces the dataset used for this study.
A methodology including activity extraction, activity clustering, activity change detection,
and human movement predicting is developed in Section 3, followed by validation of the
methodology. Conclusions and some future works are presented at the end of the paper.

2. Dataset

The dataset, obtained from the Microsoft GeoLife project, contains 17,621 GPS trajec-
tories that were collected by 182 users over 6 years (from April 2007 to August 2012) using
different wearable GPS receivers and cell phones (source: http://research.microsoft.com/en-
us/projects/geolife/). These trajectories contain 25,298 541 GPS points, covering a total
distance of about 1.2 million kilometers and a total duration of more than 48,000 hours
(c.f., Zheng et al. (2009) for more details). These trajectories recorded a broad range of
users’ outdoor movements, not only daily routines such as staying at home and working,
but also leisure activities such as shopping, sightseeing, dining, hiking and cycling. Figure 1
illustrates the trajectories of all users as well as a specific user #153 in Beijing, China (lines
in color). The color shows the density of the GPS points determined based on a 200 m by
200 m window.

(a) All users (b) User #153

Figure 1: Trajectories of all users (a) and a specific user #153 (b) in Beijing, China



3. Methodology

We propose a four-step methodology (Figure 2) which consists of 1) extracting human
activities from raw GPS trajectories, 2) clustering activities in terms of spatio-temporal di-
mension using density-based spatial clustering of applications with noise (DBSCAN) method
(Ester et al., 1996), 3) detecting two types of human activity changes based on the identified
activity clusters, and 4) predicting human movement based on Markov chain model with

consideration of activity changes.
Activity cluster
location changed

Raw GPS Human activit . . ivi Human movement
. . . v —»] Activity clustering = Human actlw.ty -
trajectories extraction change detection prediction

Obsolete activity
cluster

Figure 2: The methodology flowchart

3.1. Extraction of human activity

A human activity can be defined as a meaningful location of a user where he/she spends
some time (Ashbrook and Starner, 2003). We use the method proposed by Zheng et al. (2011,
2009) to extract human activities from raw GPS trajectories based on a time threshold of
20 minutes and a distance threshold of 200 meters. This means that an activity is defined
if a user stays for at least 20 minutes in a geographic region with a diameter of 200 meters.

Definition 1. A single activity is an activity (point) extracted from raw GPS trajectories.

In total, 38,520 single activities are extracted from 182 users over 6 years (see Table
1). Some users do not have any activities, while 7 users have more than 1,000 activities.
Single activities of all users are plotted in Figure 3. According to Figure 3, it is obvious
that most of single activities are located in the north-west part of Beijing, China, where
a few universities and research institutes (e.g., Peking University, Microsoft Research Asia,
etc.) are situated. Therefore, we can infer that most of users come from these academic
institutions.

3.2. Activity clustering

Normally, GPS receivers are not able to record the identical coordinates at the same
location due to their positioning error, even though users precisely stay at the same point
of a place. More importantly, a series of activities may occur at different times, i.e., their
arrival times are different (e.g., the time of arriving home can be either in the noon or in the
evening). Therefore, it is necessary to perform spatio-temporal clustering to classify single
activities considering temporal aspect and further filter single activities in terms of spatial
dimension, which is the key to detect human activity changes and build a predictive model
in our work later on.



Table 1: The number of single activities of each user extracted from the Microsoft GeoLife dataset

UID AA. |UID A A |UID A A |UID A A |UID A A |UID A A |UIDD A A |UD A A
153 2951 | 140 424 20 176 | 134 100 95 48 154 25 76 12 27 4
128 2026 | 52 371 15 170 | 155 98 94 48 114 24 54 12 148 3
4 1487 | 92 349 12 164 40 93 66 48 93 24 156 11 72 3
3 1233 | 104 341 | 179 151 74 92 o7 48 79 24 127 11 149 2
17 1122 | 34 323 13 151 | 147 85 23 48 176 21 7 11 137 2
163 1113 | 37 319 9 151 83 78 141 47 106 21 80 10 116 2
68 1050 | 112 296 71 148 | 131 75 55 44 164 19 143 9 31 2
30 993 36 292 43 141 33 73 102 42 45 19 100 9 21 2
167 783 42 290 73 138 29 66 169 41 99 19 124 8 177 1
85 751 24 251 | 174 135 | 122 65 56 40 59 18 121 8 172 1
144 680 5 249 | 125 132 81 65 181 38 161 16 63 8 133 1
41 663 67 232 10 129 | 130 64 58 38 98 16 45 8 60 1
22 610 96 225 91 128 89 64 46 37 61 16 117 7 48 0
25 607 65 214 28 126 6 63 138 36 129 15 87 7 49 0
39 591 | 115 210 78 124 | 159 62 157 34 158 14 70 7 66 0
0 562 82 195 16 124 | 103 59 113 33 146 14 53 7 118 0
62 048 44 186 | 168 123 | 165 o7 105 31 108 14 175 6 120 0
14 ol1 11 186 18 117 32 o7 135 28 47 14 166 6 123 0
35 503 1 185 19 112 64 56 111 28 152 13 162 6 132 0
126 490 7 184 o1 109 97 53 139 27 90 13 109 6 160 0
38 451 | 142 182 26 107 88 53 136 26 173 12 170 4 180 0
84 434 | 119 179 8 106 | 110 50 75 26 171 12 151 4
2 433 50 177 20 176 | 150 48 69 26 86 12 107 4

Note: UID represents User ID and A. A. represents Activity Amount.

Definition 2. An activity cluster is a group of single activities happened at the same
location in a specific time duration.

We use specific time and space thresholds to define search radius and set 1 as the mini-
mum number of points required to form a dense region. The DBSCAN is applied to perform
the required clustering analysis. If the “distance” in terms of time and space amongst points
is within the specified thresholds, these points are grouped as a single cluster (Figure 4).
The accuracy of GPS receivers is used as the space threshold since the deviation between two
coordinates of the same location is mainly caused by the error of GPS receivers. A threshold
of 15 meters, therefore, is set as the space threshold in this paper, since it is the average
error of the GPS receivers used in the GeoLife project. Since there is no universal number
that could be used to describe each user’s time characteristics, we develop a data-driven
method to determine this threshold for different users.

The distribution of time interval between a single activity and the subsequent single ac-
tivity varies with different individuals but overall follows a Heavy-tailed distribution (Figure
5). According to Jiang et al. (2013), if a series of variables follow a Heavy-tailed distribu-
tion, the mean can separate all the variables into a high percentage of small ones and a
low percentage of large ones. Thus, the mean can represent the characteristics of the ma-
jor population. Based on this theory, the mean of time intervals carries some underlying
meanings: similar and continuous single activities happen within a certain period of time.
In other words, single activities happened around a time within the mean of time intervals
have similar characteristics in terms of time aspect. As a result, the mean of time intervals
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Figure 3: The geographic distribution of all users’ single activities in Beijing, China

is used as the time threshold to cluster the corresponding user’s single activities. The two
thresholds are thus identified: 15 meters (as mentioned above) as the space threshold and
the mean of time intervals as the time threshold. Every single user may have different time
threshold, which entirely depends on the user’s temporal pattern of the extracted single
activities.

If a single activity of one activity cluster and a single activity of another activity cluster
are within the space threshold (15 meters), these activity clusters are considered as located
in the same place, which is represented by the centroid of the single activities from these
different activity clusters.

3.3. Human activity change detection

Human activity changes play a negative role in predicting human movement because
a new location of an activity cluster recently emerged in the training sample has lower
transition probability than the previous location within a short period. In other words,
the previous location of that specific activity cluster still has a higher transition probability
than that of the new location if the change occurred close to the end of the sample data
for training predictive model. For instance, a person recently moves to a new apartment A;
from the previous apartment A,. If the next possible place where this person is heading to
is her/his home, the most possible location of her/his home is still the location of A, since
it has a higher transition probability than the location of the apartment A;. Actually, the
correct predicted location of the home should be the location of the apartment A; regardless
how high the transition probability of the apartment A, is. Hence, we aim to model such
activity change by providing a definition of activity change and a change detection method.
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Figure 5: Distribution of time intervals between single activities

Definition 3. A human activity change occurs when i) activity cluster location changed;
or i) activity cluster obsoleted. Some human activity changes, such as job change (the
location of office changed) and school transfer (the location of campus changed), are related
to the change of activity cluster location. Other human activity changes, such as graduation
(the activity of studying ended) and retirement (the activity of working terminated), can be
seen as actwity cluster obsoleted.

In order to detect how activity cluster location changes, the two methods proposed by
Song et al. (2006) and Etter et al. (2013) both can detect a person’s home change through
analyzing if the location of a home coming after the previous one in the training samples is
the same as the location of the previous home. If the answer is no, the home of this person
is changed. This kind of method is based on an assumption that every person has only one
single home. When two homes are found in different locations, a home activity change is
identified. Based on that, we can make an assumption that one person can only have one
type of activity during specific time duration. For example, one person generally only has
one single working place, school, or gym in a given time duration. Furthermore, since there
is no additional information in GPS dataset indicating the type of place visited (e.g., home,
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office or school), it is impossible to directly obtain the name of the activities extracted from
GPS trajectories. As a result, we calculate similarity between activity clusters and examine
if similar activity clusters occurred sequentially in terms of date. If they are similar and
occur sequentially, they are considered as changed activity clusters. The advantage of the
proposed method is that we can detect the changes of certain activities that are difficult
to infer their semantics. Two parameters, arrival time of activity cluster (A;) and stay
duration of activity cluster (S5;), are used to define the similarity of activity clusters (Figure
6a). If any two activity clusters occur at similar time and their stay durations do not
have significant difference, such activity clusters can be considered as similar, representing a
certain type of activity. To quantitatively define the similarity among activity clusters based
on the work of Chen et al. (2011), the overlapping area between two rectangles enclosed by
arrival time and stay duration of any two activity clusters is used to measure the similarity.
More specifically, the equation proposed by Tversky (1977) based on a similarity theory in
psychology is utilized to quantitatively define the similarity between two activity clusters,
which can be expressed by:

c

b= a+b—c (1)
where a and b are the area of the two rectangles enclosed by arrival time and stay duration,
respectively (Figure 6b); and c is the overlapping area of a and b. If two activity clusters
have same arrival time and stay duration (i.e., a = b), the similar measure D equals to 1.
In other words, the higher level the similarity between two activity clusters, the closer the
value of D is to 1.

In this study, two activity clusters can be considered as similar activity clusters if D > d,

where d is a threshold and can be computed by:
c
S SR TR 2
where a; refers to the area of the rectangle enclosed by arrival time and stay duration of
a single activity in an activity cluster; n refers to the number of single activities in that
activity cluster; ¢ denotes the overlapping area of all the activities in that activity cluster.
In this case, d represents the similarity of all activities in the clusters, thus it can be used
to determine if another activity cluster have the same similarity.

On the other hand, to detect obsolete activity clusters, we compare the average time
interval of single activities happening in an activity cluster with the time difference between
the last time a single activity happened in this activity cluster and the end time of training
sample (see Figure 6¢). The average time interval of single activities in an activity cluster
can be defined as follow:

ZTa

n—1

int —

(3)

where T, refers to the time interval between two neighboring single activities in terms of
happening time in an activity cluster; n denotes the number of single activities in an activity
cluster. The time difference can be defined as follow:
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Figure 6: Similar activity clusters (Activity cluster a is similar with Activity cluster b). The arrival time of
these activities is T'imel, and the duration the person stays on activity a and activity b is Time2 — Timel
(a); similarity measure (b); and obsolete activity cluster (c)

Dt = Tend - ‘/Z(L) (4)

where T,,q refers to the end time of the training sample, V;(L) is the time of the single
activity in the activity cluster happened last time. If D, > T;,,, then this type of activities
is considered as obsolete activity cluster, which means this activity cluster will not be taken
into account for prediction. For instance, a dataset from January to June is used to train
the predictive model. If we find that single activities in one activity cluster occurred every
day, i.e., the average time interval is about one day, but did not continue within the last
month before the end of June, this activity cluster should be considered as obsolete and
should not be used in prediction.

Based on the above discussion, we propose an algorithm to detect the activity change.
The pseudo-code of the process is shown in Algorithm 1.

3.4. Prediction of human movement

Markov chain is a well-known model for analyzing sequential data, which can be defined
as a sequence of random variables X, Xy, X3, ..., X, with the Markov property and, given
the present state, the future and past states are independent (Markov, 1971). Formally,
a Markov chain can be described as: P.(X, +1 = z|X; = 21, Xo = 29,..., X,, = x,) =
P.(Xpi1 = Tpy1| X, = x,), where the possible values of X; form a countable set S is called
the state space of the chain. Markov chain is often described by a directed graph, of which
the edges are labeled by the probability of going from one state to another state. Figure 7
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Algorithm 1: Activity change detection algorithm

input : all activity clusters of a single user

output: updated activity clusters of that single user
1 begin
2 | detect similar activity cluster(s) using Egs.(1)&(2) for each activity cluster;
3 if there is no similar activity cluster found for some activity clusters then
4 calculate T},,; using Eq.(3) and D; using Eq.(4) for these activity clusters;
5 compare D; and Tj,; for these activity clusters;
6
7
8

remove those activity clusters whose D, > T;,;;

else

use the location of the newest activity cluster as the location of all its similar
activity clusters;

9 update the activity clusters;
10 end
11 end

illustrates an example of a classic Markov chain with three states describing by a directed
graph. From X; to X5, X5 to X3, X3 to Xy, the probability is py, ps, and ps3, respectively.

Figure 7: An example of Markov chain

We aim to predict the human movement at a specific time and a specific place, which
depends purely on the current location and time without considering the preceding states.
It inherits the typical Markov property, we therefore develop a human movement prediction
model based on the concept of Markov chain.

First, all activity clusters are preprocessed by activity change detection algorithm (Al-
gorithm 1), which enables changed activity clusters to be preprocessed. These preprocessed
activity clusters are then used to train Markov chains. The activity clusters are utilized to
set up the states of Markov chains. The transition probability between two states denotes
the probability of a specific user traveled from one place (the centroid of an activity) to
another at a specific time. This transition probability from state I to state J at time ¢ is
computed by:

> Tji

r > Th
10

P'(J|I) = (5)



where T}; denotes a transition from state I to state J; m refers to the state connected to
state 7. Each activity cluster is associated with a specific Markov chain. In this case, the
Markov chains related to the same place may be different if more than one cluster exists
at the same location. For example, in Figure 8, at location C, three activity clusters at
different time, Time a, b and ¢, are found. Thus, there exist three Markov chains associated
to location C'. At Time a, the transition probability from location C to B and D are 90%
and 10%, respectively, and 10% and 90%, respectively at Time c. At Time b, there is a
probability of 80% traveling to location A, but no transitions to location A exist at the
other two times.

Time .

Longitude

Legend

© Single activity

Latitude @ Activity cluster

Figure 8: Markov chains at different times

As a result, the location most likely to be visited from one location varies at different
times. Given a activity cluster set S = (s1, 89, 83,...,5,), the location most likely to be
visited from location M can be defined as:

argmaa(p (J|M))
L(t) = argmaz (p*(J|M)) (6)

argmaz(p* (J|M))
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Where J € S, t,, denotes a specific time when some transitions are generated from location
M.

Notice that the time t,, may actually be a very short time period since the time of each
single activity occurred in one activity cluster may have difference in minutes. For instance,
the time arrived home may be 10 to 15 minutes before or after 8:00 p.m. In this study, we
treat this very short time period as a time point to simplify the description of the predictive
model.

4. Results and validation

In this section, we first visually explore the extracted single activities on a 3D Geograph-
ical Information System (GIS) platform. We analyze the temporal patterns between two
types of time attributes: arrival time and occurring duration of single activities. Based on
that, we select two top users (#153 and #128) for experimental testing to evaluate the
performance of the predictive model. The selection of these two users is mainly because
they have two different typical mobility patterns. User #153 has obvious activity change
pattern, while user #128 has three identical activities without changes. Furthermore, the
spatio-temporal distribution of their single activities is more diverse than other users.

4.1. Human activity analysis

To capture the spatio-temporal regularities of human activities towards an understanding
of human mobility pattern, we visualize all users’ single activities and top users whose single
activities are over a thousand in space and time dimensions (Figure 9). The height of the
points in Figure 9 refers to time of day when the activity happened in minutes in each year,
with the red representing the most recent year 2012, and the blue representing the earliest
year 2007. Therefore, the total height in Figure 9 is minutes in 24 hours multiplied by
the number of years. The horizontal distribution of the points is based on longitude and
latitude coordinates, which are plotted on top of the major roads in the Beijing (shown as
grey lines). To better explore the movement patterns and activity changes, we first define a
location as a frequently and continuously revisited place as presented in a shape of vertical
line in Figure 9. It is easy to note the obvious activity locations such as A and B for all
users, A and B for user #153, and A, B and C for user #128. It should be noted that such
locations of single activities found for both all users and individual users are aligned with
the concept of spatio-temporal clusters.

For the single activities of all users, the geographic region of the single activities of all
users (Figure 9a) in 2008 and 2009 is the most widespread and has higher density than
any other years. We believe that such a phenomenon is mainly due to the 2008 Summer
Olympics Games held in Beijing, China; the Olympic venues distributed around Beijing
were visited more frequently in 2008 (the Olympics year) and 2009 (more tourism for the
Olympics venues). Single activities for all users at location A and B just occurred for a short
period during the year 2009. Such single activities are from different users, indicating some
users temporally appeared in such locations (e.g., specific Olympics venues), and then they
did not revisit again.

Those single activities associated with individual users (e.g., A and B for user #153
in Figure 9b) could carry some semantic information (such as home and working place).
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(a) All users (b) #153 (c) #128 (d) #4

(e) #3 (f) #17 (g) #163 (h) #68

Figure 9: Spatio-temporal distribution of single activities of all users and top users with more then 1,000
single activities. (a) All users. (b) User #153. (c) User #128. (d) User #4 (e) User #3. (f) User #17 (g)
User #163. (h) User #68

Nevertheless, these fixed locations could change over time. As shown in Figure 9b, the
activity pattern of user #153 demonstrates a pattern of activity change according to the
Definition 3, i.e., the activities changed from location A to location B in 2009. In contrast,
the activity pattern of user #128 (Figure 9¢) demonstrates a type of stable pattern, where
he/she mostly stayed at location A, B and C. In addition, there are some similarities of
human activity pattern if we compare the single activity distribution of different users. For
example, user #4 has a similar activity pattern with user #3, as shown in Figure 9d and 9e,
since their single activity distributions in terms of temporal dimension and spatial dimension
do not show significant visual differences.

We also plot the temporal patterns based on stay duration versus arrival time for the
single activities of all users and top users who have over a thousand single activities in
Figure 10. The vertical axis represents the stay duration of single activities in hours and the
horizontal axis refers to the arrival time of single activities in Beijing time. Overall, all users
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Figure 10: The temporal patterns of stay duration and arrival time: (a) All users; (b) User #153; (c) User
#128; (d) User #4; (e) User #3; (f) User #17; (g) User #163; (h) User #68

have two significant stay durations of approximate 9 to 14 hours in total. One is related to
the arrival time from around 8:00 a.m. to 9:30 a.m., marked by the black circle in Figure
10a. The other happened at the arrival time from around 6:00 p.m. to around 12:00 a.m.,
marked by the red circle in Figure 10a. A significant number of users have single activities
that last for 9 to 14 hours in terms of stay duration, and arrival time spreads in between
6:00 p.m. to around 10:00 p.m. As a specific example, user #153 has another two different
arrival times lasted for approximate 10 hours and 14 hours, marked by the red circles in
Figure 10b.

Through analyzing the temporal patterns of single activities, some locations, such as
home, office and gym, could be identified according to the pre-existing human behavioral
regularities. For instance, in general, home and office/school are the two distinct locations
where people spend longer hours (in average 8 - 10 hours) than that of the other activities,
while the start time of these two types of places is very different. Normally, the time of
arriving home is in the evening or at night since people usually go home directly after
work /school or leisure activities, such as dinning or fitness training in gyms. In contrast,
the arrival time of office/school is expected to occur in the morning. Thus, the distribution
of single activities in Figure 10 reflects the reality. There are two time windows for arrivals,
morning and evening to night, with stay duration of approximately 9 - 14 hours.

Since most activities are located in the north-west part of Beijing where several uni-
versities (e.g., Peking University, Tsinghua University, etc.) and research institutes (e.g.,
Microsoft Research Asia, Chinese Academy of Science, etc.) are located, we believe that
users in the GeolLife project worked in these universities and research institutes. For uni-
versity students, faculty and staff, they travel in between different classrooms, dine in the
cafeterias, and have recreations, such as soccer and basketball, at outdoor playground. Con-
sequently, Figure 10 reflects high density of activities during time durations of 1 hour (for
meals) and 2 hours (for class or recreations after classes). To summarize, we found some
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common characteristics by visually analyzing these activities such as the location of certain
changed activities. The semantics of some places could be inferred through analyzing the
temporal patterns of activities.

4.2. Activity clusters exploration

All users’ single activities are clustered, from which we select top 5 sample clusters of two
typical users (User #153 and User #128) based on the heavy-tail distribution of the number
of single activities in each activity clusters for further analysis. All the single activities of
these selected clusters are projected from WGS84 to UTM Zone 50N for visualizing them
in 3D. Figure 11 shows the distribution of the selected activity clusters of User #153 and
the activity distribution in each of these cluster. In the figure, the x-axis refers to the east
direction in meter, whereas the y-axis refers to the north direction in meter. The specific
(x, y) coordinates represent where a sing activity occurred and the z-axis refers to the time
of day when the single activity happened.

There are five activity clusters in Figure 11a. Each of them is zoomed in and showed
in Figure 11b, 11c, 11d, 11e and 11f, where we can see how the clustered single activities
look like in time and space. Three of these activity clusters (#1, 2 and 3) happened at the
same location but in three different periods. We may infer that this user visited the same
location three times per day. For example, some people leave home in the morning, return
home at noon for lunch, and leave home again after lunch on weekdays; or she/he changed
the activity (the time of visiting the place is changed). For instance, some bus drivers work
in the night, followed by a day-shift later on. In this case, the location of bus pick-up is the
same but the time is different. On the other hand, activity cluster #4 is likely similar to
activity cluster #1 according to the method of detecting similar activity clusters proposed
in this paper; thus, an activity change may have happened. Moreover, activity cluster #5
has high single activity density (Figure 11f), which means that user visited this place during
certain time in a high probability.

With regard to user #128, as shown in Figure 12a, no activity clusters seems to be at
the same location but in different times. However, activity clusters #1 and #4 are found to
be similar. These two activity clusters do not have high single activity density (Figure 12b
and e), which means this type of activity did not happen very often. On the other hand, the
activity clusters with the highest single activity density, i.e., activity clusters #3 and #35,
do not have similar activity clusters; thus, we could infer that there is not any significant
activity change happened. The whole mobility pattern should be more stable than that of
User #153.

Coincidently, the activity cluster distributions of these two users match the single activity
distributions shown in Figure 9b, which has obvious activity change and in Figure 9¢ which
always has the three identical activities in general.

4.8. Predictive results and evaluation

The activity clusters during January 2010 to June 2011, with and without implementing
activity change detection (Algorithm 1), are used to train the predictive model. After
implementing the predictive model, the activity clusters during July 2011 to September
2011 are used to evaluate the results. We calculate the transition probabilities between the
activity clusters from the dataset during July 2011 to September 2011, which are treated as

15



2004, 155

160 200

(d) Cluster #3 (e) Cluster #4 (f) Cluster #5

Figure 11: Activity clusters of user #153 (graphs scaled based on the clusters): (a) five cluster samples. (b)
- (e) single activities in the cluster #1 - 5 shown in (a)

the evaluation benchmark. The results of the predictive model without considering activity
change detection are used to compare with the results that consider activity change detection.

We select two activity clusters of A and B and list their predictive results and the real
transition probabilities in Table 2 for user #153. Comparing the predictive results between
no activity detection and Algorithm 1, the transition probabilities from activity cluster A to
B, D and F are set to 0 with conducting Algorithm 1, which well matches the real transition
probability during July 2011 to September 2011. In other words, the activity cluster B, D
and F are changed activity clusters. Although these activity clusters happened during the
early period, even some activity clusters are visited in a very high frequency from activity
cluster A (e.g., the highest transition probability from A to B), the changed activity cluster
are successfully removed by the Algorithm 1 that reduced the negative impact on predictive
results. However, a new activity cluster (H) is involved in the visited activity clusters after
July 2011, which cannot be detected. In fact, this type of case happens only if the new
activity cluster comes later after model training. On the other hand, a similar activity
cluster, F (new), of activity cluster F is successfully detected. Therefore, the transition
probability of F (new) is 0.19 in Algorithm 1 instead of 0.12. Based on the discussion of
clustering results, we believe that activity clusters F and F (new) correspond to activity
clusters #1 and #4 in Figure 11 (a).

With respect to user #128, since the activity pattern of this user is stable overall, the
results match the benchmark data very well even without performing change detection (Table
3). However, there still exist similar activity clusters with low single activity density (Figure
12¢ and Figure 12f). In other words, for those users whose activities are not changed in
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Figure 12: Activity clusters of user #128: (a) five cluster samples. (b) - (e) single activities in the cluster
#1 - 5 shown in (a)

general (refer to Figure 9¢), they possibly still have activity change but only during a short
period. Furthermore, the transition from B to D in Table 3 only happened during July 2011
to September 2011, which is not part of the training dataset. Therefore, the transition is
not detected by the predictive model based on the dataset from January 2010 to June 2011,
which leads the predictive model to predict this transition in a wrong way.

The R? values of these two predictive results based on the transition probability from
July 2011 to September 2011 are computed for both users #153 and #128. For the predictive
results without conducting activity change detection, the R? is 0.295 for user #153, while
the R? is 0.965 for user #128. For the predictive results with consideration of the Algorithm
1, the R? is 0.762 for user #153, while the R? is 0.971 for user #128. Apparently, the R? has
an obvious improvement from 0.295 to 0.762, when Algorithm 1 is used to handle activity
changes of human mobility. For users that have stable activity pattern, the predictions with
and without implementing change detection both have a very good performance.

5. Conclusion and future work

In this paper, we explore the spatio-temporal characteristics of human activities extracted
from raw GPS trajectories using the Microsoft GeoLife dataset. Since the majority of
human mobility predictions do not consider activity changes, we attempt to fill this gap
by proposing a method to detect activity changes. A predictive model taking into account
activity changes and built upon the concept of Markov chains is developed. This predictive
model considers the spatio-temporal impacts on Markov chain states, which leads to a more
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Table 2: Transition probability between activity clusters of user #153

Transitions Jan 2010 to Jun 2011 Jan 2010 to Jun 2011 Jul 2011 to Sept 2011
(no activity change detection) (Algorithm 1)
A—B 0.377 0.000 0.000
A—C 0.273 0.704 0.492
A—D 0.190 0.000 0.000
A—E 0.080 0.196 0.253
A—F 0.040 0.000 0.000
A—-G 0.040 0.100 0.000
A—H 0.000 0.000 0.255
B— A 0.692 0.692 0.604
B—F 0.118 0.000 0.000
B — F(new) 0.070 0.188 0.198
B—G 0.120 0.120 0.000
B—-H 0.000 0.000 0.198

Table 3: Transition probability between activity clusters of user #128

Transitions Jan 2010 to Jun 2011 Jan 2010 to Jun 2011 Jul 2011 to Sept 2011
(no activity change detection) (Algorithm 1)
A—B 0.843 0.843 0.900
A—C 0.157 0.157 0.100
B—A 0.155 0.155 0.100
B—C 0.745 0.745 0.702
B—D 0.000 0.000 0.099
B—E 0.050 0.000 0.000
B — E(new) 0.050 0.100 0.099

precise prediction. We implement the proposed predictive model for two users selected
through visually analyzing the GeoLife dataset to evaluate its performance. The results
show that the R? value is improved from 0.295 to 0.762 for the user with obvious activity
changes, and 0.965 to 0.971 for the users without obvious activity changes. Thus, our
proposed method, in terms of modeling activity changes, clustering activities and predicting
human movement, presents an effort towards effective ways of improving the accuracy in
analyzing and predicting human movements, and should provide new angles of studying the
similar problems related to urban studies, e.g., urban planning, transportation modeling,
and emergency response.

The study results are limited by the spatial and temporal coverage of the dataset used.
With better quality data, the same method can be applied to predict human movement by
different days of the week, the model results can be evaluated using the data from the same
period of the year to avoid influence of different seasons, and some of semantic information
may be inferred. The research work will further utilize the real-time human trajectories
extracted from social media and investigate the event stream from sensor web platforms.
On one hand, these real-time human trajectories can be used to keep on updating human
mobility patterns, which is expected to provide a way to tackle the limitations caused by the
high frequent activity changes of some people and new activities come right after the end of
training samples. On the other hand, event streams are considered as a real-time input of
the predictive model to sense what is happening around any specific users, and hopefully to
predict certain related random events regionally and globally.
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