
Wang Xiulin- PhD
- Assistant researcher at Affiliated First Hospital of Dalian Medical University
Wang Xiulin
- PhD
- Assistant researcher at Affiliated First Hospital of Dalian Medical University
About
20
Publications
1,687
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
179
Citations
Introduction
Skills and Expertise
Current institution
Affiliated First Hospital of Dalian Medical University
Current position
- Assistant researcher
Additional affiliations
September 2016 - June 2020
Publications
Publications (20)
Non-orthogonal joint diagonalization (NJD) free of prewhitening has been widely studied in the context of blind source separation (BSS) and array signal processing, etc. However, NJD is used to retrieve the jointly diagonalizable structure for a single set of target matrices which are mostly formulized with a single dataset, and thus is insufficien...
Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalogram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection of seizures not only reflects the efficiency of the algorithm, but also greatly reduces the burden of manual detection during long-term electroenc...
Previous researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms of MDD. Neural oscillations exert a key role in coordinating the activity of remote brain regions, and various assemblies of...
Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different groups of participants are expected to have common or highly correlated brain activities and some individual dynamics. In this study...
Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate...
Most classification efforts for primary subtypes of lung adenocarcinoma (LUAD) have not yet been integrated into clinical practice. This study explores the feasibility of combining deep learning and pathomics to identify tumor invasiveness in LUAD patients, highlighting its potential clinical value in assisting junior and intermediate pathologists....
Data fusion models based on Coupled Matrix and Tensor Factorizations (CMTF) have been effective tools for joint analysis of data from multiple sources. While the vast majority of CMTF models are based on the strictly multilinear CANDECOMP/PARAFAC (CP) tensor model, recently also the more flexible PARAFAC2 model has been integrated into CMTF models....
Deep learning networks are state-of-the-art approaches for 3D brain image segmentation, and the radiological characteristics extracted from tumors are of great significance for clinical diagnosis, treatment planning, and treatment outcome evaluation. However, two problems have been the hindering factors in brain image segmentation techniques. One i...
Nonnegative tensor decomposition has been widely applied in signal processing and neuroscience, etc. When it comes to group analysis of multi-block tensors, traditional tensor decomposition is insufficient to utilize the shared/similar information among tensors. In this study, we propose a coupled nonnegative CANDECOMP/PARAFAC decomposition algorit...
Coupled matrix and tensor factorizations (CMTF) have emerged as an effective data fusion tool to jointly analyze data sets in the form of matrices and higher-order tensors. The PARAFAC2 model has shown to be a promising alternative to the CANDECOMP/PARAFAC (CP) tensor model due to its flexibility and capability to handle irregular/ragged tensors. W...
Objective
To explore the value of a predictive model combining the multiparametric magnetic resonance imaging (mpMRI) radiomics score (RAD-score), clinicopathologic features, and morphologic features for the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in invasive breast carcinoma of no specific type (IBC-NST).
Methods
We...
Previous researches demonstrate that major depression disorder (MDD) is associated with widespread network dysconnectivity, and the dynamics of functional connectivity networks are important to delineate the neural mechanisms of MDD. Cortical electroencephalography (EEG) oscillations act as coordinators to connect different brain regions, and vario...
Functional connectivity (FC) patterns in human brain are dynamic in a task-specific condition, and identifying the dynamic changes is important to reveal the information processing processes and network reconfiguration in cognitive tasks. In this study, we proposed a comprehensive framework based on high-order singular value decomposition (HOSVD) t...
Background:
Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities f...
Real-world data are often linked with each other since they share some common characteristics. The mutual linking can be seen as a core driving force of group analysis. This study proposes a generalized linked canonical polyadic tensor decomposition (GLCPTD) model that is well suited to exploiting the linking nature in multi-block tensor analysis....
Joint diagonalization (JD) is an instrumental tool in a vast variety of applications such as blind source separation, polarization sensitive array processing, and linear algebra based computation of tensor decompositions. Among the JD families, those based on successive rotations are a major category that minimizes the adopted highly nonlinear cost...