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Abstract

Identifying the infection sources in a network, including the individuals who started a rumor in a social network,

the computers that introduce a virus into a computer network, or the index cases of a contagious disease, plays a

critical role in limiting the damage caused by the infectionthrough timely quarantine of the sources. We consider

the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source)

in a network, based only on knowledge of the underlying network connections, and when the number of sources is

unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations

of the infection sequences counts. We prove that if there areat most two infection sources in a geometric tree, our

estimator identifies the true source or sources with probability going to one as the number of infected nodes increases.

When there are more than two infection sources, and when the maximum possible number of infection sources is

known, we propose an algorithm with quadratic complexity toestimate the actual number and identities of the

infection sources. Simulations are conducted on various kinds of networks, including tree networks, small-world

networks and real world power grid networks, to verify the performance of our algorithms. Our simulation results

show that with high probability, our proposed estimators are within a few hops from the true infection sources.

Index Terms

Source estimation, infection graphs, inference algorithms, security, sensor networks, social networks.

I. INTRODUCTION

Online social networks have grown exponentially in complexity over the last few years. A modern social network

like Twitter have millions of active users [1]. A rumor started by a few individuals can spread quickly through the

network [2]–[8]. In many cases, we are interested in finding the sources of the rumor. For example, law enforcement

agencies may be interested in identifying the perpetratorswho fabricate false information to manipulate the market

prices of certain stocks. In a similar vein, a computer viruson a few servers of a computer network can quickly

spread to other servers or computers in the network. Withoutprompt identification and isolation of the source

servers, significant damage can result [9], [10]. Identifying the servers in the network that are first infected also
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allows us to detect the latent points of weaknesses in the computer network so that preventive measures can be

taken to enhance the protection at these points. The source identification problem also arises in the study and control

of viral epidemics. The identification of index cases of a contagious disease in a human population allows us to

study the causes, and hence facilitate the search for antiviral drugs and efficacious therapies. Moreover, by inferring

the infection region of each source, potential containments can be implemented to prevent further spreading of the

disease [11], [12].

We can model all the above examples as an infection spreadingin a network of nodes. In a social network, an

infection can be a rumor or a piece of information that is communicated between individuals. In the example of a

computer virus spreading in a network, the infection is the computer virus, while for the case of a disease spreading

in a population, the infection is the disease, which is transmitted between individuals. We consider the problem of

estimating the infection sources in a network of infected nodes. We are interested in the scenario where the only

given information is the set of infected nodes and the underlying network connections. This is because typically,

complete data about the infection spreading process, like the first times when the infection is detected at each node,

is not available. Even when such detection times are available, the naive method of declaring the first detected

node in the network as the sole infection source is often incorrect, as the infection may have a random dormant

period, the length of which varies from node to node. For example, the spreading of a disease in a population with

individuals having varying degrees of resistance, and hence exhibiting symptoms not necessarily in the order in

which they are infected, presents such a problem. Our goal isto construct estimators for both the infection sources

and their infection regions, i.e., the subset of nodes likely to be infected by each source, when the number and

locations of the sources are unknown a priori.

A. Related Works

Existing works related to infection spreading in a social network have primarily focused on the identification

of influential nodes in the network. Each node in a network hasa probability of influencing or “infecting” its

neighbors. The references [13]–[16] consider the problem of identifying a subset of nodes to maximize the total

expectedinfluence of the subset, where the expectation is taken over all possible realizations of the infection

process. In this paper, we consider a related but different problem. Our aim is to identify a set of nodes most

likely to be the infection sources, given aparticular realization of the infection process. The case where there is a

single infection source has been studied in [17]. Based onlyon the knowledge of which nodes are infected and the

underlying network structure, an estimator based on the linear extensions count of a poset or number of infection

sequences (cf. Section II) was derived in [17] to identify the most likely infection source. Although finding the

infection sources is much easier than solving the influence maximization problem, which is NP-hard, it was shown

in [17] that finding the most likely infection source in a general network is nevertheless a #P-complete problem.

Therefore, a simplistic homogeneous diffusion model, where the infection from an infected node is equally likely

to be transmitted to any of its neighbors at each time step, was adopted. The infection spreading model is based
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on the classicalsusceptible-infected-recovered(SIR) model [18], which has been widely used in modeling viral

epidemics. An algorithm for evaluating the single source estimator was proposed in [17], and it was shown to have

complexity1 O(n) for tree networks, wheren is the total number of infected nodes. Furthermore, it was shown

that this estimator performs well in a very general class of tree networks known as the geometric trees (cf. Section

III-D), and identifies the infection source with probability going to one asn increases. In this paper, we generalize

and extend the results in [17] to the cases where there may be multiple infection sources, and when the number of

infection sources is unknown a priori. We also consider the problem of estimating the infection regions, and show

that a direct application of the algorithm in [17] performs significantly worse than our proposed algorithms if there

are more than one infection sources. We also note that [17] provides theoretical performance measures for several

classes of tree networks, which we are unable to do here except for the class of geometric trees, because of the

greater complexity of our proposed algorithms. Instead, weprovide simulation results to verify the performance of

our algorithms.

A related problem is the detection and localization of diffusive sources using wireless sensor networks [19]–[24].

The diffusion models used under this framework are based on spatio-temporal diffusion models [19] or state-space

models with linear dynamics [20], where information like the physical positions of sensors are typically assumed.

There is no natural translation of the source detection and localization problem in a sensor network to other networks

like a social network, without performing discretization and introducing a combinatorial aspect to the problem, as

is done in [13], [25]. Similarly, inference of viral epidemic processes in populations has been studied in [18],

[26], [27], where various features related to the propagation of a viral epidemic, such as the rates of infection

and the length of latency periods are investigated. These works’ focus is on specific viral infection processes with

assumptions that do not naturally hold for infection processes in other networks like a social network. Moreover,

there is little work on determining the sources or index cases of a disease.

On the other hand, the infection source estimation algorithms we consider in this paper can be useful in

applications like pollution source localization, where weare limited to inexpensive sensors capable only of detecting

the presence or absence of a pollutant, and the identities ofits neighbors. In this case, spatio-temporal diffusion

models are not applicable as we only have knowledge of which nodes are “infected” and each node’s neighbors.

Moreover, the algorithms we study in this paper are also applicable to inferring infection sources in viral epidemics,

when little information about the epidemic propagation characteristics is available.

B. Our Contributions

In this paper, we consider the estimation of multiple infection sources when the number of infection sources is

unknown a priori. We adopt the same diffusion model as in [17], and show that unlike the single source estimation

problem, the multiple source estimation problem is much more complex and cannot be solved exactly even for

1A function f(n) = O(g(n)) if f(n) ≤ cg(n) for some constantc and for alln sufficiently large.
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regular trees. In addition, we derive an estimator to estimate the infection region of each infection source, i.e., the

set of nodes infected by that source. Our main contributionsare the following.

(i) For the case of a tree network, and when it is known that there are two infection sources, we derive an

estimator for the infection sources based on the infection sequences count. The estimator can be calculated

in O(n2) time complexity, wheren is the number of infected nodes.

(ii) When there are at most two infection sources that are at least two hops apart, we derive an estimator for

the class of geometric trees based on approximations of the estimator in (i), and we show that our estimator

correctly estimates the number of infection sources and correctly identifies the source nodes, with probability

going to one as the number of infected nodes increases.

(iii) We derive an estimator for the infection regions of every infection source under a simplifying technical

condition.

(iv) For general graphs, when there are at mostkmax infection sources, we provide an estimation procedure for

the infection sources and infection regions. Simulation results show that our estimation procedure produces

estimators that are within a few hops of the true infection sources with high probability.

The rest of the paper is organized as follows. In Section II, we present the system model and problem formulation.

In Section III, we derive estimators for infection sources and regions for tree networks, and present algorithms to

evaluate them. We also show asymptotic results for geometric tree networks. We discuss estimation algorithms

for general graphs in Section IV. In Section V, we present simulation results to to verify the performance of our

proposed estimators. Finally we conclude and summarize in Section VI.

II. PROBLEM FORMULATION

In this section, we describe our model and assumptions, introduce some notations, and present some preliminary

results. Consider an undirected graphG = (V,E), whereV is the set of nodes andE is the set of edges. If there

is an edge connecting two nodes, we say that they are neighbors. The neighborhoodN (v) of a nodev is the set of

all neighbors ofv. The length of the shortest path betweenu andv (excludingu andv) is denoted asd(u, v). In a

computer network, the graphG models the interconnections between computers in the network. In the example of

a population or a social network,V is the set of individuals, while an edge inE represents a relationship between

two individuals. We define aninfection to be a property that a node inG possesses, and can be transmitted to

another node. When a node has an infection, we say that it is infected. An infected node can pass its infection to its

neighbors in the graphG. The neighbors of an infected node is said to be susceptible.We assume the susceptible-

infected model [18], where once a node has been infected, it will not lose its infection. We adopt the same

infection spreading process as in [17], where the time takenfor an infected node to infect a susceptible neighbor is

exponentially distributed with rate1. All infections are independent of each other. Therefore, if a susceptible node

has more than one infected neighbors and subsequently becomes infected, its infection is transmitted by one of its
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infected neighbors, chosen uniformly at random. For mathematical convenience, we also assume thatG is large so

that boundary effects can be ignored in our analysis.

Suppose that at time0, there arek ≥ 1 nodes in the infected node setS = {s1, . . . , sk} ⊂ V . These are the

infection sources from which all other nodes get infected. Suppose that after the infection process has run for some

time, n nodes are observed to be infected, wheren is typically much larger thank. These nodes form aninfection

graph Gn = (Vn, En), which is a subgraph ofG. Let An = ∪k
i=1An,i be a partition of the infected nodesVn so

thatAn,i ∩An,j = ∅ for i 6= j, with each partitionAn,i being connected inGn, and consisting of the nodes whose

infection can be traced back to the source nodesi. The setAn,i is called theinfection region of si, and we say

that An is the infection partition. GivenGn, our objective is to infer the sources of infectionS and to estimate

An. In addition, if we do not have prior knowledge of the number of infection sourcesk, we also aim to infer

the number of infection sources. Without loss of generality, we assume thatGn is connected, otherwise the same

estimation procedure can be performed on each of the components of the graph. We also assume that there are at

mostkmax infection sources, i.e., the number of infection sourcesk ≤ kmax.

From a practical point of view, if two infection sources are close to each other, we can ignore either one of them

and treat the infection as spreading from a single source. Therefore, we are interested in cases where the infection

sources are separated by a minimum distance. We make the following assumption throughout this paper.

Assumption 1. For all si, sj ∈ S, the length of the shortest path between themd(si, sj) ≥ τ , whereτ is a constant

greater than 1.

Suppose that our priors forS andAn are uniform over all possible realizations, and letP be the probability

measure of the infection process. We seek to maximize the posterior probability

P(S,An | Gn) ∝ P(Gn | S)P(An | S,Gn). (1)

Let aninfection sequence σ = (σ1, . . . , σn−k) be a sequence of the nodes inGn, excluding the sourcesS, arranged

in ascending order of their infection times (note that with probability one, no two infection times are the same).

For any sequence to be an infection sequence, a necessary andsufficient condition is that any infected nodeσi,

i = 1, . . . , n− k, has a neighbor inS ∪ {σ1, . . . , σi−1}. We call this theinfection sequence property. An example

is shown in Figure 1. LetΩ(Gn, S) be the set of infection sequences for an infection graphGn and source setS.

We have

P(Gn | S) =
∑

σ∈Ω(Gn,S)

P(σ | S). (2)

Evaluating the expression (2) and maximizing (1) for a general Gn is a computationally hard problem as it

involves combinatorial quantities. As shown in [17], ifG is a regular tree and|S| = 1, P(Gn | S) is proportional

to |Ω(Gn, S)|, which is equivalent to the number of linear extensions of a poset. It is known that evaluating the

linear extensions count is a hard problem [28]. When there are multiple infection sources, the complexity is even
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Fig. 1. Example of an infection sequence. The shaded nodes are the infection sources. The sequence(2, 4) is an infection sequence, but

(4, 2) is not.

higher. As such, we will make a series of approximations to simplify the problem, and present numerical results

in Section V to verify our algorithms. The first approximation we make is to evaluate the estimators

Ŝ = arg max
S⊂Vn

|S|≤kmax

P(Gn | S), (3)

Ân(Ŝ) = argmax
A

P(A | Ŝ, Gn), (4)

instead of the exact maximum a posteriori (MAP) estimators for (1). Even with this approximation, the optimal

estimators are difficult to compute exactly, and may not be unique in general. Therefore, our goal is to design

algorithms that are approximately optimal.

For any graphG, let degG(u) denote the number of neighbors ofu in the graphG. For any infection sequence

σ, andu ∈ σ, let Nσ(u,G) be the number of infected neighbors ofu in the graphG immediately afteru becomes

infected. For example, ifu = σj, thenNσ(u,G) is the number of nodes inS ∪ {σ1, . . . , σj−1} that are neighbors

of u in G. If u ∈ S, thenNσ(u,G) is the number of infection sources that are neighbors ofu. For any infection

sequenceσ of the nodes inG, and for l = 1, . . . , |σ|, where|σ| is the number of infected nodes, let

pl(σ | H,S) =





∑

s∈S

(degH(s)−Nσ(s,H)) +

l−1
∑

j=1

degH(σj)− 2

l−1
∑

j=1

Nσ(σj ,H)





−1

. (5)

We have the following general characterizations for the conditional probabilities of interest in (3) and (4), whose

proof is provided in Appendix A.

Lemma 1. For any graphG, source node setS with |S| = k, and infection graphGn, we have

P(Gn | S) =
∑

σ∈Ω(Gn,S)

n−k
∏

l=1

(Nσ(σl, G) · pl(σ | G,S)) . (6)

Furthermore, suppose thatAn = ∪k
i=1An,i is an infection partition forGn. Let Hn be the minimal subgraph of

Gn that contains all non-cyclic paths between any pair of nodesin S, and let2

Ω(Hn, S,An) = {σ ∈ Ω(Hn, S) : σ ∩An,i is an infection sequence, for alli = 1, . . . , k.}.

Then, we have

P(An | S,Gn) =
∑

σ∈Ω(Hn,S,An)

|Hn|−k
∏

l=1

pl(σ | Hn, S). (7)

2For a sequence of nodesσ and a setA, the notationσ ∩A represents the subsequence ofσ containing only nodes that are inA.
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The characterizations in Lemma 1 are computationally hard to evaluate. In Section III, we make further approx-

imations and design algorithms to evaluate the estimatorsŜ andÂn whenG is a tree. In Section IV, we consider

the case whenG is a general graph.

III. I DENTIFYING INFECTION SOURCES ANDREGIONS FORTREES

In this section, we consider the problem of estimating the infection sources and regions when the underlying

networkG is a tree. We first derive an estimator for the infection partition in (4), given any source node setS

andGn. Then, under simplifying approximations, we show that the estimator (3) is closely related toC(S | Gn) =

|Ω(Gn, S)|, the number of infection sequences. Our derivation forŜ is similar to [17], which considers only

the single source estimation problem. Next, we consider thecase where there are two infection sources, propose

approximations that allow us to computeŜ with reasonable complexity, and show that our proposed estimator works

well in an asymptotically large geometric tree. In most practical applications, the number of infection sources is

not known a priori. We present a heuristic algorithm for general trees to estimate the infection sources when the

number of infection sources is unknown, but bounded bykmax.

A. Infection Partition with Multiple Sources

In this section, we derive an infection partition estimatorfor (4) given anyS, under a simplifying technical

condition. We show that the MAP estimator can be approximated by a Voronoi partition ofGn, where the distance

measure is taken to be the path length. This is intuitively correct as nodes closer to a particular source are more

likely to be infected by that source. The proof of the following result is provided in Appendix B.

Theorem 1. Suppose thatG is a tree with infection sourcesS. Let Hn be the minimal connected subgraph of

Gn that spansS.3 If any two paths inHn do not intersect except possibly at nodes inS, then the MAP estimator

Ân(S) for the infection partition is a Voronoi partition of the graph Gn, where the centers of the partitions are

the infection sourcesS.

A Voronoi partition may not produce the MAP estimator for theinfection partition in a general tree. However,

for simplicity, we will henceforth approximate the MAP estimator with a Voronoi partition of the infection graph

Gn, and present simulation results in Section V to verify the performance of this estimator.

B. Estimation of Infection Sources

We now consider the problem of estimating the set of infection sourcesS. When|S| = 1, our estimation problem

reduces to that in [17], which considers only the single source infection problem. In the following, we introduce

some notations, and briefly review some relevant results from [17].

3A connected subgraphH = (V ′, E′) of Gn spansS if S ⊂ V ′. The subgraphH is minimal if it has the least number of nodes amongst

all connected subgraphs that spanS.
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s1 s2u1 um

n1

n2

ni

ni+1

ni+2

nk

Tn2
(S)

Tu1
(S) Tρ(u1,um)(S)

H

Fig. 2. An example infection graph withS = {s1, s2}

A path between any two nodesu and v in Gn is denoted asρ(u, v). For any set of nodesS in Gn, consider

the minimal connected subgraphH ⊂ Gn that spansS. Treat this subgraph has a “super” node, with the treeGn

rooted at this “super” node. For any nodev ∈ Gn\H, we defineTv(S) to be the tree rooted atv with the path

from v to H removed. Forv ∈ H, we defineTv(S) to be the tree rooted atv so that all edges betweenv and its

neighbors inH are removed.4 We say thatTv(S) is the tree rooted atv with respect to (w.r.t.)S. For any subset

of nodesM ⊂ Gn, we let TM (S) = ∪v∈MTv(S). An illustration of these definitions is shown in Figure 2. If

S = {s1, . . . , sk}, we will sometimes use the notationTv(s1, . . . , sk) instead.

Let C(S | Gn) = |Ω(Gn, S)| be the number of infection sequences. Suppose thatG is a regular tree where

each node has the same degree. IfS = {s}, we have for any infection sequenceσ, Nσ(σj , G) = 1 and from

(5), we havepl(σ | G, s) is identical for allσ ∈ Ω(Gn, s). Lemma 1 then shows thatP(Gn | s) = C(s | Gn).

Therefore, when there is a single source node, the MAP estimator for the infection source is obtained by evaluating

Ŝ = argmaxv∈Gn
C(v | Gn), which seeks to maximizeC(v | Gn) over all nodes. The following result is shown

in [17].

Lemma 2. For any nodev ∈ Gn, we have

C(v | Gn) = n!
∏

u∈Gn

|Tu(v)|
−1. (8)

We observe that each term|Tu(v)| in the product on the right hand side (R.H.S.) of (8) is the number of nodes

in the sub-treeTu(v) (and which appears when we account for the number of permutations of these nodes). We can

think of the terms in the product being ordered according to the infection spreading sequence, i.e., each time we

reach a particular nodeu, we include terms corresponding to the nodesu can potentially infect. This interpretation

is useful in helping us understand the characterization in Lemma 3 for the case when there are two infection sources.

To computeC(v | Gn), anO(n) algorithm based on Lemma 2 was provided in [17]. We call this algorithm

the Single Source Estimation (SSE) algorithm. We refer the reader to [17] for details about the implementation

of the algorithm. Although findinĝS by maximizingC(s | Gn) is exact only for regular trees, it was shown in

[17] that this estimator has good performance for other classes of trees. In particular, ifG is a geometric tree (cf.

4As Tv(S) is defined onGn, its notation should includeGn. However, in order to avoid cluttered expressions, we dropGn in our

notations. Confusion will be avoided through the context inwhich these trees are referenced.
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Section III-D), then the probability, conditioned onS = {s}, of correctly identifyings usingC(s | Gn) goes to

one asn → ∞. Inspired by this result, we propose estimators based on quantities related toC(S | Gn) for cases

where|S| > 1. In the following, we first discuss the case where|S| = 2, and extend the results to the general case

where |S| is unknown in Section III-E. We then numerically compare ourproposed algorithms with a modified

SSE algorithm adapted for finding multiple sources in Section V.

C. Two Infection Sources

In this section, we assume that there are two infection sources, and propose approximations that allow us to

computeŜ in (3) with reasonable complexity.

Let S = {s1, s2}. If G is a regular tree with node degreem, we have from (5) that for any infection sequence

σ,

pl(σ | G,S) =
(

2m+ (l − 1)(m− 2)− 21{l≥χ}

)−1
,

whereχ is the index of the last node in the path betweens1 and s2 to be infected. We note thatχ varies from

sequence to sequence. However, the probabilitiespl(σ | G,S) are dominated by those sequences with small values

of χ. Therefore, in the same spirit as [17], we approximate the estimator Ŝ by maximizingC(S | Gn) over all two

node setsS.

Given two nodesu andv in Gn, suppose that|ρ(u, v)| = m. For any permutationξ = (ξ1, . . . , ξm) of the nodes

in ρ(u, v), let

Ii(ξ; s1, s2) =
∑

j≤i

|Tξj (s1, s2)| (9)

be the total number of nodes in the trees rooted at the firsti nodes in the permutationξ. For w ∈ ρ(u, v),

recall thatΩ(ρ(u, v), w) is the set of infection sequences in the graphρ(u, v) with w as the infection source. Let

Ω̄(ρ(u, v), w) = {ξ = (w, σ) : σ ∈ Ω(ρ(u, v), w)} be the set of infection sequences augmented withw as the

first node in the sequence. We have the following characterization forC(s1, s2 | Gn). The proof can be found in

Appendix C.

Lemma 3. Consider any two nodess1 and s2 in Gn, and suppose thatρ(s1, s2) = (s1, u1, . . . , um, s2) with nodes

u1, · · · , um in Gn. We have

C(s1, s2 | Gn) = (n− 2)! · q(u1, um; s1, s2)
∏

u∈Gn\ρ(s1,s2)

|Tu(s1, s2)|
−1, (10)

where

q(u1, um; s1, s2) =
∑

ξ∈Γ

m
∏

i=1

Ii(ξ; s1, s2)
−1, (11)

and

Γ =
⋃

w∈ρ(u1,um)

Ω̄(ρ(u1, um), w). (12)
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Furthermore, for1 ≤ i ≤ j ≤ m, q(ui, uj ; s1, s2) satisfies the following recursive relationships

q(ui, uj ; s1, s2) = |Tρ(ui,uj)(s1, s2)|
−1 (q(ui+1, uj ; s1, s2) + q(ui, uj−1; s1, s2)) for i < j, (13)

and

q(v, v; s1, s2) = |Tv(s1, s2)|
−1 ∀ v ∈ ρ(u1, um). (14)

The characterization forC(s1, s2 | Gn) is similar to that for the single source case in (8), except for the additional

q(u1, um; s1, s2) term. Each sequence in the setΓ can be interpreted as thereverseinfection sequence of the nodes

in ρ(u1, um) due to the sourcess1 ands2. The setΓ then consists of all possible infection sequences for the graph

ρ(u1, um). For each sequenceξ = (ξ1, . . . , ξm) ∈ Γ, each termIi(ξ; s1, s2) in the product in the R.H.S. of (11)

corresponds to the number of nodes in the graphT(ξ1,...,ξi)(s1, s2), i.e., as the infection spreads toξi+1, ξi is a

potential node thatξi+1 can infect, andT(ξ1,...,ξi)(s1, s2) is the subgraph that will be infected byξi if ξi is the only

source. The other terms corresponding toTu(s1, s2), whereu ∈ Tξi+1
(s1, s2) appear in the product term on the

R.H.S. of (10).

By utilizing Lemma 3, we can computeC(u, v | Gn) for any two nodesu andv in Gn by evaluating|Tw(u, v)|

for all nodesw ∈ Gn, and the quantityq(u1, um;u, v), whereρ(u, v) = (u, u1, . . . , um, v). In order to evaluate

|Tw(u, v)|, we make the assumption that the degree of every node inG is bounded.

Assumption 2. Every node inG has bounded degree.

For each nodew and its neighboru, recall thatTw(u) is the subtree rooted atw w.r.t. u. With Assumption 2,

Algorithm 1 allows us to computefw(u) = |Tw(u)| andgw(u) =
∏

v∈Tw(u) |Tv(u)| for all neighborsu of w, and

for all w ∈ Gn in O(n) time complexity. Choose any noder ∈ Gn, and considerGn as a directed tree withr

as the root node, and with edges inGn pointing away fromr. Let pa(w) be the parent ofw in the directed tree

Gn. Starting from the leaf nodes, let each non-root nodew ∈ Gn pass two messages containingfw(pa(w)) and

gw(pa(w)) to its parent. Each node stores the values of these two messages from each of its children in a local

database, and computes its two messages to be passed to its parent from this database. Whenr has received all

messages from its children, a reverse sweep down the tree is done so that at the end of the algorithm, every node

w ∈ Gn has stored the values{fu(w), gu(w) : u ∈ N (w)}. The algorithm is formally described in Algorithm 1,

wherech(w) is the set of child nodes ofw in the directed treeGn. The last product term on the R.H.S. of (10)

can then be computed using

g(s1, s2) =
∏

w∈ρ(s1,s2)

∏

x∈N (w)\ρ(s1,s2)

gx(w), (15)

and taking its reciprocal.

To computeC(s1, s2 | Gn) in (10), we still need to computeq(u1, um; s1, s2). The recursive relationships (13)-

(14) allow us to computeq(u1, um; s1, s2) for all s1, s2 ∈ Gn in O(n2d2∗) complexity, whered∗ is the maximum

node degree. The computation proceeds by first considering each pair of neighbors(u, v). Both nodes have at most
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Algorithm 1 Tree Sizes and Products Computation
1: Inputs: Gn

2: Choose any noder ∈ Gn as the root node.

3: for w ∈ Gn do

4: Store received messagesfx(w) andgx(w), for eachx ∈ ch(w).

5: if w is a leafthen

6: fw(pa(w)) = 1

7: gw(pa(w)) = 1

8: else

9: fw(pa(w)) =
∑

x∈ch(w) fx(w) + 1

10: gw(pa(w)) = fw(pa(w)) ·
∏

x∈ch(w) gx(w)

11: end if

12: Storefpa(w)(w) = n− fw(pa(w)).

13: Passfw(pa(w)) andgw(pa(w)) to pa(w).

14: end for

15: Setgpa(r)(r) = 1.

16: for w ∈ Gn do

17: Store received messagegpa(w)(w) from pa(w).

18: if w is not a leafthen

19: for x ∈ ch(w) do

20: gw(x) = fw(x) · gpa(w)(w) ·
∏

y∈ch(w)\{x} gy(w)

21: Passgw(x) to x.

22: end for

23: end if

24: end for

d∗ neighbors each, so that we need to evaluateq(u, v; s1, s2) for all s1 ∈ N (u)\ρ(u, v) ands2 ∈ N (v)\ρ(u, v). This

requiresO(d2∗) computations. The computed values andTρ(u,v)(s1, s2) are stored in a hash table. In the next step,

we repeat the same procedure for node pairs that are two hops apart, and so on until we have considered every pair

of nodes inGn. Note that for a path(u1, . . . , um) ands1, s2 neighbors ofu1 andum respectively,q(u1, um; s1, s2)

can be computed in constant time from (13) asq(u2, um; s1, s2) = q(u2, um;u1, s2) and q(u1, um−1; s1, s2) =

q(u1, um−1; s1, um). A similar remark applies for the computation of|Tρ(u1,um)(s1, s2)|. In addition, each lookup

of the hash table takesO(1) complexity sinceGn is known and collision-free hashing can be used. Therefore,

the overall complexity isO(n2d2∗). The algorithm to compute the infection sources estimator is formally given in

Algorithm 2. We call this the Two Source Estimation (TSE) algorithm, and it forms the basis of our algorithm for
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Algorithm 2 Two Source Estimation (TSE)
1: Inputs: Gn

2: Let (s∗1, s
∗
2) be the maximizer ofC(·, · | Gn). SetC∗ = 0.

3: for d = 1 to diameter ofGn do

4: for eachs1 ∈ Gn do

5: for eachs2 such thatd(s1, s2) = d do

6: Let ρ(s1, s2) = (s1, u1, . . . , ud−1, s2).

7: if d = 1 then

8: q(u1, ud−1; s1, s2) = 1.

9: else if d = 2 then

10: Storeq(u1, u1; s1, s2) = |Tu1
(s1, s2)|

−1 and |Tu1
(s1, s2)|.

11: else

12: Lookup |Tρ(u1,ud−2)(s1, ud−1)|, q(u2, ud−1;u1, s2), andq(u1, ud−2; s1, ud−1).

13: Store

|Tρ(u1,ud−1)(s1, s2)| = |Tρ(u1,ud−2)(s1, ud−1)| · |Tud−1
(s1, s2)|.

14: Store

q(u1, ud−1; s1, s2) =
q(u2, ud−1;u1, s2) + q(u1, ud−2; s1, ud−1)

|Tρ(u1,ud−1)(s1, s2)|
.

15: end if

16: Computeg(s1, s2) from (15).

17: C(s1, s2 | Gn) = (n− 2)!q(u1, ud−1; s1, s2)/g(s1, s2).

18: Update(s∗1, s
∗
2) andC∗ if C(s1, s2 | Gn) > C∗.

19: end for

20: end for

21: end for

multiple sources estimation in the sequel.

D. Geometric Trees with Two Sources

In this section, we study the special case of geometric trees, propose an approximate MAP estimator for geometric

trees, and provide theoretical analysis for its performance. First, we give the definition of geometric trees and prove

some of its key properties. Then, we derive a lower bound forC(S | Gn), and propose an estimator based on this

lower bound. We show that our proposed estimator is asymptotically correct, i.e., it identifies the actual infection

sources with probability (conditioned on the infection sources) going to one as the infection graphGn becomes
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large. For mathematical convenience, instead of letting the number of infected nodesn grow large, we let the time

t from the start of the infection process to our observation time become large.

Our definition of a geometric tree generalizes from that in [17]. Let S = {s1, s2} be the infection sources. Let

M = ρ(s1, s2)\S, and define the setA to consist of the elementM , and all neighbors of the infection sources

except those on the pathρ(s1, s2). For eachu ∈ A, let T ′
u(s1, s2) be defined in the graphG in the same way as

Tu(s1, s2) is defined forGn. For eachu ∈ A, and eachv ∈ T ′
u(s1, s2), let nu(v, r) be the number of nodes in

T ′
u(s1, s2) that are at a distancer from v. Then we say thatG is a geometric tree if for allu ∈ A, and for all

v ∈ T ′
u(s1, s2), we have

brα ≤ nu(v, r) ≤ crα, (16)

whereα, b, and c are fixed positive constants withb ≤ c. The condition (16) implies that all trees defined w.r.t.

the infection sources are growing polynomially fast at about the same rate. As we have assumed that the infection

rates are homogeneous for every node, the resulting infection graphGn will also be approximately regular with

high probability. We have the following properties for a geometric tree, whose proofs are in Appendix D.

Lemma 4. Suppose thats1 and s2 are the infection sources, andG is a geometric tree. For anyǫ ∈ (0, 1), let Et

be the event that all nodes within distancet(1− t−1/2+ǫ) of either source nodes are infected, and no nodes greater

than distancet(1 + t−1/2+ǫ) of either source nodes are infected. Then, there existst0 such that for allt ≥ t0,

P(Et) ≥ 1− ǫ. Furthermore, conditioned onEt, we have for allu ∈ A,

Nmin(t) ≤ |Tu(s1, s2)| ≤ Nmax(t), (17)

where

Nmin(t) =
b

1 + α

(

t− t
1

2
+ǫ − 2

)α+1
, (18)

and

Nmax(t) =
c

1 + α

(

t+ t
1

2
+ǫ
)α+1

. (19)

In addition, for t ≥ t0, we have

Nmin(t)

Nmax(t)
≥
b

c
(1− ǫ).

The infection sequences count in (10) is not amendable to analysis. In the following, we seek an approximation to

simplify our analysis. Fors1, s2 ∈ Gn, suppose thatρ(s1, s2) = (s1, u1, . . . , um, s2), with p = |ρ(s1, s2)| = m+2.

Instead of computingC(s1, s2 | Gn), we consider a new infection graphG′
n with two “virtual” nodesxi, i = 1, 2

added, wherexi is attached tosi (see Figure 3). We now considerC(x1, x2 | G
′
n) ≥ C(s1, s2 | Gn). Since the trees

rooted atxi are single node trees, we have

C(x1, x2 | G
′
n) = C(s1, x2 | G

′
n) + C(x1, s2 | G

′
n)

≤ 2(n− 1)C(s1, s2 | Gn),
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s1 s2u1 umx1 x2

Fig. 3. Addition of virtual nodesx1 andx2.

where the last inequality follows because ifs1 andx2 are sources, thens2 can be inserted in any of at mostn− 1

positions in an infection sequence fromΩ(Gn, {s1, s2}), so thatC(s1, x2 | G′
n) ≤ (n−1)C(s1, s2 | Gn). A similar

argument holds forC(x1, s2 | G
′
n) ≤ (n− 1)C(s1, s2 | Gn).

Let ξ∗ = (ξ∗1 , . . . , ξ
∗
p) be a permutation of the nodes inρ(s1, s2) such that|Tξ∗i (s1, s2)| ≤ |Tξ∗j (s1, s2)| for all

1 ≤ i ≤ j ≤ p. Let I∗i (s1, s2) = Ii(ξ
∗; s1, s2) (cf. the definition in (9)). Then,I∗i (s1, s2) is the total number of

nodes in thei biggest trees in{Tu(s1, s2) : u ∈ ρ(s1, s2)}. From Lemma 3, we have

C(x1, x2 | G
′
n) ≥ n! · 2p−1

p
∏

i=1

I∗i (s1, s2)
−1

∏

u∈Gn\ρ(s1,s2)

|Tu(s1, s2)|
−1, (20)

where the inequality holds because|Γ| = 2p−1, and each term in the sum on the R.H.S. of (11) is lower bounded

by
∏p

i=1 I
∗
i (s1, s2)

−1. We use the lower bound in (20) as a proxy forC(s1, s2 | Gn). However, we have used a

very loose lower bound in (20), so we propose the estimator

S̃ = arg max
s1,s2∈Gn

C̃(s1, s2 | Gn), (21)

where

C̃(s1, s2 | Gn) = n! ·Q(s1, s2)
∏

u∈Gn\ρ(s1,s2)

|Tu(s1, s2)|
−1, (22)

Q(s1, s2) = [2(1 + δ)]p−1
p
∏

i=1

I∗i (s1, s2)
−1,

andδ is a fixed positive constant, to be chosen based on prior knowledge about the graphG. Algorithm 2 can be

modified to find the maximizer for̃C(·, · | Gn). We call this the geometric tree TSE algorithm. The following result

provides a way to chooseδ, and shows that our proposed estimatorS̃ is asymptotically correct in a geometric tree.

A proof is provided in Appendix E.

Theorem 2. Suppose thatG is a geometric tree with infection sourcesS = {s1, s2}. Letdmin anddmax be constants

such thatdegG(si) ∈ [dmin, dmax] for i = 1, 2. Suppose that

dmin ≥
3

2
+
c

b

√

2dmax. (23)

Then, for anyδ in the non-empty interval
(

cdmax

b(dmin − 1)
− 1,

b(dmin − 2)

2c
− 1

)

, (24)
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we have

lim
t→∞

P(S̃ = S | S) = 1.

Theorem 2 implies that if we know the constants governing theregularity condition (16) forG, we can choose aδ

so that our estimator̃S gives the true infection sources with high probability if the infection graphGn is large. The

class of geometric trees as defined by (16) can be used to modelvarious scenarios in practice, e.g., a tree spanning

a wireless sensor network with nodes randomly scattered. However, the assumption (16) may also be overly strong

for other applications. In Section V, we perform numerical studies to gain insights into the performance of our

proposed estimator for different classes of tree networks.

E. Unknown Number of Infection Sources

In most practical applications, the number of infection sources is not known a priori. However, typically we may

be able to guess the maximum number of infection sourceskmax, or we can choose a reasonable value ofkmax

depending on the size of the infection graphGn. In this section, we present aheuristicalgorithm that allows us to

estimate the infection sources with a givenkmax.

We first consider the instructive case wherekmax = 2 andG is a geometric tree. In this case, the number of

infection sources can be either one or two. Suppose we run thegeometric tree TSE algorithm onGn. We have the

following result, whose proof is in Appendix F.

Theorem 3. Suppose that there is a single infection sources andG is a geometric tree with(16) holding for all

nodesu that are neighbors ofs. Suppose thats has degreedegG(s) ∈ [dmin, dmax], wheredmin and dmax are

positive constants satisfying(23). Then, for anyδ in the interval(24), the geometric tree TSE algorithm estimates

as sourcess and one of its neighbors with probability (conditioned ons being the infection source) going to1 as

t→ ∞.

Theorem 3 implies that when there exists only one source, thegeometric tree TSE algorithm finds two neighboring

nodes, one of which is the true source. From Theorem 2 and Assumption 1, if there are two sources, our algorithm

identifies the two source nodes, which are at least two hops from each other, with high probability. Therefore, by

checking the distance between the two nodes identified by thegeometric tree TSE algorithm, we can estimate the

number of source nodes in the infection graph. This observation together with Theorem 1 suggest the following

heuristic.

(i) Randomly choosekmax nodes satisfying Assumption 1 as the infection sources and find a Voronoi partition

for Gn. Use the SSE algorithm to find a source node for each infectionregion. Repeat these steps until for

every region, the distance between estimated source nodes between iterations is below a fixed threshold or a

maximum number of iterations is reached. We call this the Infection Partition (IP) Algorithm (see Algorithm

3).
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Algorithm 3 Infection Partitioning (IP)

1: Inputs: An infection source setS(0) = {s
(0)
i : i = 1, . . . ,m} in Gn.

2: Iterations:

3: for l = 1 to MaxIter do

4: Run the Voronoi partitioning algorithm with centers inS(l−1) to obtain the infection partitionA(l) = ∪m
i=1A

(l)
i .

5: for i = 1 to m do

6: Run SSE algorithm inA(l)
i to obtain

s
(l)
i = arg max

s∈A(l)
i

C(s | A
(l)
i ).

7: end for

8: S(l) := {s
(l)
i : i = 1, . . . ,m}

9: if max1≤i≤m d(s
(l)
i , s

(l−1)
i ) ≤ η for some fixed small positiveη then

10: break

11: end if

12: end for

13: return (S(l),A(l))

(ii) For any two regions in the partition obtained from step (i) that can be connected by adding an edge inGn,

run the TSE algorithm in the combined region to determine if there are indeed two infection sources. If it

is determined that there is only one infection source in the combined region, we decrement the number of

source nodes, and repeat step (i). These two steps are repeated until no two pairs of regions in the Voronoi

partition can be combined. The formal algorithm is given as the Multiple Sources Estimation and Partitioning

(MSEP) algorithm in Algorithm 4.

To compute the complexity of the MSEP algorithm, we note thatsince the IP algorithm is based on the SSE

algorithm, it has complexityO(n). For each value ofk = 1, . . . , kmax in the MSEP algorithm, there areO(k2)

pairs of neighboring regions in the infection partition. For each pair of region, the TSE algorithm makesO(n2)

computations. Summing over allk = 1, . . . , kmax, the time complexity of the MSEP algorithm can be shown to be

O(k3maxn
2). On the other hand, to computeC(S | Gn) for |S| = kmax would requireO(nkmax) computations.

IV. I DENTIFYING INFECTION SOURCES ANDREGIONS FORGENERAL GRAPHS

In this section, we generalize the MSEP algorithm to identify multiple infection sources in general graphsG. Such

network structures are frequently encountered in practical applications. Examples include small-world networks [29]

and power grid networks [29]. In [17], the SSE algorithm is extended to general graphs when it is known that

there is only a single infection source in the network using aheuristic. The algorithm first chooses a nodes of Gn
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Algorithm 4 Multiple Sources Estimation and Partitioning (MSEP)
1: Inputs: Gn andkmax.

2: Initialization:

3: k := kmax and chooseS := {s1, . . . , sk} randomly inGn.

4: Iterations:

5: while k > 1 do

6: (S,A) = Algorithm IP(S)

7: S′ := S

8: for all regionsAi andAj in the partitionA such that there exists an edge(u, v) in Gn with u ∈ Ai and

v ∈ Aj do

9: Set (u, v) = Algorithm TSE(Ai ∪Aj).

10: if d(u, v) < τ then

11: MergeAi andAj , setsi = u and discardsj

12: k := k − 1

13: break

14: end if

15: end for

16: if S = S′ then

17: break

18: end if

19: end while

20: return (S,A)

as the root node, and generates a spanning treeTbfs(s,Gn) of Gn rooted ats using the breadth-first-search (BFS)

procedure. The SSE algorithm is then applied on this spanning tree to computeC(s | Tbfs(s,Gn)). In addition, the

infection sequences count is weighted by the likelihood of the BFS tree. This is repeated using every node inGn

as the root node, and the nodeŝ with the maximum weighted infection sequences count is chosen as the source

estimator, i.e.,

ŝ = arg max
v∈Gn

P(σv | v)C(s | Tbfs(v,Gn)),

whereσv is the sequence of nodes that corresponds to an infection spreading fromv along the BFS tree. It can

be shown that this algorithm has complexityO(n2). For further details, the reader is referred to [17]. We callthis

algorithm the SSE-BFS algorithm in this paper.

We adapt the MSEP algorithm for general graphs using the sameBFS heuristic. Specifically, we replace the

SSE algorithm in line 6 of the IP algorihm with the SSE-BFS algorithm. In addition, in line 9, we run the TSE
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Fig. 4. Estimating the number of infection source nodes.

algorithm onTbfs(si, Ai) ∪ Tbfs(sj , Aj), where the two BFS trees are connected by randomly selectingan edge

(u, v) in Gn with u ∈ Tbfs(si, Ai) andv ∈ Tbfs(sj, Aj). We call this modified algorithm the MSEP-BFS algorithm.

Since the worst case complexity for the SSE-BFS algorithm isO(n2), the complexity of the MSEP-BFS algorithm

can be shown to beO(k3maxn
2), which is the same complexity as the MSEP algorithm. To verify the effectiveness

of the MSEP-BFS algorithm, we conduct simulations on both synthetic and real world networks in Section V.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results on differentnetwork structures to verify our proposed algorithms.

We first consider geometric tree networks and regular tree networks with various numbers of infection sources,

and then we present results on small-world networks and a real world power grid network. We also apply our

algorithms to the contact tracing data obtained during the Severe Acute Respiratory Syndrome (SARS) outbreak in

Singapore in 2003 [30].

A. Synthetic Networks

We perform simulations on geometric trees, regular trees, and small-world networks. The number of infection

sources are chosen to be 1, 2, or 3, and we setkmax = 3. For each type of network and each number of infection

sources, we perform1000 simulation runs with 500 infected nodes each. We randomly choose infection sources

satisfying Assumption 1 and obtain the infection graph by simulating the infection spreading process using the SIR

model. Finally, the MSEP or MSEP-BFS algorithm for tree networks and small-world networks respectively, is

applied to the infection graph to estimate the number and locations of the infection sources. The estimation results

for the number of infection sources in different scenarios are shown in Figure 4. It can be seen that our algorithm

correctly finds the number of infection sources more than93% of the time for geometric trees, and more than71%

of the time for regular trees. The accuracy of about 69.2% forsmall-world networks is worse than that for the

tree networks, as the infection tree for a small-world network has to be estimated using the BFS heuristics, thus

additional errors are introduced into the procedure.
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simulation settings average average error distances minimum infection region

network topology |S| diameter MSEP/MSEP-BFS nSSE covering percentage (%)

geometric trees
2 63.7 0.56 12.86 98.6

3 66.2 0.89 15.12 94.4

regular trees
2 40.5 0.94 6.08 97.0

3 43.7 1.06 6.53 89.6

small-world networks
2 35.5 2.99 8.27 93.8

3 40.9 2.9 10.36 87.7

power grid network
2 27.3 3.86 7.94 92.9

3 30.8 3.38 9.01 87.9

TABLE I

AVERAGE ERROR DISTANCES AND MINIMUM INFECTION REGION COVERING PERCENTAGE FOR VARIOUS NETWORKS, CONDITIONED ON

CORRECT SOURCE NUMBER ESTIMATION.

When it is known that there are more than one infection sources, we compare the performance of the MSEP

algorithm with a naive estimator based on the SSE algorithm.In the estimator for tree networks, we first compute

C(u | Gn) for all nodesu ∈ Gn, and choose the|S| nodes with the largest counts as the source nodes. In the

small-world networks, we use the SSE-BFS algorithm. We callthis the nSSE algorithm. In comparison, the MSEP

or MSEP-BFS algorithm does not require us to know|S| a priori. However, to perform a fair comparison, we

consider only those simulation runs in which the MSEP or MSEP-BFS algorithm correctly estimates the number

of infection source nodes. The error distance is found by first matching the estimated source nodes with the actual

sources so that the sum of the distance between each estimated source and its match is minimized. We then divide

this sum by the number of source nodes to obtain the error distance.

The histogram of the error distances for the different typesof networks are shown in Figure 5. The error distances

averaged over all simulation runs are provided in Table I. Clearly, the MSEP/MSEP-BFS algorithm outperforms

the nSSE algorithm in every case. Moreover, the performanceof the nSSE algorithm deteriorates with increasing

|S|. This is to be expected as the SSE algorithm assumes that the node with the largest infection sequence count

is the only source, and this node tends to be close to the distance center [31] of the infection graph.

The MSEP/MSEP-BFS algorithm also estimates the infection region of each source. To evaluate its accuracy,

suppose that the infection sources areS = {s1, . . . , sk}, and let the true infection region of sourcesi beAn,i. Let

the MSEP/MSEP-BFS estimated infection region ofsi be Ân,i. We define the correct infection region covering

percentage forsi as the ratio between|Ân,i ∩ An,i| and |An,i|, and we compute the minimum (or worst case)

infection region covering percentage as

min
i∈{1,··· ,k}

|Ân,i ∩An,i|

|An,i|
.

We find that the minimum infection region covering percentage is more than 87% for all networks, as shown in

Table I.
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(b) Regular trees.
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(c) Small-world networks.
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Fig. 5. Histogram of the error distances for various networks.

B. Real World Networks

In this section, we verify the performance of the MSEP-BFS algorithm on real world networks. We consider the

western states power grid network of the United States [29],and contact tracing data collected during the SARS

epidemic in Singapore in the year 2003 [30].

We simulate the infection spreading process on the power grid network, which contains4941 nodes. For each

simulation run, 1, 2 or 3 infection sources are randomly chosen from the power grid network under Assumption

1, and the spreading process is simulated so that a total of500 nodes are infected. For each value of|S|, 1000

simulation runs are performed. The simulation results are shown in Figures 4 and 5 (d), and Table I. We see that the

MSEP-BFS algorithm significantly outperforms the nSSE algorithm, with an average error distance of less than 4

compared to an error of more than 7.9 for the nSSE algorithm. The minimum infection region covering percentage

is also above 87%.

In our final numerical study, we apply the MSEP algorithm to toa network of nodes that represent the individuals

who were infected with the SARS virus during an epidemic in Singapore. The data is collected using contact tracing

of patients [30], where an edge between two nodes indicate that there is some form of interaction or relationship

between the individuals (e.g., they are family members, classmates, colleagues, or commuters who shared the same

public transport system). A fragment of the SARS infection network is shown in Figure 6. The arrows indicate

the chain of transmission, and the index node is the infection source. We test the MSEP algorithm on a network
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Fig. 6. Part of the SARS infection network with a single source (abstracted from Figure 1 of [30]).

of 193 nodes, assuming that there are at mostkmax = 3 infection sources. It turns out that the MSEP algorithm

correctly estimates the number of infection source to be one, and correctly identifies the real infection source.

VI. CONCLUSION

We have derived estimators for the infection sources and regions when the number of infection sources is bounded

but unknown a priori. The estimators are based only on knowledge of the infected nodes and their underlying network

connections. We provide an approximation for the infectionsource estimator for the class of geometric trees, and

when there are at most two sources in the network. We show thatthis estimator asymptotically correctly identifies

the infection sources when the number of infected nodes grows large. We also propose an algorithm that estimates

the number of source nodes, and identify them and their respective infection regions for general infection graphs.

Simulation results on geometric trees, regular trees, small-world networks, the US power grid network, and the

SARS infection network show that our proposed estimation procedure performs well in general, with an average

error distance of less than 4 when the number of source nodes is correctly estimated. The estimation accuracy of

the number of source nodes is over 65% in all the networks we consider, with the geometric tree networks having

an accuracy of over 90%. Furthermore, the minimum infectionregion covering percentage is more than 87% for all

networks. Our estimation procedure assumes only knowledgeof the underlying network connections. In practical

applications where more information about the infection process is available, a more accurate and intelligent guess

of the number of infection sources can be made.

In this paper, we have adopted a simple SIR infection model with homogeneous spreading rates, allowing us

to derive analytical results that provide useful insights into infection source estimation for practical networks.

However, this simplistic diffusion model does not adequately capture the real world dynamics of many networks.

Future research includes the use of richer diffusion modelsthat allow the inclusion of drifts and other dynamics

in the infection spreading process, and tools from statistics to approximate optimal estimators for the infection

sources. Our proposed algorithms find a set of nodes most likely to infect or influence a network, and are thus

potentially useful for various practical applications. For example, our algorithm may be integrated with non-model-

based consensus methods [32], [33] to design multi-agent control systems that uses only a small subset of agents
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as controllers. In cloud-centric media platforms [34], [35], variants of our proposed algorithm may be used for

intelligent content cache management. These are all areas of future research.

APPENDIX A

PROOF OFLEMMA 1

The proof of (6) is the similar to that of (5) in [17]. For completeness, we repeat the argument here. The posterior

probability of any infection sequenceσ ∈ Ω(Gn, S) is given by

P(σ | S) =
n−k
∏

l=1

P(σl | S, σ1, . . . , σl−1).

Since infection times are independent exponential random variables with the same rate, the next infected node is

chosen from the set of susceptible nodes with probability proportional to the number of infected neighbors. We

haveP(σl | S, σ1, . . . , σl−1) = Nσ(σl, G)/nl, wherenl =
∑

u∈Jl
Nl(u), with Jl being the set of susceptible nodes

andNl(u) the number of infected neighbors ofu, immediately before thelth infection. We show by induction on

l that nl = 1/pl(σ | Gn, S). The claim trivially holds forl = 1. Suppose that it holds forl − 1. Consider an urn

containingnl balls, with each ball colored in one of|Jl| colors. Each color corresponds to one node inJl, and

the number of balls of the same color corresponds to the number of infected neighbors of that node. Whenσl−1

becomes infected,degG(σl−1)−Nσ(σl−1, G) new balls are added to the urn, andNσ(σl−1, G) balls are removed

from the urn. Therefore,nl = nl−1 + degG(σl−1)− 2Nσ(σl−1, G), and the claim follows by induction. The proof

of (6) now follows from (2).

To show (7), let nodes that are infected by sourcesi be colored with colori, wherei = 1, . . . , k. The color

of a node that is not on a path between two infection sources isuniquely determined with probability one when

conditioned on the coloring ofHn, therefore it suffices to evaluateP(An ∩Hn | S,Hn). The setΩ(Hn, S,An) is

the set of infection sequences compatible with the coloringimposed byAn. Therefore, the same argument as in

the proof of (6) yields (7). The proof of the lemma is now complete.

APPENDIX B

PROOF OFTHEOREM 1

Let nodes that are infected by sourcesi be colored with colori, with i = 1, . . . , k. Then a partitionAn is a

coloring of the graphHn. For any infection sequenceσ, and for any path inHn connecting two infection sources,

we can find the index of the last node on this path that is infected by either source. LetJσ be the set of such

indices. We havedegHn
(σl) = 2 for all l. We also haveNσ(σl,Hn) = 1 or 2 depending on whetherl belongs to

Jσ or not, respectively. From (5), we have

pl(σ | Hn, S) =





∑

s∈S

degHn
(s)− 2

∑

j∈Jσ

1{l≥j}





−1

. (25)



23

Choose two sourcessi andsj and letm be the number of nodes in the path connectingsi andsj, excluding the

source nodes. Suppose thatr > ⌈m/2⌉ nodes in this path have colori. Construct a new coloringA′
n so that⌈m/2⌉

nodes inρ(si, sj) closest tosi have colori and the rest have colorj. The rest of the nodes inA′
n have the same colors

as that inAn. Each infection sequenceσ ∈ Ω(Hn, S,An) corresponds to an infection sequenceσ′ ∈ Ω(Hn, S,A
′
n),

where the lastx = r − ⌈m/2⌉ color i nodes inσ become the lastx color j nodes inσ′. From (25), we have

pl(σ | Hn, S) = pl(σ
′ | Hn, S) for all l. Since

(

m
⌈m/2⌉

)

≥
(

m
r

)

, we have|Ω(Hn, S,A
′
n)| ≥ |Ω(Hn, S,An)|, therefore

Lemma 1 yieldsP(A′
n | S,Gn) ≥ P(An | S,Gn).

The same argument can be repeated a finite number of times for all paths inHn connecting infection sources.

This shows that the MAP estimator̂An(S) is a Voronoi partition ofGn, and the proof is complete.

APPENDIX C

PROOF OFLEMMA 3

To simplify notations, we writeTu(s1, s2) asTu, with the implicit understanding that all trees are defined w.r.t.

{s1, s2}. The number of infection sequences can be found by counting the number of ways to form such a sequence.

Then− 2 slots in a sequence are occupied by nodes fromTsi\{si}, i = 1, 2, andTρ(u1,um). Therefore, we have

C(s1, s2 | Gn) = (n − 2)!

2
∏

i=1

C(si | Tsi)

(|Tsi | − 1)!
·
R(u1, um)

|Tρ(u1,um)|!

=
(n− 2)!

|Tρ(u1,um)|!

∏

v∈Tsi
,i=1,2

v 6=s1,s2

1

|Tv |
·R(u1, um),

whereR(ui, uj) for i ≤ j is the number of ways of permuting the nodes inTρ(ui,uj) such that the infection

sequence property is maintained, and the last equality follows from Lemma 2. In the following, we show that for

1 ≤ i ≤ j ≤ m,

R(ui, uj) = |Tρ(ui,uj)|!
∏

v∈Tρ(ui,uj)
\ρ(ui,uj)

1

|Tv|
· q(ui, uj ; s1, s2). (26)

The proof proceeds by induction onj − i. If j = i, we haveR(ui, ui) = C(ui | Tui
) and the claim follows from

Lemma 2. Suppose that the claim (26) holds for all nodesuk and up such thatp − k < j − i. The number of

permutationsR(ui, ui) can be computed by considering a sequence withm = |Tρ(ui,uj)| slots. The first slot can

be filled with eitherui or uj . Therefore, we have

R(ui, uj) = (m− 1)!

(

C(ui | Tui
)

(|Tui
| − 1)!

R(ui+1, uj)

|Tρ(ui+1,uj)|!
+
C(uj | Tuj

)

(|Tuj
| − 1)!

R(ui, uj−1)

|Tρ(ui,uj−1)|!

)

= (m− 1)! · (q(ui+1, uj ; s1, s2) + q(ui, uj−1; s1, s2))
∏

v∈Tρ(ui,uj )\ρ(ui,uj)

1

|Tv|
,

where the last equality follows from the inductive hypothesis and Lemma 2. The claim (26) now follows from (13).

Finally, (11) follows by an inductive argument using (13) and (14), which we omit. The proof is now complete.
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APPENDIX D

PROOF OFLEMMA 4

The proof follows easily from Theorems 5 and 6 of [17]. Consider the infection spreading along a path inGn. Let

Π(t) be the counting process of the number of infected nodes in this path. The processΠ(t) consists of exponentially

distributed arrivals with rate 1, and at most one arrival with rate 2 if the path is between the two infection sources.

Let Π1(t) be a unit rate Poisson process corresponding to the rate 1 arrivals. ThenΠ1(t) ≤ Π(t) ≤ Π1(t) + 1.

From Theorem 6 of [17], we have for any positiveγ < 0.2,

P(Π(t) ≤ t(1− γ)) ≤ P(Π1(t) ≤ t(1− γ)− 1) ≤ exp

(

−
1

4
t(γ +

1

t
)2
)

,

P(Π(t) ≥ t(1 + γ)) ≤ P(Π1(t) ≥ t(1 + γ)) ≤ exp

(

−
1

4
tγ2

)

.

The rest of the proof is the same as that of Theorem 5 of [17], and the proof is complete.

APPENDIX E

PROOF OFTHEOREM 2

We first show that under (23), the interval (24) is non-empty.The condition (23) implies that

dmin >
3

2
+

√

2dmax
c2

b2
−

1

4
,

which after some algebraic manipulations yields

b2(dmin − 1)(dmin − 2) > 2c2dmax,

1 ≤
cdmax

b(dmin − 1)
<
b(dmin − 2)

2c
.

Therefore (24) is a non-empty interval. Fix aδ in the interval. Then for allǫ > 0 sufficiently small, we have

b(dmin − 1)(1 + δ)

cdmax
>

1

1− ǫ
,

b(dmin − 2)

2(1 + δ)c
>

1

1− ǫ
.

Recall thatt is the time from the start of the infection spreading to our observation ofGn. From Lemma 4, for

eachǫ, there existst0 such that ift ≥ t0, we have

(dmin − 1)(1 + δ)Nmin(t)

dmaxNmax(t)
> 1, (27)

(dmin − 2)Nmin(t)

2(1 + δ)Nmax(t)
> 1. (28)

We will make use of the two inequalities (27) and (28) extensively in the following proof steps. LetEt be the event

defined in Lemma 4. Then from Lemma 4, we have fort ≥ t0,

P(S̃ = S | S) ≥ P(S̃ = S | S, Et)P(Et | S) ≥ (1− ǫ)P(S̃ = S | S, Et). (29)
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s1 s2xn−1 x1 u0

u1

um

w1 wk v0

v1

vl

y1 yp−1

Fig. 7. Illustration of the network structure whenu0 6= v0. Not all nodes are shown.

In the following, we show thatP(S̃ = S | S, Et) = 1 for t ≥ t0. The proof then follows from (29) asǫ can be

chosen arbitrarily small.

To show thatP(S̃ = S | S, Et) = 1 is equivalent to showing that with probability one,C̃(S | Gn) > C̃(um, vl | Gn),

for all node pairsum, vl ∈ Gn such that at least one of them is not inS. Let u0 andv0 be the first nodes inρ(s1, s2)

that are connected toum andvl respectively. We divide the proof into two cases, dependingon whetheru0 andv0

are distinct or not, as shown in Figures 7 and 8.

Suppose thatu0 6= v0. A typical network for this case is shown in Figure 7, wherem, l, n, p, andk are non-

negative integers, and at least one ofum andvl is not inS, i.e., eitherm+ l > 0 or n+ p > 0. We letu0 = s1 if

n = 0, andv0 = s2 if p = 0.

We will show that if eitherm+ l > 0 or n+ p > 0, we have fort ≥ t0,

C̃(s1, s2 | Gn)

C̃(um, vl | Gn)
=
C̃(s1, s2 | Gn)

C̃(u0, v0 | Gn)
·
C̃(u0, v0 | Gn)

C̃(um, vl | Gn)
> 1. (30)

The proof follows by showing that̃C(u0, v0 | Gn) ≥ C̃(um, vl | Gn), where strict inequality holds ifm + l > 0,

and C̃(s1, s2 | Gn) ≥ C̃(u0, v0 | Gn) with strict inequality holding ifn+ p > 0. From (22), we have5

C̃(u0, v0 | Gn)

C̃(um, vl | Gn)
=
Q(u0, v0)

Q(um, vl)
·

∏

w∈ρ(um,u1)∪ρ(vl ,v1)

|Tw(u0, v0)|
−1

= [2(1 + δ)]−(m+l) ·

∏m+l+k+2
i=1 I∗i (um, vl)
∏k+2

i=1 I
∗
i (u0, v0)

·
∏

w∈ρ(um,u1)∪ρ(vl ,v1)

|Tw(u0, v0)|
−1

≥ [2(1 + δ)]−(m+l) ·
m+l
∏

i=1

I∗i (um, vl) ·
∏

w∈ρ(um,u1)∪ρ(vl ,v1)

|Tw(u0, v0)|
−1

≥

[

max{|Tu0
(um, vl)|, |Tv0 (um, vl)|}

2(1 + δ) ·max {|Tu1
(u0, v0)|, |Tv1(u0, v0)|}

]m+l

≥

[

(dmax − 2)Nmin(t) + 1

2(1 + δ) ·Nmax(t)

]m+l

> 1,

if m + l > 0. The first inequality follows becauseI∗m+l+i(um, vl) ≥ I∗i (u0, v0) for i = 1, . . . , k + 2, and the last

inequality follows from (28) whent ≥ t0.

5We define products over empty sets to be 1.
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s1

s2

w0 w1 w2 wk

v1 v2 vl

u1 u2 um

Fig. 8. Illustration of the case whereu0 = v0 = w0.

Let ψ = degG(s1) + degG(s1). We have fort ≥ t0,

C̃(s1, s2 | Gn)

C̃(u0, v0 | Gn)
=
Q(s1, s2)

Q(u0, v0)
·

∏

w∈ρ(s1,x1)∪ρ(y1,s2)

|Tw(u0, v0)|

= [2(1 + δ)]n+p ·

k+2
∏

i=1
I∗i (u0, v0)

n+p+k+2
∏

i=1
I∗i (s1, s2)

·
∏

w∈ρ(s1,x1)∪ρ(y1,s2)

|Tw(u0, v0)|

≥ [2(1 + δ)]n+p ·

n+p+k+2
∏

i=k+3

I∗i (s1, s2)
−1 ·

∏

w∈ρ(s1,x1)∪ρ(y1,s2)

|Tw(u0, v0)|

≥

[

2(1 + δ) ·min {|Ts1(u0, v0)|, |Ts2(u0, v0)|}

ψNmax(t) + 2

]n+p

≥

[

(1 + δ)(dmin − 1) ·Nmin(t) + 1 + δ

dmaxNmax(t) + 1

]n+p

> 1,

where the first inequality follows becauseI∗i (u0, v0) ≥ I∗i (s1, s2) for i = 1, . . . , k + 2, and the last inequality

follows from (27) if n+ p > 0. The bound (30) is now proved.

We next consider the case whereu0 = v0 = w0 in Figure 8, wherek,m and l are non-negative integers. When

t ≥ t0, we have the following bounds, which are straight forward toverify and whose proofs are omitted here.

(i) I∗i (um, vl) ≥ (ψ − 2)Nmin(t) + 2 ≥ (dmin − 2)Nmin(t) for i = 1, . . . , d(um, vl) + 1,

(ii) I∗i (s1, s2) ≤ ψNmax(t) + 2 ≤ 2dmaxNmax(t) + 2 for all i = 1, . . . , d(s1, s2) + 1,

(iii) |Twi
(um, vl)| ≥ (ψ − 2)Nmin(t) + 2 ≥ (dmin − 2)Nmin(t) for all i = 1, . . . , k − 1,

(iv) |Tw(um, vl)| ≥ (dmin − 1)Nmin(t) + 1 for all w ∈ ρ(s1, s2),

(v) |Twi
(s1, s2)| ≤ Nmax(t) for all i = 1, . . . , k − 1, and

(vi) |Tw(s1, s2)| ≤ Nmax(t) for all w ∈ ρ(um, vl).

The above bounds yield

C̃(s1, s2 | Gn)

C̃(um, vl | Gn)

=
Q(s1, s2)

Q(um, vl)

∏

w∈Gn\ρ(um,vl)
|Tw(um, vl)|

∏

w∈Gn\ρ(s1,s2)
|Tw(s1, s2)|

=(2(1 + δ))d(s1,s2)−d(um,vl)

∏d(um,vl)+1
i=1 I∗i (um, vl)

∏d(s1,s2)+1
i=1 I∗i (s1, s2)

∏k−1
i=1 |Twi

(um, vl)|
∏

w∈ρ(s1,s2)
|Tw(um, vl)|

∏k−1
i=1 |Twi

(s1, s2)|
∏

w∈ρ(um,vl)
|Tw(s1, s2)|
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r

s w1 wk

v1 v2 vl

ul u2 um

Fig. 9. A typical network for a single source tree.

=

k−1
∏

i=1

|Twi
(um, vl)|

|Twi
(s1, s2)|

· (2(1 + δ))−d(um ,vl)−1

∏d(um,vl)+1
i=1 I∗i (um, vl)

∏

w∈ρ(um,vl)
|Tw(s1, s2)|

· (2(1 + δ))d(s1,s2)+1

∏

w∈ρ(s1,s2)
|Tw(um, vl)|

∏d(s1,s2)+1
i=1 I∗i (s1, s2)

≥

[

(dmin − 2)Nmin(t)

Nmax(t)

]k−1 [ (dmin − 2)Nmin(t)

2(1 + δ)Nmax(t)

]d(um,vl)+1 [(1 + δ)((dmin − 1)Nmin(t) + 1)

dmaxNmax(t) + 1

]d(s1,s2)+1

>1,

where the last inequality follows from (27) and (28). The theorem is now proved.

APPENDIX F

PROOF OFTHEOREM 3

Let t be the elapsed time from the start of an infection spreading from a singles to the time we observeGn. We

wish to show that Algorithm TSE estimates as sourcess and one of its neighbors with probability (conditioned on

s being the infection source) converging to1 ast→ ∞. This is equivalent to showing that fort sufficiently large,

and for each pair of nodesum, vl ∈ Gn where eitherd(um, s) > 1 or d(vl, s) > 1, there exists a neighborr of s

such thatC̃(s, r | Gn) > C̃(um, vl | Gn).

A typical network is shown in Figure 9, wherek,m and l are non-negative integers. Ifm, l andk are positive,

we let r be the neighbor ofs that lies on the path connectings to um (i.e., the nodew1 in Figure 9). Ifm and l

are positive andk = 0, thenr is chosen to be eitheru1 or v1. If m = 0, we must havek > 0 so thatwk = um

andr = w1. A similar remark applies for the casel = 0. Note thatm+ l > 0. For t sufficiently large, we have

C̃(s, r | Gn)

C̃(um, vl | Gn)
=

Q(s, r)

Q(um, vl)
·

∏

w∈Gn\ρ(um,vl)

|Tw(um, vl)|

∏

w∈Gn\{s,r}

|Tw(s, r)|

= [2(1 + δ)]1−(m+l) ·

∏m+l+1
i=1 I∗i (um, vl)
∏2

i=1 I
∗
i (s, r)

·

∏

w∈ρ(s,wk−1)
|Tw(um, vl)|

∏k−1
i=2 |Twi

(s, r)| ·
∏

w∈ρ(um,vl)

|Tw(s, r)|

= [2(1 + δ)]1−(m+l) ·
m+l
∏

i=1

I∗i (um, vl) ·

∏k−1
i=1 |Twi

(um, vl)|
∏k−1

i=2 |Twi
(s, r)| ·

∏

w∈ρ(um,vl)

|Tw(s, r)|

≥ [2(1 + δ)]1−(m+l) · |Twk
(um, vl)|

m+l ·
|Ts(um, vl)|

k−1

Nmax(t)k−2 ·Nmax(t)m+l+1

≥ [2(1 + δ)]k ·

[

(dmin − 1)Nmin(t)

2(1 + δ) ·Nmax(t)

]m+l+k−1

> 1,
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where the last inequality follows from (28) and Lemma 4 for graphs with a single infection source [17]. The proof

of the theorem is now complete.
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