About
22
Publications
11,999
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
566
Citations
Introduction
Research interests:
Understanding relationships between vegetation growth and hydro-climate drivers from the perspectives of:
- space and time;
- efficive soil water uptake;
- normal and extreme conditions;
- structure and functions
Skills and Expertise
Publications
Publications (22)
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land–atmosphere interactions. Moreover, changes in vegetation structure (e.g., leaf area index) and physio...
Vegetation plays an essential role in regulating carbon and water cycles, e.g. by taking up atmospheric CO2 through photosynthesis and by transferring soil water to the atmosphere through transpiration. Vegetation function is shaped by its structure and physiology: vegetation structure is determined by the amount of materials for plants and how it...
The response of vegetation physiology to drought at large spatial scales is poorly understood due to a lack of direct observations. Here, we study vegetation drought responses related to photosynthesis, evaporation, and vegetation water content using remotely sensed data, and we isolate physiological responses using a machine learning technique. We...
Global vegetation and associated ecosystem services critically depend on soil moisture availability which has decreased in many regions during the last three decades. While spatial patterns of vegetation sensitivity to global soil water have been recently investigated, long-term changes in vegetation sensitivity to soil water availability are still...
The productivity of terrestrial vegetation is determined by multiple land surface and atmospheric drivers. Water availability is critical for vegetation productivity, but the role of vertical variability of soil moisture (SM) is largely unknown. Here, we analyze dominant controls of global vegetation productivity represented by sun-induced fluoresc...
As global and regional vegetation diversity loss threatens essential ecosystem services under climate change, monitoring biodiversity dynamics and its role in ecosystem services is crucial in predicting future states and providing insights into climate adaptation and mitigation. In this context, remote sensing (RS) offers a unique opportunity to as...
As global and regional vegetation diversity loss threatens essential ecosystem services under climate change, monitoring biodiversity dynamics and its role in ecosystem services is crucial in predicting future states and providing insights into climate adaptation and mitigation. In this context, remote sensing (RS) offers a unique opportunity to as...
The Earth is greening in many regions due to increased temperature, higher atmospheric CO 2 concentration, and land use change. However, while climate change has been accelerating, greening has not kept pace in many regions. Here, we show that decreasing water availability and increasing atmospheric water demand are regionally coinciding with brown...
Interpretable Machine Learning (IML) has rapidly advanced in recent years, offering new opportunities to improve our understanding of the complex Earth system. IML goes beyond conventional machine learning by not only making predictions but also seeking to elucidate the reasoning behind those predictions. The combination of predictive power and enh...
Soil water availability is an essential prerequisite for vegetation functioning. Vegetation takes up water from varying soil depths depending on the characteristics of its rooting system and soil moisture availability across depth. The depth of vegetation water uptake is largely unknown across large spatial scales as a consequence of sparse ground...
Drought's intensity and duration have increased in many regions over the last decades. However, the propagation of drought‐induced water deficits through the terrestrial water cycle is not fully understood at a global scale. Here we study responses of monthly evaporation (ET) and runoff to soil moisture droughts occurring between 2001 and 2015 usin...
Soil water availability is an essential prerequisite for vegetation functioning. Vegetation takes up water from varying soil depths depending on the characteristics of their rooting system and soil moisture availability across depth. The depth of vegetation water uptake is largely unknown across large spatial scales as a consequence of sparse groun...
High streamflow in rivers can lead to flooding, which may have severe impacts on economy, society and ecosystems. Therefore it is imperative to understand their underlying physical mechanisms. Previous research has illustrated the relevance of several hydrological drivers, such as precipitation, snowmelt and soil moisture. However, the relative imp...
Terrestrial ecosystems are essential for food and water security and CO2 uptake. Ecosystem function is dependent on the availability of soil moisture, yet it is unclear how climate change will alter soil moisture limitation on vegetation. Here we use an ecosystem index that distinguishes energy and water limitations in Earth system model simulation...
Droughts cause serious environmental and societal impacts, often aggravated by simultaneously occurring heat waves. Climate and vegetation play key roles in the evolution of drought-associated temperature anomalies, but their relative importance is largely unknown. Here, we present the hottest temperature anomalies during drought in subhumid and tr...
Vegetation plays a vital role in the Earth system by sequestering carbon, producing food and oxygen, and providing evaporative cooling. Vegetation productivity extremes have multi-faceted implications, for example on crop yields or the atmospheric CO2 concentration. Here, we focus on productivity extremes as possible impacts of coinciding, potentia...
Vegetation plays a vital role in the Earth system by sequestering carbon, producing food and oxygen, and providing evaporative cooling. Vegetation productivity extremes have multi-faceted implications, for example on crop yields or the atmospheric CO2 concentration. Here, we focus on productivity extremes as possible impacts of coinciding, potentia...
Display for EGU2021: online discussion & abstract available at https://meetingorganizer.copernicus.org/EGU21/EGU21-3258.html
In recent years, many studies have focused on the changes of partial or single African ecosystems and the drivers of those changes. However, focusing only on partial or single ecosystems has limited the understanding of the relationships between the vegetation and climate changes in all of the African ecosystems. In this study, the temporal trends...