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Abstract

Identifying the infection sources in a network, includiing tindividuals who started a rumor in a social network,
the computers that introduce a virus into a computer netwarkhe index cases of a contagious disease, plays a
critical role in limiting the damage caused by the infecttbrough timely quarantine of the sources. We consider
the problem of estimating the infection sources and thectide regions (subsets of nodes infected by each source)
in a network, based only on knowledge of the underlying nétvomnnections, and when the number of sources is
unknown a priori. We derive estimators for the infectionreas and their infection regions based on approximations
of the infection sequences counts. We prove that if thereameost two infection sources in a geometric tree, our
estimator identifies the true source or sources with prdibabbing to one as the number of infected nodes increases.
When there are more than two infection sources, and when thénmam possible number of infection sources is
known, we propose an algorithm with quadratic complexityegtimate the actual number and identities of the
infection sources. Simulations are conducted on variondskiof networks, including tree networks, small-world
networks and real world power grid networks, to verify thefpemance of our algorithms. Our simulation results

show that with high probability, our proposed estimatos within a few hops from the true infection sources.
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. INTRODUCTION

Online social networks have grown exponentially in comipeaver the last few years. A modern social network
like Twitter have millions of active usersI[1]. A rumor stedtby a few individuals can spread quickly through the
network [2]-[8]. In many cases, we are interested in findireggources of the rumor. For example, law enforcement
agencies may be interested in identifying the perpetratiis fabricate false information to manipulate the market
prices of certain stocks. In a similar vein, a computer vionsa few servers of a computer network can quickly
spread to other servers or computers in the network. Witlppompt identification and isolation of the source
servers, significant damage can result [9],] [10]. Identifythe servers in the network that are first infected also
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allows us to detect the latent points of weaknesses in thepaten network so that preventive measures can be
taken to enhance the protection at these points. The salgnéfication problem also arises in the study and control
of viral epidemics. The identification of index cases of atagious disease in a human population allows us to
study the causes, and hence facilitate the search for iattiliugs and efficacious therapies. Moreover, by inferring
the infection region of each source, potential containsiean be implemented to prevent further spreading of the
diseasel[11],[112].

We can model all the above examples as an infection spredaiagietwork of nodes. In a social network, an
infection can be a rumor or a piece of information that is camivated between individuals. In the example of a
computer virus spreading in a network, the infection is thmputer virus, while for the case of a disease spreading
in a population, the infection is the disease, which is tnaitted between individuals. We consider the problem of
estimating the infection sources in a network of infectedes We are interested in the scenario where the only
given information is the set of infected nodes and the ugdeylnetwork connections. This is because typically,
complete data about the infection spreading process,Higditst times when the infection is detected at each node,
is not available. Even when such detection times are avajldbe naive method of declaring the first detected
node in the network as the sole infection source is oftenriect, as the infection may have a random dormant
period, the length of which varies from node to node. For elanthe spreading of a disease in a population with
individuals having varying degrees of resistance, and @exhibiting symptoms not necessarily in the order in
which they are infected, presents such a problem. Our gdaldsnstruct estimators for both the infection sources
and their infection regions, i.e., the subset of nodesikel be infected by each source, when the number and

locations of the sources are unknown a priori.

A. Related Works

Existing works related to infection spreading in a sociawaek have primarily focused on the identification
of influential nodes in the network. Each node in a network &agsobability of influencing or “infecting” its
neighbors. The references [13]-[16] consider the probléndentifying a subset of nodes to maximize the total
expectedinfluence of the subset, where the expectation is taken dVgroasible realizations of the infection
process. In this paper, we consider a related but differeoblem. Our aim is to identify a set of nodes most
likely to be the infection sources, givenparticular realization of the infection process. The case where treee i
single infection source has been studied in [17]. Based onlthe knowledge of which nodes are infected and the
underlying network structure, an estimator based on theatirextensions count of a poset or number of infection
sequences (cf. Sectid 11) was derived [in][17] to identifg thost likely infection source. Although finding the
infection sources is much easier than solving the influenagimization problem, which is NP-hard, it was shown
in that finding the most likely infection source in a geslenetwork is nevertheless a #P-complete problem.
Therefore, a simplistic homogeneous diffusion model, whée infection from an infected node is equally likely

to be transmitted to any of its neighbors at each time steg, agpted. The infection spreading model is based



on the classicabusceptible-infected-recover¢8IR) model [18], which has been widely used in modeling lvira
epidemics. An algorithm for evaluating the single sourd@vestor was proposed in [17], and it was shown to have
complexityl O(n) for tree networks, where is the total number of infected nodes. Furthermore, it wasnvsh
that this estimator performs well in a very general clasgedg hetworks known as the geometric trees (cf. Section
[M-D), and identifies the infection source with probalyiljjoing to one as: increases. In this paper, we generalize
and extend the results in [17] to the cases where there mayulila infection sources, and when the number of
infection sources is unknown a priori. We also consider ttablem of estimating the infection regions, and show
that a direct application of the algorithm in [17] performgrsficantly worse than our proposed algorithms if there
are more than one infection sources. We also note fthat [Drjiges theoretical performance measures for several
classes of tree networks, which we are unable to do here ekmefhe class of geometric trees, because of the
greater complexity of our proposed algorithms. Insteadpvexide simulation results to verify the performance of
our algorithms.

A related problem is the detection and localization of diffie sources using wireless sensor netwdrks [19]-[24].
The diffusion models used under this framework are basegatiostemporal diffusion models [119] or state-space
models with linear dynamic$ [20], where information likeethhysical positions of sensors are typically assumed.
There is no natural translation of the source detection acalization problem in a sensor network to other networks
like a social network, without performing discretizationdaintroducing a combinatorial aspect to the problem, as
is done in [18], [25]. Similarly, inference of viral epidemprocesses in populations has been studied_in [18],
[26], [27], where various features related to the propagatf a viral epidemic, such as the rates of infection
and the length of latency periods are investigated. Thesksiiéocus is on specific viral infection processes with
assumptions that do not naturally hold for infection preessin other networks like a social network. Moreover,
there is little work on determining the sources or index sasiea disease.

On the other hand, the infection source estimation algmsttwe consider in this paper can be useful in
applications like pollution source localization, where are limited to inexpensive sensors capable only of detgctin
the presence or absence of a pollutant, and the identitiéts ofeighbors. In this case, spatio-temporal diffusion
models are not applicable as we only have knowledge of whattes are “infected” and each node’s neighbors.
Moreover, the algorithms we study in this paper are alsoiegiple to inferring infection sources in viral epidemics,

when little information about the epidemic propagationrelegeristics is available.

B. Our Contributions

In this paper, we consider the estimation of multiple infactsources when the number of infection sources is
unknown a priori. We adopt the same diffusion model as in,[AAH show that unlike the single source estimation

problem, the multiple source estimation problem is muchenmmmplex and cannot be solved exactly even for

A function f(n) = O(g(n)) if f(n) < cg(n) for some constant and for alln sufficiently large.



regular trees. In addition, we derive an estimator to egénf@e infection region of each infection source, i.e., the

set of nodes infected by that source. Our main contributamasthe following.

(i) For the case of a tree network, and when it is known thatettere two infection sources, we derive an
estimator for the infection sources based on the infectaguences count. The estimator can be calculated
in O(n?) time complexity, where: is the number of infected nodes.

(i) When there are at most two infection sources that aresastl two hops apart, we derive an estimator for
the class of geometric trees based on approximations ofstimator in [i), and we show that our estimator
correctly estimates the number of infection sources ancectly identifies the source nodes, with probability
going to one as the number of infected nodes increases.

(i) We derive an estimator for the infection regions of gwénfection source under a simplifying technical
condition.

(iv) For general graphs, when there are at migst, infection sources, we provide an estimation procedure for
the infection sources and infection regions. Simulatiocsults show that our estimation procedure produces

estimators that are within a few hops of the true infectionrses with high probability.

The rest of the paper is organized as follows. In Se¢tion &l present the system model and problem formulation.
In Sectior(ll, we derive estimators for infection sourcesl aegions for tree networks, and present algorithms to
evaluate them. We also show asymptotic results for geoenrge networks. We discuss estimation algorithms
for general graphs in SectiénllV. In Sectibh V, we presentusation results to to verify the performance of our

proposed estimators. Finally we conclude and summarizeatic[V1.

[I. PROBLEM FORMULATION

In this section, we describe our model and assumptiongdate some notations, and present some preliminary
results. Consider an undirected gra@h= (V, E), whereV is the set of nodes an# is the set of edges. If there
is an edge connecting two nodes, we say that they are neghbloe neighborhood/(v) of a nodev is the set of
all neighbors ofv. The length of the shortest path betwaeandv (excludingu andv) is denoted ag(u,v). In a
computer network, the grapfi models the interconnections between computers in the metwothe example of
a population or a social network; is the set of individuals, while an edge i represents a relationship between
two individuals. We define aimfection to be a property that a node {6 possesses, and can be transmitted to
another node. When a node has an infection, we say that itesteéd. An infected node can pass its infection to its
neighbors in the grapty. The neighbors of an infected node is said to be suscepWeeassume the susceptible-
infected model [[18], where once a node has been infectedjllitnat lose its infection. We adopt the same
infection spreading process as inl[17], where the time td&ean infected node to infect a susceptible neighbor is
exponentially distributed with raté. All infections are independent of each other. Therefdra, susceptible node

has more than one infected neighbors and subsequently lesdofected, its infection is transmitted by one of its



infected neighbors, chosen uniformly at random. For ma#imal convenience, we also assume ifdat large so
that boundary effects can be ignored in our analysis.

Suppose that at time, there arek > 1 nodes in the infected node s&t= {si,...,sx} C V. These are the
infection sour ces from which all other nodes get infected. Suppose that dftetirifection process has run for some
time, n nodes are observed to be infected, wherie typically much larger thak. These nodes form amfection
graph G,, = (V,,, E,,), which is a subgraph of:. Let A,, = uleAm be a partition of the infected nodé&$ so
that A, ; N A, ; = 0 for i # j, with each partition4,, ; being connected i+, and consisting of the nodes whose
infection can be traced back to the source nedeThe set4,, ; is called theinfection region of s;, and we say
that A,, is the infection partition. Given GG,,, our objective is to infer the sources of infectidhand to estimate
A,. In addition, if we do not have prior knowledge of the numbeéiirdection sources:, we also aim to infer
the number of infection sources. Without loss of generality assume thatr,, is connected, otherwise the same
estimation procedure can be performed on each of the commooéthe graph. We also assume that there are at
most k. infection sources, i.e., the number of infection sourkes kax.

From a practical point of view, if two infection sources atese to each other, we can ignore either one of them
and treat the infection as spreading from a single sourcerefbre, we are interested in cases where the infection

sources are separated by a minimum distance. We make tlowvifod) assumption throughout this paper.

Assumption 1. For all s;,s; € S, the length of the shortest path between th&m, s;) > 7, wherer is a constant

greater than 1.

Suppose that our priors fo§ and.A,, are uniform over all possible realizations, and lfebe the probability

measure of the infection process. We seek to maximize thegpasprobability
P(S, A, | Gn) x P(G,, | S)P(A, | S,Gr). 1)

Let aninfection sequenceo = (o1, ...,0,_x) be a sequence of the nodegir, excluding the sources, arranged

in ascending order of their infection times (note that witloh@ability one, no two infection times are the same).
For any sequence to be an infection sequence, a necessasuffictent condition is that any infected nods,
i=1,...,n—k, has a neighbor it U {01, ...,0,_1}. We call this theinfection sequence properthn example

is shown in Figuré]l. Lef(G,,, S) be the set of infection sequences for an infection gré@phand source sef.
We have

PG| S)= Y P9 (2)

ceQ(G,,S)

Evaluating the expressionl(2) and maximizifg (1) for a gehét, is a computationally hard problem as it
involves combinatorial quantities. As shown in[17],Gfis a regular tree an5| = 1, P(G,, | S) is proportional
to |Gy, S)

linear extensions count is a hard problem][28]. When theeenaultiple infection sources, the complexity is even

, Which is equivalent to the number of linear extensions ofoaep. It is known that evaluating the



Fig. 1. Example of an infection sequence. The shaded nod@etharinfection sources. The sequeri@e4) is an infection sequence, but
(4,2) is not.

higher. As such, we will make a series of approximations topéfy the problem, and present numerical results

in SectionY to verify our algorithms. The first approximatiwwe make is to evaluate the estimators

A~

S =arg max P(Gn | 9), 3)
|S‘§kmax
An(8) = argmaxP(A | §, Gn), 4)

instead of the exact maximum a posteriori (MAP) estimators(l). Even with this approximation, the optimal
estimators are difficult to compute exactly, and may not biguenin general. Therefore, our goal is to design
algorithms that are approximately optimal.

For any graph, let deg(u) denote the number of neighbors @fin the graphG. For any infection sequence
o, andu € o, let N,(u, G) be the number of infected neighborswin the graphG immediately after. becomes
infected. For example, ifi = o, then N, (u, G) is the number of nodes if U {o1,...,0;_1} that are neighbors

of uin G. If u € S, thenN,(u,G) is the number of infection sources that are neighbors.dfor any infection

sequencer of the nodes inG, and forl = 1,...,|o|, where|o| is the number of infected nodes, let
-1 -1 !
pilo | H,S) = Y (degy(s) = No(s, H)) + ) degy(o;) =2 No(oj, H) | . (%)
ses j=1 j=1

We have the following general characterizations for thedatmmnal probabilities of interest i {3) andl(4), whose

proof is provided in AppendikA.

Lemma 1. For any graphG, source node set with |S| = k, and infection graphG,,, we have
n—k
PGn|S) = Y. J]WNelor,G) m(o|G,S)). (6)
o€Q(Gn,S) =1
Furthermore, suppose thal,, = U¥_ A,,; is an infection partition forG,,. Let H,, be the minimal subgraph of

G, that contains all non-cyclic paths between any pair of nodeS, and le
Q(Hy, S, Ay) = {0 € Q(H,,S) : 0N A,; is an infection sequence, for all=1,...,k.}.

Then, we have
|H |~k

P(A,|S,G) = >[I mlo|Ha,S). (7)

oc€Q(H,,S,A,) =1

2For a sequence of nodesand a setd, the notations N A represents the subsequencesofontaining only nodes that are .



The characterizations in Lemrha 1 are computationally hamelvaluate. In Sectidn]ll, we make further approx-
imations and design algorithms to evaluate the estimafaasd.A,, whenG is a tree. In SectiofrIV, we consider

the case wheu- is a general graph.

I1l. I DENTIFYING INFECTION SOURCES ANDREGIONS FORTREES

In this section, we consider the problem of estimating tHedition sources and regions when the underlying
network G is a tree. We first derive an estimator for the infection partiin (4), given any source node s6t
andG,,. Then, under simplifying approximations, we show that tegneator [() is closely related ©0'(S | G,,) =
(Gn, 5)

the single source estimation problem. Next, we considercts® where there are two infection sources, propose

, the number of infection sequences. Our derivation $ois similar to [17], which considers only

approximations that allow us to compufiewith reasonable complexity, and show that our proposechestir works
well in an asymptotically large geometric tree. In most ficat applications, the number of infection sources is
not known a priori. We present a heuristic algorithm for gah#rees to estimate the infection sources when the

number of infection sources is unknown, but bounded:cRys .

A. Infection Partition with Multiple Sources

In this section, we derive an infection partition estimator (4) given anyS, under a simplifying technical
condition. We show that the MAP estimator can be approxithatea Voronoi partition of=,,, where the distance
measure is taken to be the path length. This is intuitivelyreztt as nodes closer to a particular source are more

likely to be infected by that source. The proof of the follagiresult is provided in Append([x]B.

Theorem 1. Suppose thaty is a tree with infection sourceS. Let H,, be the minimal connected subgraph of
G, that spansS If any two paths inH,, do not intersect except possibly at nodesSinthen the MAP estimator

A, (S) for the infection partition is a Voronoi partition of the gvha GG,,, where the centers of the partitions are

the infection sources.

A Voronoi partition may not produce the MAP estimator for ihéection partition in a general tree. However,
for simplicity, we will henceforth approximate the MAP estitor with a Voronoi partition of the infection graph

G, and present simulation results in Sectioh V to verify thefgrenance of this estimator.

B. Estimation of Infection Sources
We now consider the problem of estimating the set of infectiourcesS. When|S| = 1, our estimation problem
reduces to that in [17], which considers only the single seunfection problem. In the following, we introduce

some notations, and briefly review some relevant results fb/].

3A connected subgrapH = (V', E’) of G, spansS if S c V'. The subgraptH is minimal if it has the least number of nodes amongst
all connected subgraphs that spsin



Fig. 2. An example infection graph with = {s1,s2}

A path between any two nodesandv in G,, is denoted a®(u,v). For any set of node§ in G, consider
the minimal connected subgragh C G,, that spansS. Treat this subgraph has a “super” node, with the tige
rooted at this “super” node. For any node= G,,\H, we defineT,(S) to be the tree rooted at with the path
from v to H removed. Fow € H, we defineT,(S) to be the tree rooted at so that all edges betweenand its
neighbors inH are removeH.We say thatl,(S) is the tree rooted at with respect to (w.r.t.)S. For any subset
of nodesM C G, we let Ty;(S) = UuenT,(S). An illustration of these definitions is shown in Figurk 2. If
S = {s1,..., sk}, we will sometimes use the notatidi (si, ..., s;) instead.

Let C(S | Gyn) = |Gy, S)| be the number of infection sequences. Suppose ¢hé a regular tree where
each node has the same degreeS I {s}, we have for any infection sequenee N,(o;,G) = 1 and from
(B), we havep;(c | G,s) is identical for allo € Q(G,,,s). Lemmall then shows th&(G,, | s) = C(s | G,).
Therefore, when there is a single source node, the MAP estirfar the infection source is obtained by evaluating

S = argmax,eq, C(v | Gy), which seeks to maximiz€'(v | G,,) over all nodes. The following result is shown
in [17].

Lemma 2. For any nodev € G,,, we have

Cw|Gp)=n! [] ITu(w)|™". (8)

UEGn
We observe that each terfi, (v)| in the product on the right hand side (R.H.S.) [df (8) is the hanof nodes

in the sub-tred’,(v) (and which appears when we account for the number of perionsadf these nodes). We can

think of the terms in the product being ordered accordingh®ibfection spreading sequence, i.e., each time we

reach a particular node, we include terms corresponding to the nodesan potentially infect. This interpretation

is useful in helping us understand the characterizatioreiming B for the case when there are two infection sources.
To computeC(v | G,,), an O(n) algorithm based on Lemnid 2 was provided [in|[17]. We call thgo@thm

the Single Source Estimation (SSE) algorithm. We refer #ader to[[17] for details about the implementation

of the algorithm. Although findingS by maximizing C(s| Gy) is exact only for regular trees, it was shown in

that this estimator has good performance for otherselaf trees. In particular, & is a geometric tree (cf.

‘As T,(S) is defined onG,, its notation should includé,,. However, in order to avoid cluttered expressions, we dfgpin our

notations. Confusion will be avoided through the contextvimich these trees are referenced.



Section[Il-0), then the probability, conditioned dh= {s}, of correctly identifyings using C(s | G,,) goes to
one asn — oo. Inspired by this result, we propose estimators based ontitjea related taC'(S | G,,) for cases
where|S| > 1. In the following, we first discuss the case whésé = 2, and extend the results to the general case
where |S| is unknown in Sectiof TlI-E. We then numerically compare puoposed algorithms with a modified

SSE algorithm adapted for finding multiple sources in Sedib

C. Two Infection Sources

In this section, we assume that there are two infection &surand propose approximations that allow us to
computeS in @) with reasonable complexity.

Let S = {s1,s2}. If G is a regular tree with node degree we have from[(b) that for any infection sequence
Ul

pi(o [ G,8) = (2m+ (I —1)(m —2) —2145yy)

where x is the index of the last node in the path betwegrand s, to be infected. We note that varies from
sequence to sequence. However, the probabilities | G, S) are dominated by those sequences with small values

of x. Therefore, in the same spirit &5 [17], we approximate thienasor S by maximizingC/(S | G,,) over all two

node setsS.
Given two nodes: andv in G, suppose thap(u,v)| = m. For any permutatiog = (1, ...,&,,) of the nodes
in p(u,v), let
L& s1,80) = > |Te, (51, 52)) ©)
j<i

be the total number of nodes in the trees rooted at the firsbdes in the permutatio§. For w € p(u,v),
recall thatQ(p(u,v),w) is the set of infection sequences in the graph, v) with w as the infection source. Let
Qp(u,v),w) = {£ = (w,0) : ¢ € Qp(u,v),w)} be the set of infection sequences augmented withs the
first node in the sequence. We have the following charaetiéoiz for C(s1,s2 | Gy,). The proof can be found in

Appendix[C.

Lemma 3. Consider any two nodes and ss in G,,, and suppose thai(s1, s2) = (s1, u1, . . . , U, s2) With nodes
ul, -, Uy N G,. We have

Cls1,80| Gn) = (0 =2)! - q(ur, umss1,2) [ [Tulsr,s2) 7, (10)

u€G,\p(s1,52)
where
q(ur,umss1,99) = > [ [ L& s1,92) 7 (11)
geri=1

and



10

Furthermore, forl <i < j <m, q(u;,u;; s1, s2) satisfies the following recursive relationships
qui, i 51,52) = [ Tpus ) (51, 52)| 7 (q(igr, ugs 51, 52) + q(ui, ujo1; 51, 52)) for i < g, (13)
and
q(v,v; 51, 82) = |Ty(s1,89)| " Vv e p(ur, tpy). (14)

The characterization faf'(s1, s2 | G,,) is similar to that for the single source caselih (8), exceptte additional
q(u1,um; s1, s2) term. Each sequence in the $etan be interpreted as thmeverseinfection sequence of the nodes
in p(u1,u,,) due to the sources; ands,. The sefl” then consists of all possible infection sequences for taplgr
p(u1,u,,). For each sequence= (¢1,...,&,) € T, each terml;(¢; s1, s2) in the product in the R.H.S. of (11)
corresponds to the number of nodes in the grdph  .(s1,s2), i.e., as the infection spreads §p.1, &; is a
potential node thag;,; can infect, and, . ¢,(s1,s2) is the subgraph that will be infected Ryif &; is the only
source. The other terms correspondingltg(s;,s2), Wwherew € Tg,,, (s1,s2) appear in the product term on the
R.H.S. of [10).

By utilizing Lemmal3, we can computé(u, v | G,,) for any two nodes: andv in G,, by evaluatingT,, (u, v)]
for all nodesw € G,,, and the quantityy(u,, u,,; u,v), wherep(u,v) = (u,uq,...,un,v). In order to evaluate

|Tw(u,v)|, we make the assumption that the degree of every node is bounded.
Assumption 2. Every node inG' has bounded degree.

For each nodev and its neighbow, recall thatT,,(u) is the subtree rooted at w.r.t. u. With Assumptior{ 2,
Algorithm [ allows us to computg, (u) = T3 (u)| and guw(uw) = [[,er, () [Tv(w)| for all neighborsu of w, and
for all w € G,, in O(n) time complexity. Choose any nodec G, and considelG,, as a directed tree with
as the root node, and with edgesah, pointing away fromr. Let pa(w) be the parent ofv in the directed tree
Gy,. Starting from the leaf nodes, let each non-root nade G,, pass two messages containifig(pa(w)) and
gw(pa(w)) to its parent. Each node stores the values of these two mess$@gn each of its children in a local
database, and computes its two messages to be passed teeit$ foam this database. Whenhas received all
messages from its children, a reverse sweep down the tramées b that at the end of the algorithm, every node
w € Gy, has stored the valuesf, (w), g,(w) : v € N(w)}. The algorithm is formally described in Algorithi 1,
wherech(w) is the set of child nodes af in the directed tre€~,,. The last product term on the R.H.S. 6f{10)
can then be computed using

g(si,s) =[] T g, (15)

wep(s1,52) TEN (w)\p(s1,52)
and taking its reciprocal.

To computeC(sy, sy | Gy,) in (@0), we still need to computg(uy, u,; s1, s2). The recursive relationships{13)-
(I4) allow us to compute(uy, wu,,; s1,s2) for all s1,s2 € G, in O(n%d?) complexity, whered, is the maximum

node degree. The computation proceeds by first consideaioly air of neighborsu, v). Both nodes have at most
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Algorithm 1 Tree Sizes and Products Computation
1 Inputs: G,

2: Choose any node € G,, as the root node.
3: for w e G,, do
4. Store received messag¢s(w) and g, (w), for eachz € ch(w).

5. if w is a leafthen

6 fulpa(w) =1

7: guw(pa(w)) =1

8: dse

9: fw(pa(w)) = Zméch(w) fl‘(w) +1

100 gulpa(w) = fu(pa()) - e 9()
11:  end if

12 Store foaw)(w) = n — fu(pa(w)).

13:  Passfy(pa(w)) and g, (pa(w)) to pa(w).

14: end for

15: Setgpa(r (r) = 1.

16: for w € G,, do

17:  Store received messagg, .,,)(w) from pa(w).

18: if w is not a leafthen

19: for x € ch(w) do

20: 9uw(@) = fu(®) - Gpa@w) (W) - [1yecnw) (o3 9y (W)
21: Passg,(x) to x.

22: end for

23:  end if

24: end for

d. neighbors each, so that we need to evalyatev; s, s2) for all s; € N (u)\p(u,v) andsy € N'(v)\p(u,v). This
requiresO(d?) computations. The computed values ahgl, . (s1,s2) are stored in a hash table. In the next step,
we repeat the same procedure for node pairs that are two Ipaps and so on until we have considered every pair
of nodes inG,,. Note that for a patffu, ..., u,,) ands, s; neighbors ofu; andu,, respectivelyg(ui, un,; s1, s2)

can be computed in constant time from1(13) @82, um; s1,52) = q(u2, um;u, s2) and q(uy, um—1; s1, $2) =
q(u1, um—1; 81, um). A similar remark applies for the computation (f,,,, .,,.)(s1, s2)|- In addition, each lookup

of the hash table take®(1) complexity sinceG,, is known and collision-free hashing can be used. Therefore,
the overall complexity iD(n?d?). The algorithm to compute the infection sources estimatdoimally given in

Algorithm [2. We call this the Two Source Estimation (TSE)althm, and it forms the basis of our algorithm for
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Algorithm 2 Two Source Estimation (TSE)
1: Inputs: G,

2: Let (s7, s3) be the maximizer of’(-,- | Gy,). SetC* = 0.
3: for d = 1 to diameter ofG,, do

4: for eachs; € G,, do

5: for eachsy such thatd(s, s2) = d do

6: Let p(s1,82) = (S1,U1,y. .., Ug—1,S52).

7: if d =1 then

8: q(ui,ug—1;s1,s2) = 1.

9 elseif d =2 then

10: Storeq(uy,ui; s1,52) = | Ty, (51, s2)| ! and|Ty, (s1, s2)|.

11: else

12: Lookup [Ty, ua-s) (51, ua—1)]s q(ug, ua—1;u1,52), andq(uy, ug—2; s1,Ug—1)-
13: Store

T pur ua—) (815 82)] = |Tp(uy ug_o) (815 wd—1)] + [Ty, (51, 52)].

14: Store
Gty g1 51, 52) = q(ug,ug_1;u1, 82) + q(ur, ug_9; 817ud—1)'
T (s uar) (51, 52)
15: end if
16: Computeg(sy, s2) from (I3).
17: C(s1,82 | Gp) = (n—2)q(uy, ug—_1; 1, 52)/9(s1, 82).
18: Update (s}, s5) andC* if C(sy,s2 | Gy) > C*.
19: end for
20:  end for
21: end for

multiple sources estimation in the sequel.

D. Geometric Trees with Two Sources

In this section, we study the special case of geometric tepose an approximate MAP estimator for geometric
trees, and provide theoretical analysis for its performeakdrst, we give the definition of geometric trees and prove
some of its key properties. Then, we derive a lower bound’$ | G,), and propose an estimator based on this
lower bound. We show that our proposed estimator is asymptlyt correct, i.e., it identifies the actual infection

sources with probability (conditioned on the infection smm®ms) going to one as the infection gragh becomes
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large. For mathematical convenience, instead of lettiegnilimber of infected nodes grow large, we let the time
t from the start of the infection process to our observatioretbecome large.

Our definition of a geometric tree generalizes from thalif][Let S = {s1, s2} be the infection sources. Let
M = p(s1,s2)\5, and define the setl to consist of the element/, and all neighbors of the infection sources
except those on the paji{si, s2). For eachu € A, let T} (s1, s2) be defined in the grapt¥ in the same way as
T.(s1,s2) is defined forG,,. For eachu € A, and eachv € T (s1, s2), let n,(v,r) be the number of nodes in
T!(s1,s2) that are at a distance from v. Then we say tha& is a geometric tree if for al € A, and for all

v € T)(s1,s2), we have
br* < ny(v,r) < er®, (16)

wherea, b, and ¢ are fixed positive constants with< ¢. The condition [(I6) implies that all trees defined w.r.t.
the infection sources are growing polynomially fast at altbe same rate. As we have assumed that the infection
rates are homogeneous for every node, the resulting infecfiaphG,, will also be approximately regular with

high probability. We have the following properties for a gesiric tree, whose proofs are in Appenfik D.

Lemma 4. Suppose that; and s, are the infection sources, an@ is a geometric tree. For any € (0,1), let &
be the event that all nodes within distange — t—/2+<) of either source nodes are infected, and no nodes greater
than distancet(1 + t—1/2+5) of either source nodes are infected. Then, there exissuch that for allt > ¢,

P(&) > 1 — e. Furthermore, conditioned o#;, we have for allu € A,

Nmin(t) < |Tu(31782)| < Nmax(t)7 (17)
where
b 1 a+1
Noin(t) = t—t2T¢—2 , 18
0 =172 ( ) (18)
and
1 a+1
— §+€
Noa(t) = 77— (t 4t ) . (19)
In addition, fort > ¢y, we have
Niin (t) - b

Nul®) = et~
The infection sequences countin10) is not amendable tlysisaln the following, we seek an approximation to
simplify our analysis. Fogy, s2 € G,,, suppose thab(sy, s2) = (s1,u1, ..., Un, S2), With p = |p(s1, s2)| = m + 2.
Instead of computing’(s1, s2 | Gy,), we consider a new infection graghf, with two “virtual” nodesz;, i = 1,2
added, where; is attached t@; (see Figurél3). We now consid€f(xy, z2 | G,) > C(s1,s2 | Gy). Since the trees

rooted atz; are single node trees, we have

C(z1,z2 | Gy) = C(s1,22 | Gp) 4+ C(x1, 52 | G)
<2(n—1)C(s1,s2 | Gp),
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Fig. 3. Addition of virtual nodes:; and .

where the last inequality follows becausesifandxzs are sources, thes, can be inserted in any of at most- 1
positions in an infection sequence frdMG,,, {s1, s2}), so thatC(s1,z2 | G5,) < (n—1)C(s1, s2 | Gy). A similar
argument holds fot’(z1,s2 | G,,) < (n— 1)C(s1,s2 | Gp).

Let £ = (&,...,&,) be a permutation of the nodes jrfs1, s2) such that|Te: (s1, s2)| < |T¢: (s1, s2)| for all
1 <i<j<p. LetIf(s1,s2) = I;(§s1,s2) (cf. the definition in[(9)). Then]}(s1, s2) is the total number of
nodes in the biggest trees i 7, (s1,s2) : u € p(s1,s2)}. From LemmdR, we have

C(x1, x5 | GI) >n!-2P71 ﬁ[f(sl,@)_l H |Tou(s1,52)| 7, (20)
i=1 w€G,\p(s1,52)

where the inequality holds becaudd = 2°~!, and each term in the sum on the R.H.S.[ofl (11) is lower bounded
by [T0_, I; (s1,s2)"!. We use the lower bound if {R0) as a proxy 6tsy, s2 | G,,). However, we have used a

2

very loose lower bound i _(20), so we propose the estimator

S =arg max C(s1, 52 | Gn), (21)
S1,82€0G,
where
Cls1,s2 | Gn) =nl-Q(s1,52)  [[ |1 Tuls1.82) 7 (22)

ueG,\p(s1,52)

Q(s1,52) = [2(1+ )P [[ I (s1,52) 7",

=1
and/ is a fixed positive constant, to be chosen based on prior letwye about the grapfi. Algorithm[2 can be
modified to find the maximizer fof (-, - | G,,). We call this the geometric tree TSE algorithm. The follogvnesult
provides a way to choosk and shows that our proposed estimafois asymptotically correct in a geometric tree.

A proof is provided in AppendikE.

Theorem 2. Suppose thatr is a geometric tree with infection sourc€s= {s1, s2}. Letd;, andd,.x be constants

such thatdeg(s;) € [dmin, dmax) for i = 1,2. Suppose that

dmin > g + % V 2dmax- (23)

Then, for anys in the non-empty interval

Cdmax b(dmin - 2)
(b(dmin — 1) - 17 - 1) ) (24)
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we have
lim P(S=5|S)=1.
t—o0

Theorem P implies that if we know the constants governingégelarity condition[(16) foZ, we can choose &
so that our estimato$ gives the true infection sources with high probability iétimfection graphG,, is large. The
class of geometric trees as defined byl (16) can be used to madelis scenarios in practice, e.g., a tree spanning
a wireless sensor network with nodes randomly scatteredieMer, the assumptiof (1L6) may also be overly strong
for other applications. In Sectidn] V, we perform numericidées to gain insights into the performance of our

proposed estimator for different classes of tree networks.

E. Unknown Number of Infection Sources

In most practical applications, the number of infectionrses is not known a priori. However, typically we may
be able to guess the maximum number of infection soukggs, or we can choose a reasonable valuékgf
depending on the size of the infection gra@h. In this section, we presentteuristicalgorithm that allows us to
estimate the infection sources with a giveR.x.

We first consider the instructive case whétg,, = 2 and G is a geometric tree. In this case, the number of
infection sources can be either one or two. Suppose we ruggbmetric tree TSE algorithm af,,. We have the

following result, whose proof is in AppendiX F.

Theorem 3. Suppose that there is a single infection souscand G is a geometric tree witl{16) holding for all
nodesu that are neighbors of. Suppose that has degrealeg.(s) € [dmin, dmax), Wheredyi, and dy.x are
positive constants satisfyin@3). Then, for anys in the interval(24), the geometric tree TSE algorithm estimates
as sourcess and one of its neighbors with probability (conditioned eibeing the infection source) going toas

t — oo.

TheoreniB implies that when there exists only one sourcegabenetric tree TSE algorithm finds two neighboring
nodes, one of which is the true source. From Thedrem 2 andiystsan(d, if there are two sources, our algorithm
identifies the two source nodes, which are at least two hape #ach other, with high probability. Therefore, by
checking the distance between the two nodes identified bygdloeetric tree TSE algorithm, we can estimate the
number of source nodes in the infection graph. This observaogether with Theorerl 1 suggest the following
heuristic.

(i) Randomly choosé:,,., nodes satisfying Assumptidd 1 as the infection sources ambldiVoronoi partition

for G,,. Use the SSE algorithm to find a source node for each infecggion. Repeat these steps until for
every region, the distance between estimated source nate@sdn iterations is below a fixed threshold or a

maximum number of iterations is reached. We call this thedtidn Partition (IP) Algorithm (see Algorithm

B).
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Algorithm 3 Infection Partitioning (IP)

1: Inputs: An infection source sef©® = {s!” :i =1,... m} in G,.

2: Iterations:

3: for [ =1 to Maxlterdo

4:  Run the Voronoi partitioning algorithm with centersS$ff—1 to obtain the infection partitiopl(!) = Ug’ilAgl).
5. fori=1tomdo

6: Run SSE algorithm in4§l) to obtain

sl(-l) = arg max C/(s | Agl)).
scAl)

7. end for
g SO .= {sgl):izl,...,m}

9: if maxi<i<m d(sgl), sl(.l_l)) < n for some fixed small positive then

10; break
11:  end if
12: end for

13: return (SO, AD)

(i) For any two regions in the partition obtained from st@ptllat can be connected by adding an edgé&in
run the TSE algorithm in the combined region to determinéndré are indeed two infection sources. If it
is determined that there is only one infection source in thealdined region, we decrement the number of
source nodes, and repeat stBp (i). These two steps areedpedtl no two pairs of regions in the Voronoi
partition can be combined. The formal algorithm is giventes Multiple Sources Estimation and Partitioning
(MSEP) algorithm in Algorithm .

To compute the complexity of the MSEP algorithm, we note #giate the IP algorithm is based on the SSE
algorithm, it has complexity)(n). For each value of = 1,...,kyayx in the MSEP algorithm, there am@(k?)
pairs of neighboring regions in the infection partition.r@ch pair of region, the TSE algorithm mak@gn?)
computations. Summing over &ll= 1, ..., knay, the time complexity of the MSEP algorithm can be shown to be

O(k3 ,.n?). On the other hand, to compu@(S | G,,) for |S| = kmax Would requireO(n*=+) computations.

IV. IDENTIFYING INFECTION SOURCES ANDREGIONS FORGENERAL GRAPHS

In this section, we generalize the MSEP algorithm to idgntitiltiple infection sources in general graphisSuch
network structures are frequently encountered in prdaigglications. Examples include small-world networks][29
and power grid networks [29]. In_[17], the SSE algorithm ideexied to general graphs when it is known that

there is only a single infection source in the network usirtgearistic. The algorithm first chooses a nodef G,,
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Algorithm 4 Multiple Sources Estimation and Partitioning (MSEP)
1: Inputs: G,, and kypax.

2: Initialization:

3: k := kmax and chooses := {s1,...,s;} randomly inG,,.

4: |terations:

5. while k > 1 do

6: (S,.A) = Algorithm IP(S)

7. §:=5

8: for all regionsA; and 4; in the partition A such that there exists an ed¢e v) in G,, with v € A; and
veAjdo

9: Set (u,v) = Algorithm TSEA; U A;).

10: if d(u,v) <7 then

11: Merge A; and A;, sets; = u and discards;
12: k=k—1

13: break

14: end if

15:  end for

16: if S =5 then

17: break

18:  end if

19: end while

20: return (S, A)

as the root node, and generates a spanningfitgés, G,,) of G,, rooted ats using the breadth-first-search (BFS)
procedure. The SSE algorithm is then applied on this sparnée to computé&(s | Ts(s, Gy,)). In addition, the
infection sequences count is weighted by the likelihoodhef BFS tree. This is repeated using every nodé&'jin
as the root node, and the nodeawvith the maximum weighted infection sequences count is ehas the source

estimator, i.e.,

[VARS

= arg m%X P(Uv | U)C(S | bes(U>Gn))>

vely,
whereo, is the sequence of nodes that corresponds to an infecti@adipg fromv along the BFS tree. It can
be shown that this algorithm has complexidin?). For further details, the reader is referred|[tol [17]. We i
algorithm the SSE-BFS algorithm in this paper.
We adapt the MSEP algorithm for general graphs using the $ir® heuristic. Specifically, we replace the
SSE algorithm in lindJ6 of the IP algorihm with the SSE-BFSoaiilpm. In addition, in lined_ P, we run the TSE
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Fig. 4. Estimating the number of infection source nodes.

algorithm onTis(si, Ai) U Tigs(sj, A;), where the two BFS trees are connected by randomly seleatingdge
(u,v) In G, With u € Tig(s4, A;) andv € Tigs(s5, A;). We call this modified algorithm the MSEP-BFS algorithm.
Since the worst case complexity for the SSE-BFS algorithid(ig?), the complexity of the MSEP-BFS algorithm
can be shown to b& (k3. n?), which is the same complexity as the MSEP algorithm. To yetiE effectiveness

of the MSEP-BFS algorithm, we conduct simulations on bothttsgtic and real world networks in Sectibnh V.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results on diffemeetivork structures to verify our proposed algorithms.
We first consider geometric tree networks and regular tréearks with various numbers of infection sources,
and then we present results on small-world networks and lawedd power grid network. We also apply our
algorithms to the contact tracing data obtained during theeB Acute Respiratory Syndrome (SARS) outbreak in
Singapore in 2003 [30].

A. Synthetic Networks

We perform simulations on geometric trees, regular treed, samall-world networks. The number of infection
sources are chosen to be 1, 2, or 3, and wekggt = 3. For each type of network and each number of infection
sources, we perform000 simulation runs with 500 infected nodes each. We randombosé infection sources
satisfying Assumptioh]1 and obtain the infection graph gwating the infection spreading process using the SIR
model. Finally, the MSEP or MSEP-BFS algorithm for tree rmtg and small-world networks respectively, is
applied to the infection graph to estimate the number andtioes of the infection sources. The estimation results
for the number of infection sources in different scenarias shown in Figur&l4. It can be seen that our algorithm
correctly finds the number of infection sources more tha of the time for geometric trees, and more thHar¥
of the time for regular trees. The accuracy of about 69.2%sfoall-world networks is worse than that for the
tree networks, as the infection tree for a small-world neknas to be estimated using the BFS heuristics, thus

additional errors are introduced into the procedure.
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simulation settings average average error distances | minimum infection region
network topology | |S| || diameter| MSEP/MSEP-BFS| nSSE| covering percentage (%)
) 2 63.7 0.56 12.86 98.6
geometric trees
3 66.2 0.89 15.12 94.4
2 40.5 0.94 6.08 97.0
regular trees
3 43.7 1.06 6.53 89.6
2 35.5 2.99 8.27 93.8
small-world networks
3 40.9 2.9 10.36 87.7
) 2 27.3 3.86 7.94 92.9
power grid network
3 30.8 3.38 9.01 87.9
TABLE |

AVERAGE ERROR DISTANCES AND MINIMUM INFECTION REGION COVERNG PERCENTAGE FOR VARIOUS NETWORKSCONDITIONED ON
CORRECT SOURCE NUMBER ESTIMATION

When it is known that there are more than one infection sayrae compare the performance of the MSEP
algorithm with a naive estimator based on the SSE algoritnnthe estimator for tree networks, we first compute
C(u| Gy) for all nodesu € G, and choose théS| nodes with the largest counts as the source nodes. In the
small-world networks, we use the SSE-BFS algorithm. We ttadl the nSSE algorithm. In comparison, the MSEP
or MSEP-BFS algorithm does not require us to kn@y a priori. However, to perform a fair comparison, we
consider only those simulation runs in which the MSEP or M&HS algorithm correctly estimates the number
of infection source nodes. The error distance is found by fiigtching the estimated source nodes with the actual
sources so that the sum of the distance between each estismiece and its match is minimized. We then divide
this sum by the number of source nodes to obtain the errcardist

The histogram of the error distances for the different typfesetworks are shown in Figuké 5. The error distances
averaged over all simulation runs are provided in Table ea@y, the MSEP/MSEP-BFS algorithm outperforms
the nSSE algorithm in every case. Moreover, the performafithe nSSE algorithm deteriorates with increasing
|S|. This is to be expected as the SSE algorithm assumes thabtleewith the largest infection sequence count
is the only source, and this node tends to be close to thendisteenter([31] of the infection graph.

The MSEP/MSEP-BFS algorithm also estimates the infectagion of each source. To evaluate its accuracy,
suppose that the infection sources &re-= {si,...,sx}, and let the true infection region of sourggbe A4, ;. Let
the MSEP/MSEP-BFS estimated infection regionspfbe flm. We define the correct infection region covering

percentage for; as the ratio betweeh%im N Ayl and|A, ;|, and we compute the minimum (or worst case)

infection region covering percentage as
. ’An,z N An,z’
min —_—.
We find that the minimum infection region covering perceeté&g more than 87% for all networks, as shown in

Table[].
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Fig. 5. Histogram of the error distances for various network

B. Real World Networks

In this section, we verify the performance of the MSEP-BFgbathm on real world networks. We consider the
western states power grid network of the United Stdtes [@88 contact tracing data collected during the SARS
epidemic in Singapore in the year 20031[30].

We simulate the infection spreading process on the power rggtwork, which containd941 nodes. For each
simulation run, 1, 2 or 3 infection sources are randomly endsom the power grid network under Assumption
[, and the spreading process is simulated so that a totad(bhodes are infected. For each value|8f, 1000
simulation runs are performed. The simulation results hosve in Figure§ 4 and[5 (d), and Table |. We see that the
MSEP-BFS algorithm significantly outperforms the nSSE athm, with an average error distance of less than 4
compared to an error of more than 7.9 for the nSSE algorithme. minimum infection region covering percentage
is also above 87%.

In our final numerical study, we apply the MSEP algorithm t@teetwork of nodes that represent the individuals
who were infected with the SARS virus during an epidemic img@jpore. The data is collected using contact tracing
of patients [[30], where an edge between two nodes indicatethiere is some form of interaction or relationship
between the individuals (e.g., they are family memberssttates, colleagues, or commuters who shared the same
public transport system). A fragment of the SARS infecti@iwork is shown in Figur€]6. The arrows indicate

the chain of transmission, and the index node is the infectimurce. We test the MSEP algorithm on a network
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Fig. 6. Part of the SARS infection network with a single seufabstracted from Figure 1 df [30]).

of 193 nodes, assuming that there are at miggt, = 3 infection sources. It turns out that the MSEP algorithm

correctly estimates the number of infection source to be and correctly identifies the real infection source.

V1. CONCLUSION

We have derived estimators for the infection sources andmegvhen the number of infection sources is bounded
but unknown a priori. The estimators are based only on kndgdef the infected nodes and their underlying network
connections. We provide an approximation for the infecsonrce estimator for the class of geometric trees, and
when there are at most two sources in the network. We showthitgaestimator asymptotically correctly identifies
the infection sources when the number of infected nodes gtamge. We also propose an algorithm that estimates
the number of source nodes, and identify them and their otispenfection regions for general infection graphs.
Simulation results on geometric trees, regular trees, Isnmld networks, the US power grid network, and the
SARS infection network show that our proposed estimatiat@dure performs well in general, with an average
error distance of less than 4 when the number of source nedeariiectly estimated. The estimation accuracy of
the number of source nodes is over 65% in all the networks wsider, with the geometric tree networks having
an accuracy of over 90%. Furthermore, the minimum infectégion covering percentage is more than 87% for all
networks. Our estimation procedure assumes only knowlefigee underlying network connections. In practical
applications where more information about the infectiongess is available, a more accurate and intelligent guess
of the number of infection sources can be made.

In this paper, we have adopted a simple SIR infection mod&é Womogeneous spreading rates, allowing us
to derive analytical results that provide useful insighi®iinfection source estimation for practical networks.
However, this simplistic diffusion model does not adeglyatapture the real world dynamics of many networks.
Future research includes the use of richer diffusion mottels allow the inclusion of drifts and other dynamics
in the infection spreading process, and tools from stasistd approximate optimal estimators for the infection
sources. Our proposed algorithms find a set of nodes mody likeinfect or influence a network, and are thus
potentially useful for various practical applicationsrExample, our algorithm may be integrated with non-model-

based consensus methods|[32].,] [33] to design multi-agerttalcsystems that uses only a small subset of agents
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as controllers. In cloud-centric media platforms][34],][3%ariants of our proposed algorithm may be used for

intelligent content cache management. These are all afefasuoe research.

APPENDIXA

PROOF OFLEMMA [I]

The proof of [6) is the similar to that of (5) in [17]. For conepness, we repeat the argument here. The posterior

probability of any infection sequeneec Q(G,, S) is given by

n—=k
P | S) = H P(oy | S,o1,...,001-1).
=1

Since infection times are independent exponential randariables with the same rate, the next infected node is
chosen from the set of susceptible nodes with probabiligpertional to the number of infected neighbors. We
haveP(o; | S,01,...,01-1) = Ny(01,G)/ny, wheren; = 3, Ni(u), with J; being the set of susceptible nodes
and N;(u) the number of infected neighbors of immediately before théh infection. We show by induction on
[ thatn; = 1/p(o | Gy, S). The claim trivially holds for/ = 1. Suppose that it holds fdr— 1. Consider an urn
containingn; balls, with each ball colored in one ¢#;| colors. Each color corresponds to one node/jnand
the number of balls of the same color corresponds to the nuwibi@fected neighbors of that node. When
becomes infectedleg;(0;_1) — N,(0;—1,G) new balls are added to the urn, ang(o;_1,G) balls are removed
from the urn. Thereforep; = n;_1 + deg(01-1) — 2N, (0y-1, G), and the claim follows by induction. The proof
of (@) now follows from [2).

To show [[T), let nodes that are infected by souscde colored with color, wherei = 1,...,k. The color
of a node that is not on a path between two infection sourcesiguely determined with probability one when
conditioned on the coloring off,,, therefore it suffices to evalual® .4, N H, | S, H,). The setQ(H,, S, A,) is
the set of infection sequences compatible with the coloimngosed byA,,. Therefore, the same argument as in

the proof of [6) yields[{7). The proof of the lemma is now coetgl

APPENDIX B

PrROOF OFTHEOREM[]

Let nodes that are infected by sourgebe colored with colori, with ¢ = 1,..., k. Then a partition4,, is a
coloring of the graphH,,. For any infection sequeneg and for any path in,, connecting two infection sources,
we can find the index of the last node on this path that is iefédly either source. Lef, be the set of such
indices. We havelegy (0;) = 2 for all [. We also haveN, (o;, H,,) = 1 or 2 depending on whethdrbelongs to

J, or not, respectively. Fronii5), we have
—1

pi(o | Hy, S) = Zdean(s) -2 Z >4 : (25)

sesS j€J,
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Choose two sources ands; and letm be the number of nodes in the path connectipgnds;, excluding the
source nodes. Suppose that [m/2] nodes in this path have color Construct a new coloringl], so that[m /2]
nodes inp(s;, s;) closest tos; have color and the rest have colgr The rest of the nodes i/, have the same colors
as that in4,,. Each infection sequeneec Q(H,, S, A,) corresponds to an infection sequemces Q(H,, S, A,),
where the lastt = r» — [m/2] color i nodes inc become the last color j nodes ino’. From [25), we have
p(o | Hy,S) = pi(o’ | Hy, S) for all I Since([m"}ﬂ) > (™), we havelQ(H,,, S, A,)| > |Q(H,, S, Ay)
Lemmall yieldsP(A,, | S,G,,) > P(A, | S,G).

The same argument can be repeated a finite number of timedl feaiths in H,, connecting infection sources.

, therefore

This shows that the MAP estimatoftn(S) is a Voronoi partition ofG,,, and the proof is complete.

APPENDIX C

PROOF OFLEMMA [3

To simplify notations, we writel}, (s, s2) as Ty, with the implicit understanding that all trees are definedtw
{s1, s2}. The number of infection sequences can be found by courimgamber of ways to form such a sequence.

Then — 2 slots in a sequence are occupied by nodes filam{s;}, i = 1,2, andT),, ... Therefore, we have

2

C(si | Ts,) R(ui,um)
C(s1,52 | Gn) = (n—2)!H R i !
i=1 : tstm )

(n—2)! 1
~me o L R
p(u17u7n) ’ ’UETSI' =12 v

v#£S81,82

where R(u;,u;) for i < j is the number of ways of permuting the nodesTiy,,, ,,,) such that the infection
sequence property is maintained, and the last equalitgvislifrom LemmdXR. In the following, we show that for
I<i<j<m,
R(ui, uz) = [Thu, u! H ﬁ - q(ui, uj; 51, 82). (26)
VED p(uy uy) \P(Wi u5)

The proof proceeds by induction gn—i. If j = i, we haveR(u;,u;) = C(u; | T,,,) and the claim follows from
Lemmal2. Suppose that the claiin](26) holds for all nodgsand v, such thatp — k < j — i. The number of
permutationsi(u;, u;) can be computed by considering a sequence witk= |1}, ,,,y| slots. The first slot can

be filled with eitheru; or u;. Therefore, we have

C(ul | Tu) R(ui-l-lyu') C(u] ‘ Tu) R(ui,u-_1)>
R(uj,uj) = (m —1)! < ‘ LA J J
| 7= ) (1T = 1! ’Tp(“i+17“j)“ (’Tu:" - 1! ’Tp(ui,ujﬂ)“

= (m — D! (q(uiv1, ujs s1, 82) + q(ug, uj—1; 81, 82)) 11
VED p(uyuy) \P(Wisuys)

ITo|’

where the last equality follows from the inductive hypoikemnd Lemm&l2. The clainh (R6) now follows from [13).
Finally, (I1) follows by an inductive argument usiig(13dafi4), which we omit. The proof is now complete.
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APPENDIXD

PROOF OFLEMMA [

The proof follows easily from Theorems 5 and 6of|[17]. Coesithe infection spreading along a pathn. Let
I1(t) be the counting process of the number of infected nodessrptith. The proced$(¢) consists of exponentially
distributed arrivals with rate 1, and at most one arrivahwite 2 if the path is between the two infection sources.
Let IT;(¢) be a unit rate Poisson process corresponding to the ratevalsrThenlIl; (¢) < II(¢) < II;(¢) + 1.

From Theorem 6 of [17], we have for any positiye< 0.2,

PAI() < (1 7)) < PG < o1~ )~ ) S exp (5074 1)),

B(II() > £(1 + 7)) < P(IL (£) > £(1 + 7)) < exp (—im?) .

The rest of the proof is the same as that of Theorem % df [14],tha proof is complete.

APPENDIX E

PROOF OFTHEOREM[Z

We first show that undef (23), the intervA[124) is non-emptye condition[(2B) implies that

3 c2
dmin > 5 + 2dmaxb_z -

9

-

which after some algebraic manipulations yields

bz(dmin - 1)(dmin - 2) > 2C2dmaxy
Cdmax b(dmin - 2)
< < .
- b(dmin — 1) 2c

Therefore[(2¥) is a non-empty interval. Fixyan the interval. Then for alk > 0 sufficiently small, we have

b(dmin — 1)(1 + 9) - 1
Cmax 1—¢€’
b(dmin — 2) 1

> .
2(1+9)c 1—e¢

Recall thatt is the time from the start of the infection spreading to ousesbation ofG,,. From Lemmd4, for

eache, there existg, such that ift > ¢y, we have

(dmin - )(1 + 5)len( )
max max(t)

(dmln - 2)Nm1n(t)
2(1 + 6) Nmax(?)

We will make use of the two inequalitiels (27) and](28) exteslyiin the following proof steps. Lef; be the event

>1, (27)

> 1. (28)

defined in Lemm&l4. Then from Lemrh& 4, we have #or ¢,

P(S=S|8)>P(S=5|S,EPE|S)>(1—-eP(S=S|85,&). (29)



Fig. 7. lllustration of the network structure whei # vo. Not all nodes are shown.

In the following, we show thaP(S = S | S,&) = 1 for t > to. The proof then follows from[{29) as can be
chosen arbitrarily small.

To show thatP(S = S | S, &) = 1 is equivalent to showing that with probability or@(S | G,,) > C(um,v; | Gr),
for all node pairsu,,,, v; € G, such that at least one of them is notdnLet vy andvg be the first nodes ip(s1, s2)
that are connected te,, andv; respectively. We divide the proof into two cases, dependimgvhetheru, andvg
are distinct or not, as shown in Figurlgs 7 and 8.

Suppose thatiy # vg. A typical network for this case is shown in Figdre 7, wherel, n,p, and k are non-
negative integers, and at least oneugf andv; is not in S, i.e., eitherm +1 > 0 or n+p > 0. We letug = s7 if
n =20, andvy = s9 if p =0.

We will show that if eitherm + 1 > 0 or n 4+ p > 0, we have fort > t,

C(s1,80 | Gn)  Cls1,82 | Gn) Clug,vo | Gp)

~ == C—= > 1. (30)
Clum, v | Gn)  Cluo,vo | Gn)  Clum, v | Gn)

The proof follows by showing thaf!(ug, v | Gp) > C(um,v; | Gr), Where strict inequality holds ifn + 1 > 0,

and C(sy, s2 | Gn) > C(ug,vo | G,) with strict inequality holding ifn. + p > 0. From [22), we hav

C(ug,vo | Gp) Q(uo,v0) ] H

T (ug, v -1
C(um7vl | Gn) Q(umyvl) | ( 0 0)|

WEP(Um ,u1 )Up(vr,v1)

m+l+k+2 7x
(1 4 gy -tm+n iz I () 1

Hf:f I (up,vo)

| T (w0, v0)| "

WEP(tUnm u1)Up(vi,v1)
m—+l

> 204+ [ Fmw) - [ 1 Tu(uoswo) ™

i=1 WEP(t 1) Up(v1,01)
- { max{ [Ty, (s 00|, Lo, (W v0) 1} r*’
~ 12(1 +9) - max {|Ty, (ug, vo)|, | Ty, (uo, vo)|}
> |:(dmax - 2)Nmin(t) + 1] m-t
T | 2(1+46) - Nmax(t)

> 1,

if m + 1> 0. The first inequality follows becausk, , ;(um,v) > I} (uo,vo) fori =1,...,k + 2, and the last

inequality follows from [(28B) whert > .

*We define products over empty sets to be 1.
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O) ()= ()

IECICIORNC GH

Fig. 8. lllustration of the case whetg = vy = wo.

Let ¢ = degy(s1) + deg(s1). We have fort > t,

C(s1,52 | Gn)  Q(s1,52) _ H

Clug,vo | Gn)  Q(uo,v0) | T (10, v0)|

wep(s1,21)Up(y1,82)

k+2
H Iz?k(u(b UO)
=1
= [2(1+ )" P : 1T | T (w0, vo)|
I I*(s1,592) wep(s1,21)Up(y1,52)
=1
n+p+k+2
>R +o [ Lsis)™t 11 T (uo, o)
i=k+3 wep(s1,21)Up(y1,s2)

> [2(1 +0) - min {|T, (w0, vo)|, [ 15, (uo,vo)l}} e
- ¥ Niax(t) + 2

- {(1 + 0)(dinin — 1) - Nnin(t) + 1 + 5]"”

o dmameaX(t) + 1

> 1,

where the first inequality follows becaugg(ug,vo) > I'(s1,s2) for i = 1,...,k + 2, and the last inequality
follows from (21) if n + p > 0. The bound[{30) is now proved.
We next consider the case wherg = vy = wy in Figure[8, wherek, m andl are non-negative integers. When
t > to, we have the following bounds, which are straight forwaroseéoify and whose proofs are omitted here.
() I (um,v1) > (¢ — 2)Npin(t) + 2 > (dmin — 2) Nmin(t) for i =1,..., d(um,, v;) + 1,
(i) I7(s1,52) < ¢ Nmax(t) + 2 < 2dmaxNmax(t) + 2 for all i = 1,...,d(s1, s2) + 1,
(i) | T, (s v1)| > (1 = 2) Napin () + 2 > (dmin — 2)Nimin(t) for all i = 1,... .k — 1,
(V) |Tw(tm,v)| = (dmin — 1) Nmin(t) + 1 for all w € p(sq, s2),
(V) |Tw,(s1,82)| < Nmax(t) foralli=1,... .k —1, and

(Vi) |Tw(s1,52)| < Nmax(t) for all w € p(up,, v;).
The above bounds yield
é(sl, S92 ’ Gn)
C(um,’U[ | Gn)
B Q(Sl, 32) HwEGn\p(um,vl ’T (um,’l)l)’
Q(uﬁhvl) HwGG \p(s1,82) ’T (31732)’
dtm o)+ I, v7) Hf:_ll | T, (m, 01)| Hwep(sl,s2) | T (s vr)|

— f!] 5 d 1,892 —d( ||
( ( )) (87 ) ( L’Ul) =1 "
Hd(slv 2) 1 ('517'52) II?—_ |17Ul‘(817 2)|||w€o(17n’vl)|]w(,§]’$2)|
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Fig. 9. A typical network for a single source tree.

5 um’ Ul —d(Wm ,v)—1 Hd(umml s [* (uma Ul) d(sy,82)+1 Hwep(sl $2) ‘T (uM7 Ul)’
H - (2(1 +8)) - 201 + 6)) Slenss)
i=1 81’ 82)| Hwep(um,vl | (817 32)| Hz 11’ 2 ]*(517 82)

v

( min ) mln(t) o (dmin — 2)Nmin(t) At o)1 (1 + 5)((dmin - 1)Nmin(t) + 1) dor,ea)41

>1,

where the last inequality follows fronh (R7) arld [28). Thedten is now proved.

APPENDIX F

PROOF OFTHEOREM[3

Let ¢ be the elapsed time from the start of an infection spreadimm fa singles to the time we observé&’,,. We
wish to show that Algorithm TSE estimates as sourcesid one of its neighbors with probability (conditioned on
s being the infection source) convergingtast — oo. This is equivalent to showing that forsufficiently large,
and for each pair of nodes,,,v; € G,, where eitherd(u,,,s) > 1 or d(v;,s) > 1, there exists a neighbor of s
such thatC(s,r | Gp) > C(tm, v | Gn).

A typical network is shown in Figurel 9, wheke m and! are non-negative integers.it,! andk are positive,
we letr be the neighbor of that lies on the path connectingto u,, (i.e., the nodev; in Figure[9). Ifm and!
are positive and: = 0, thenr is chosen to be eithar; or v1. If m = 0, we must have: > 0 so thatw, = u,,

andr = wy. A similar remark applies for the cage= 0. Note thatm + [ > 0. For ¢ sufficiently large, we have

~ H ‘Tw(um7vl)‘
C(S,T ’ Gn) _ Q(S,T) ) WEG L\ p(Um,v1)
Clum, v | Gn)  Qtm, ) [I  [Tw(sr)
weG, \{s,r}
- [2(1 + 5)]1—(m+l) . H?HI_I—H I*(um,’ul) . Hpr(s,wk,l) |Tw(um’vl)|
[Te i) 05 Tu(sn)l- TT [Tulsr)l
WEP(Um ,v1)
T [T T, (s 1)
_ [2(1 +5)]1—(m+l) . H Ii*(um,vl) e m; Ul
i=1 [Tiz ’Twi(sﬂ“)‘ ) (H )]Tw(s,r)]
wEP(Um ,V;

‘TS(urmvl)’k_l
Nmax (t)k—2 . Nmax(t)m—i-l-i-l
(dmin _ 1)Nmin (t) m—+l+k—1
2(1 + 5) : Nmax(t)]

> 201+ 0] T, (g, )™

> [2(1 + 6)]" - [

> 1,
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where the last inequality follows fronh (28) and Lempia 4 foamts with a single infection sourde [17]. The proof

of the theorem is now complete.
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