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A New Pan-Sharpening Method With
Deep Neural Networks
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Abstract—A deep neural network (DNN)-based new pan-
sharpening method for the remote sensing image fusion problem
is proposed in this letter. Research on representation learning
suggests that the DNN can effectively model complex relationships
between variables via the composition of several levels of nonlin-
earity. Inspired by this observation, a modified sparse denoising
autoencoder (MSDA) algorithm is proposed to train the relation-
ship between high-resolution (HR) and low-resolution (LR) image
patches, which can be represented by the DNN. The HR/LR image
patches only sample from the HR/LR panchromatic (PAN) images
at hand, respectively, without requiring other training images.
By connecting a series of MSDAs, we obtain a stacked MSDA
(S-MSDA), which can effectively pretrain the DNN. Moreover, in
order to better train the DNN, the entire DNN is again trained by
a back-propagation algorithm after pretraining. Finally, assuming
that the relationship between HR/LR multispectral (MS) image
patches is the same as that between HR/LR PAN image patches,
the HR MS image will be reconstructed from the observed LR MS
image using the trained DNN. Comparative experimental results
with several quality assessment indexes show that the proposed
method outperforms other pan-sharpening methods in terms of
visual perception and numerical measures.

Index Terms—Deep neural networks (DNNs), multispectral
(MS) image, panchromatic (PAN) image, pan-sharpening.

I. INTRODUCTION

ARTH observation satellites such as IKONOS and

QuickBird provide two different types of images: a
panchromatic (PAN) image with high spatial and low spectral
resolutions and a multispectral (MS) image with high spectral
and low spatial resolutions. Due to technological limitations
of current satellite sensor, it is very difficult to acquire a
high spatial resolution MS image directly. As a postprocessing
method, pan sharpening can be employed to produce a high
spatial resolution MS image by fusing the information of the
PAN and MS images. The fusing process has become a key
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preprocessing step in many remote sensing applications such as
feature detection and land-cover classification [1].

During the last decades, various pan-sharpening methods
have been proposed to address the problem of remote sensing
image fusion. Initial methods are the case of the component-
substitution methods, which mainly include the intensity—
hue—saturation (IHS) [2], [3], the principal component analysis
(PCA) [4], and the Gram—-Schmidt (GS) transform [5]-based
methods. These methods can achieve high spatial resolution
but severe spectral distortion. On the contrary, multi-resolution-
analysis-based wavelet transform methods [6] can preserve
good spectral information. The most famous one among them
is the a trous wavelet transform (ATWT) method [7], which
is simple but robust. However, these methods may suffer from
significant spatial distortion.

Compressive sensing (CS)-based pan-sharpening methods
have gained general acceptance in recent years. Li and Yang [§]
first proposed a CS-based pan-sharpening method, which has
achieved a great success. The shortcoming of the method is
that it needs plenty of high-resolution (HR) MS training im-
ages, which may be nonavailable. To deal with this problem,
Jiang et al. [9] constructed a joint dictionary from upsam-
pled low-resolution (LR) MS and HR PAN training images.
However, they still need to collect numerous LR MS and HR
PAN image pairs as the training set. Li et al. [10] proposed a
pan-sharpening method over learned dictionary without a train-
ing set. However, the three dictionaries for PAN and HR/LR
MS images must be constructed, which will lead to expen-
sive computation. Zhu and Bamler [11] proposed a new pan-
sharpening method named SparseFI, which explores the sparse
representation of MS image patches in a dictionary trained only
from the PAN image without training images. These methods
have difficulty in choosing dictionary atoms when the structural
information is weak or lost. To overcoming this problem, a two-
step sparse coding pan-sharpening method is proposed [12].
Because the CS-based methods assumed that a sparse signal
can be represented as a linear combination of a few atoms in
an overcomplete dictionary, they only share a shallow linear
structure.

Recent research has shown that the nonlinear deep neural
networks (DNN5s) have significant great representational power
for complex structures and have obtained superior performance
in the field of image processing. For example, the great success
had been achieved in image denoising and blind inpainting by
combining sparse coding and DNN pretrained with denoising
autoencoders (DAs) [13]. Based on [13], Agostinelli et al. [14]
presented the adaptive multicolumn stacked sparse DA (SDA)
method, which can achieve state-of-the-art denoising per-
formance with a single system on a variety of different
noise types.
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In view of this, a DNN-based new pan-sharpening method
is proposed for remote sensing image fusion problem. To the
best of our knowledge, the proposed method is the first work
in this field. The main contribution of this letter is twofold.
First, different from the CS-based methods aforementioned, we
model the relationship between the HR/LR image patch pairs
as a nonlinear mapping defined by the feedforward functions.
Second, we propose a DNN learning framework for pan sharp-
ening with pretraining and fine-tuning stages. In the pretraining
stage, a stacked modified SDA (S-MSDA) is presented to train
the feedforward functions of each layer in turn. Meanwhile, in
the fine-tuning stage, the entire DNN is trained again using a
back-propagation algorithm.

II. PAN-SHARPENING METHOD WITH DNN

Pan-sharpening aims to reconstruct the HR MS image by
improving the spatial resolution of the LR MS image while
preserving the spectral information with the help of the HR
PAN image. The proposed DNN-based method can effectively
reconstruct HR MS image with high spatial resolution and
less spectral distortions. It mainly consists of three operations,
namely, patch extraction for generating training set, DNN train-
ing using the MSDA algorithm and S-MSDA architecture, and
HR MS image reconstruction.

In this letter, given are the HR PAN image X,,, and LR
MS image Z,,s. First, we upsample the LR MS image Z,, to
the size of X,,, resulting in the coregistered LR MS image
Yins, and we normalize X,, and each band of Y, to the
range [0,1]. Moreover, the LR PAN image Y},., is obtained by a
linear combination of each band of the LR MS image Y;,s. The

HR image patches {x;}il and the corresponding LR image

patches {yL}N
tively, generating the training set {x%,, yp}N |» Where N is the

number of training image patches. Then, the DNN is trained
using the MSDA algorithm and S MSDA architecture with the
help of the training set {xp, yp} . In the reconstruction stage,
each band of the LR MS image Yp is divided into LR MS
image patches {y‘l’(} with overlapping, where k represents the
kth band, and j stands for the jth image patch. The HR MS
image patches {)chk} are obtained by feedforward of the test
LR MS image patch {y"k} using the trained DNN. Finally, the

sharpened MS image X s is reconstructed by the overlapping
image patches in all individual bands.

are extracted from X, and Y}.,, respec-

A. MSDA Algorithm

Denoising autoencoder (DA) algorithm is usually employed
as a layerwise greedy unsupervised pretraining principle to train
the DNN, avoiding the problem of “diffusion of gradients”
caused by randomly initializing the DNN [15]. Combining
sparse coding and DA, an SDA-based approach has gained a
great success in image denoising and blind inpainting, in which
the DNN is trained to reconstruct a clean “repaired” input
from a corrupted version of it [13]. For pan sharpening, this
letter proposes an MSDA algorithm for pretraining each layer
of the DNN, which represents the relationship between HR

image patches {xi,}ilil (as clean data) and the corresponding
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Fig. 1. Modified SDAs’ (MSDAs) architecture. The HR/LR image patches xi,
and yy, can be seen as the clean data and corrupted data, respectively. MSDA
aims to map yi, to hidden layer h(yi)) via encoder W' and reconstruct the HR
image patch )E(yi)) by minimizing the cost function Ly (x;, y;,) via decoder
‘W'. Note that symbols () and ® denote the clean data and corrupted data,
respectively.

LR image patches {y}} ¥
in Fig. 1.

The pretraining of MSDA consists in finding a value of
parameter vector © via minimizing reconstruction error of the

v, (as corrupted data), as illustrated

cost function. To be specific, let image patch pairs {x,, y;)}iil
be training example, parameter vector O is trained according to
Fig. 1. For each LR image patch yi,, the output of the trained
DNN will produce an HR image patch X(y;), which will
get as close as possible to the corresponding HR PAN image

patch x%,.

More formally, let {xp} _, be the clean data and {y;}fil
be the corrupted data; the feedforward functions of MSDA,
including the encoder and the decoder, are defined as follows:

h(vp)
%(vp)
where s(z) = (1 + exp(—x))~! is the sigmoid activation func-

tion, W and b are the encoding weights and biases, W’ and
b’ are the decoding weights and biases,' h(y},) is the hidden

layer’s activation,? and X(yi,) is the reconstruction of the input,

(D
2

= s(Wyi) +b)
=s(W'h (yi)) + ')

which is approximations of x1 .
Then, parameter vector © = {W, W' b, 1/} is trained by
minimizing the following cost function:

(1 0) = I

yp H2

A , )
+ 5 (IWIE + [IWI[7) + BKL(5 [ o) ()

where A and [ are balancing parameters determined by cross
validation, the second term is a weight decay term, and the third
term KL(p || p) is a sparsity term, which is defined as

. 1-
KL(5 || p) = plogg + (1 p)log 2 @

11—,

!For rendering the parameterizations identical, we define W/ = W7
2The dimension of the hidden layers dy, can be either smaller or larger than
the input dimension d; . If dp < d; i it can be seen as a dimensionality

reduction technique like PCA If dy, > d

representations like sparse coding.

, it can be seen as overcomplete
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Fig. 2. S-MSDAs’ architecture.

where p = (1/N) Zf\;l h(yl,) is the average activation of the
hidden layer, and p is a sparsity parameter, typically a small
value close to zero. KL(p || p) is the Kullback-Leibler diver-
gence, which forces p to be close to p. Hence, the activations of
the hidden units must mostly be near zero and achieve sparsity.
In this letter, the back-propagation algorithm is employed to
obtain the parameter vector © according to the loss rule in (3).

B. S-MSDA to Construct Deep Architecture

In order to construct a deep network architecture, a series of
MSDAs are connected to yield S-MSDAs. The S-MSDA is a
greedy layerwise approach to pretrain all the parameter vectors
of the DNN, which works by training each layer in turn. After
training an MSDA, the successive layer is trained by using the
hidden activation values h(yp) and h(x,,) of the previous layer
as the input data of this layer. The S- MSDA architecture (also
named as DNN architecture) is shown in Fig. 2.

To produce better pan-sharpened results, after the pretraining
stage, the entire DNN is trained again by the back-propagation
algorithm in the fine-tuning stage, minimizing the following
objective:

Lo ({Xipvyin}?; ;®>
Z I

where L is the number of stacked MSDAs, and W, represents
the parameter of the I/th layer in the DNN. The sparsity term
is removed for this step because the sparsity has been already
utilized in the pretraining stage [13].

Z IWill7 (5

yp Hz

C. HR MS Image Reconstruction

In this letter, we assume that the relationship between HR/LR
PAN image patches is the same as that between HR/LR MS
image patches. After training the DNN, the trained DNN will
reconstruct the HR MS image from the observed LR MS image
well. For each LR MS image patch y"k, the trained DNN will
be used to reconstruct the corresponding HR MS image patch.
Specifically, let ka be the input data of the trained DNN, the
sharpened HR MS image patches fc’k will be obtained according
to the feedforward functions in (1) and (2). Then, the sharpened
MS image Xms can be reconstructed by averaging the over-
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lapping image patches k’k in all individual bands. Finally, to
better reconstruct the spatial details of sharpened MS image, a
residual compensation method [16] is employed to enhance the
high-frequency spatial details of each band of the reconstructed
HR MS image individually.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Wald er al. [17] have shown that any synthetic image should
be as identical as possible to the image that the corresponding
sensor would observe with the highest resolution. According
to this synthesis property, the original images are filtered by a
7 x 7 Gaussian kernel with standard deviation 1 and down-
sampled by a factor of 4. We conduct the experiments on
the degraded images, and the original images are seen as the
reference images. In this letter, the IKONOS and QuickBird
data sets are employed to test the performance of the proposed
method, and the following five quality metrics are used to
quantitatively assess the quality of the results: correlation coef-
ficient (CC), root-mean-squared error (RMSE), erreur relative
global adimensionnelle de synthése (ERGAS), spectral angle
mapper (SAM), and Q4. The CCayg and RMSEyg represent
the average values of the CC and RMSE among all bands of the
MS images, respectively.

For the proposed method, the S-MSDA constructs a deep
architecture consisting of L hidden layers. Here, in order to
reduce computation load, L is set to 2 for all the data sets. The
dimension of hidden layers is set five times the dimension of
the input data. We evaluate the hyperparameter combinations
on different data sets and report the best result. The proposed
method is compared with three popular traditional methods, i.e.,
GS method [5] (implemented with ENVI 4.5), ATWT method
[7], adaptive THS method [3], and one state-of-the-art SparseFI
method [11].

A. Experiments on IKONOS Data Set

The IKONOS satellite collects a PAN image with 1-m reso-
lution and an MS image with 4-m resolution and four channels
(i.e., red, green, blue, and near infrared). The scene is captured
over Sichuan, China, in May 2008. In order to quantitatively
assess the quality of fusion results, we filter and downsample
by a factor of 4 the PAN and MS images to obtain a PAN image
with 4-m resolution and an MS image with 16-m resolution.
Then, pan-sharpening methods are used to fuse the degraded
PAN and MS images to yield the HR MS image with 4-m
resolution. Finally, the fused HR MS image is compared with
the original HR MS image. In this experiment, both sizes of
PAN and upsampled LR MS images are 600 x 600. In the
training stage, we randomly sample 200 000 image patch pairs
{x;,y;} with the same size of 7 x 7. In the reconstruction
stage, each band of the upsampled LR MS image is divided
into image patches yf( (of size 7 x 7) with overlapping.

The visual results of five different methods are shown in
Fig. 3(c)—(g). Fig. 3(a) and (b) shows the resampled color LR
MS image consisting of three channels (i.e., red, green, and
blue) and PAN image, respectively. Fig. 3(h) shows an original
color HR MS image. We can obviously see that Fig. 3(c)
reconstructed by the GS method has good spatial information
but severe color distortion. The fused image using the ATWT
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Fig. 3. IKONOS images and experimental results by different methods.
(a) Resampled LR MS image. (b) PAN image. (c) GS method. (d) ATWT
method. (e) Adaptive IHS method. (f) SparseFI method. (g) Proposed method.
(h) Original MS image.

method in Fig. 3(d) has good color information, which reflects
good performance in preserving the spectral information. How-
ever, the fused image suffers from significant spatial distortions.
Fig. 3(e) reconstructed by the adaptive IHS method gains better
performance on a tradeoff between the spatial and spectral
information than Fig. 3(c) and (d). However, compared with
the original MS image, Fig. 3(e) has the great difference in
spatial details. The linear sparse representation-based SparseFI
method, as shown in Fig. 3(f), preserves the spectral properties
better than the above methods, but it shows poor spatial results

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 5, MAY 2015

TABLE 1
COMPARISON OF THE PROPOSED METHOD WITH OTHER
METHODS ON IKONOS DATA SHOWN IN FIG. 3

GS ATWT Adaptive THS SparseFI Proposed
CCava 0.7924 0.8819 0.8828 0.9096 0.9230
RMSEava 0.0061 0.0037 0.0035 0.0033 0.0028
ERGAS 3.1983 2.4858 2.3943 2.2793 2.1150
SAM 0.0653 0.0520 0.0558 0.0456 0.0431
Q4 0.7627 0.8211 0.8248 0.7918 0.8395

in fine detail. On the whole, the proposed method shown in
Fig. 3(g) not only shows finer spatial details but also preserves
the spectral information best of all the methods.

The qualitative assessments of fused images in Fig. 3 are
shown in Table I, in which the best results for each criterion are
labeled in bold, and the second best are underlined. In Table 1,
we can see that the proposed method performs best.

B. Experiments on QuickBird Data Set

To further verify the effectiveness of the proposed method,
we move on to conduct the experiments on the QuickBird
satellite data set. The QuickBird satellite provides a PAN image
with 0.7-m resolution and an MS image with 2.8-m resolution
and four channels (i.e., red, green, blue, and near-infrared).
The scene captures over North Island, New Zealand, in August
2012. In order to quantitatively assess the quality of the fusion
results, we filter and downsample by a factor of 4 the PAN and
MS images to obtain a PAN image with 2.8-m resolution and
an MS image with 11.2-m resolution. Then, pan-sharpening
methods are used to fuse the degraded PAN and MS images to
yield the HR MS image with 2.8-m resolution. Finally, the fused
HR MS image is compared with the original HR MS images.
In this experiment, the size of PAN image and the number
of image patch pairs are the same as those on the IKONOS
data set.

Fig. 4(a) shows a resampled color LR MS image. Fig. 4(b)
gives the corresponding HR PAN image. The original HR
MS image is shown in Fig. 4(h). As shown in Fig. 4(c)—(g),
they are reconstructed by GS method, ATWT method, adap-
tive IHS method, SparseFI method, and the proposed method,
respectively. Compared with the results in Fig. 3, the similar
conclusions can be drawn from Fig. 4.

The qualitative assessments of fused images in Fig. 4 are
shown in Table II, in which the best results for each criterion
are labeled in bold, and the second best are underlined. Similar
to Table I, the proposed method performs best in all quality
indexes. Therefore, the proposed method produces the best
fused results and performs the robustness for both the IKONOS
and QuickBird data sets.

IV. CONCLUSION

In this letter, we have proposed a DNN-based new pan-
sharpening method for remote sensing image fusion problem.
An MSDA algorithm is presented to train the relationship
between the HR/LR image patches. Then, an S-MSDA ar-
chitecture that is a greedy layerwise approach to pretrain all
the parameter vectors of the DNN is obtained by connecting
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Fig. 4. QuickBird images and experimental results by different methods.
(a) Resampled LR MS image. (b) PAN image. (¢) GS method. (d) ATWT
method. (e) Adaptive IHS method. (f) SparseFI method. (g) Proposed method.
(h) Original MS image.

TABLE II
COMPARISON OF THE PROPOSED METHOD WITH OTHER
METHODS ON QUICKBIRD DATA SHOWN IN FIG. 4

GS ATWT Adaptive THS SparseFI Proposed
CCava 0.8148 0.8412 0.8273 0.8792 0.8904
RMSEava 0.0079 0.0070 0.0070 0.0064 0.0059
ERGAS 4.5807 4.3198 43114 4.0230 3.8141
SAM 0.0984 0.0914 0.1063 0.0833 0.0780
Q4 0.8128 0.8223 0.8239 0.7995 0.8376
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a series of MSDA architecture. In the fine-tuning stages, the
parameter vectors of the DNN are trained again by a back-
propagation algorithm. After training, the DNN will be able to
reconstruct the HR MS image from the observed LR MS image.
The experimental results have demonstrated that the proposed
method can achieve better performance than other traditional
and state-of-the-art pan-sharpening methods.

However, the proposed method takes more time than tra-
ditional methods. Compared with the SparseFI method, the
proposed method is much faster in the reconstruction stage
because it only needs forward propagation according to the
feedforward functions without solving any optimization prob-
lem, whereas the training stage of the proposed method requires
much more time. In our future work, offline training and the
many-core-based parallel algorithms will be adopted to speed
up the training process of the DNN.
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