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Abstract Highly active antiretroviral therapy (HAART) is
the only approach for human immunodeficiency virus (HIV)
infection treatment at present. Although HAART is effective
in controlling the progression of infection, it is impossible to
eradicate the virus from patients. The patients have to live with
the virus. Alternative ways for the cure of HIV infection have
been investigated. As the major co-receptor for HIV-1 infec-
tion, C-C motif chemokine receptor 5 (CCR5) is naturally an
ideal target for anti-HIV research. The first CCR5 antagonist,
maraviroc, has been approved for the treatment of HIV infec-
tion. Several other CCR5 antagonists are in clinical trials.
CCR5 delta32 is a natural genotype, conferring resistance to
CCR5 using HIV-1 strains. Gene therapy research targeting
this mutant has been conducted for HIV infection treatment. A
Berlin patient has been cured of HIV infection by the trans-
plantation of stem cells from a CCR5 delta32 genotype donor.
The infusion of an engineered zinc finger nuclease (ZFN)-
modified autologous cluster of differentiation 4 (CD4) T cells
has been proved to be a promising direction recently. In this
study, the anti-HIV research targeting CCR5 is summarized,
including CCR5 antagonist development, stem cell transplan-
tation, and gene therapy.

Introduction

Human immunodeficiency virus (HIV) attachment to human
cells is initiated by the binding of viral gp120 to cluster of
differentiation 4 (CD4) molecules on the cell surface. CD4 is
the receptor of HIV [1]. To complete the entry, a co-receptor is

required for HIV infection. Althoughmany proteins have been
identified to act as co-receptors for HIV infection, including
C-C motif chemokine receptor 1 (CCR1) [2], CCR2 [3, 4],
CCR3 [5], etc., C-X-C motif chemokine receptor (CXCR4)
and CCR5 are the two common co-receptors for virus infec-
tion to T lymphocytes and macrophages [6–8]. HIV is divided
into T-tropic and M-tropic groups according to the common
co-receptor usage [9]. The CCR5 gene consists of two introns
and four exons, locating in the short arm of chromosome 3
[10]. The CCR5 gene is recognized by two functional pro-
moters. The upstream promoter is called P1. The weak
downstream promoter is called P2. The expression product
of P1 is two full-length transcript variants. The expression
product of P2 is several truncated transcripts which lack
exon 1. All the final mature products from P1 and P2 are
CCR5 proteins [11, 12]. CCR5 delta32 is a 32-bp deletion in
the CCR5 open reading frame, which causes a translation
termination with a premature and nonfunctional CCR5 pro-
tein [13, 14]. In populations from different ethnic groups,
the distribution of CCR5 delta32 is variable. It is usually
common in Caucasians but rare in African and Asian people
[15, 16]. In European populations, the frequency of CCR5
delta32 is 10–20 % (highest in northern Europe) [17]. The
CCR5 receptor has differential expressions according to the
polymorphisms in the promoter region [18, 19]. Moreover, a
significant difference of allele frequencies is found in dif-
ferent ethnic populations [20–22]. CCR5 is widely
expressed in monocytes/macrophages, immature dendritic
cells, and memory/effector T cells [23]. CCR5 is a seven
transmembrane G protein coupled receptor (GPCR) for
three ligands: RANTES (regulated upon activation normal
T cell expressed and secreted factor), MIP (macrophage
inflammatory protein)-1α , and MIP-1β [24, 25].
Regulating the migration of leukocytes all over the body,
CCR5 plays a key role in pathological and physiological
activities [26].
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Drug development targeting CCR5

As one of the common co-receptors for HIV, CCR5 is natu-
rally an important target for anti-HIV research. Shortly after
the discovery of CCR5 as an HIV co-receptor, anti-HIV
research targeting CCR5 was attempted. With chemical mod-
ification to RANTES, a derivative was produced. The deriv-
ative did not induce chemotaxis. It potently blocked M-tropic
HIV infection to diverse cell types, including both macro-
phages and T cells [27]. Subsequently, a nonpeptide com-
pound with small molecular weight, TAK-779, was found to
antagonize the binding of RANTES to CCR5-expressing cells
and inhibited the Ca2+ signaling mediated by CCR5. TAK-
779 also inhibited the replication of several virus strains,
including clinical isolates as well as lab-adopted strains [28].
TAK-779 inhibited the expression of CCR2, CXCR3, and
CCR5 mRNAs in mice in another study [29]. TAK-779 was
reported to bind to a putative pocket enclosed by transmem-
brane domains (TMs) 1, 2, 3, and 7 in CCR5. TAK-779 shared
Asn252 and Leu255 in TM6 with another CCR5 antagonist,
TAK-220 [30, 31]. However, the latter also needed two dis-
tinct residues: Gly163 in TM4 and Ile198 in TM5 [32]. TAK-
220 showed favorable drug interactions with various antire-
troviral agents in vitro, suggesting that further clinical evalu-
ation is required [33]. Five other CC chemokines were found
to compete with MIP-1β for binding to CCR5 and were
shown to be a weak inhibitor of HIV infection [34].
4-[(Z)-(4-bromophenyl)-(ethoxyimino)methyl]-1′-[(2,4-di-
methyl-3-pyridinyl)carbonyl]-4′-methyl-1,4′-bipiperidine N-
oxide (SCH 351125) was reported to be an CCR5 antagonist
suitable for HIV infection treatment and orally bioavailable
[35–38]. Then, the bioevaluation as well as interconversion
studies on rotamers of SCH 351125 as a clinical candidate
were conducted [39]. Later, studies identified that human
cytochrome P450 enzyme(s) was involved in the metabolism
of SCH 351125. Cytochrome P450 3A4 (CYP3A4) mainly
mediated the metabolism of SCH 351125 in vitro and cyto-
chrome P450 2C9 (CYP2C9) played a minor role [40]. The
nature of benzylic substituent was found to be a critical factor
for receptor selectivity [41]. The optimization of the lead
benzylic methyl resulted in the production of Sch-417690/
Sch-D, which was a potent HIVentry inhibitor. It was tested in
clinical trials [41]. Sch-417690/Sch-D (vicriviroc) showed
synergistic anti-HIV activity and can be combined with all
other classes of approved antiretroviral drugs. Vicriviroc dem-
onstrated higher affinity than SCH-C to CCR5 in competing
binding assays [42]. Vicriviroc was metabolized mainly via
CYP3A4. CYP2C9, and CYP3A5 (cytochrome P450 3A5)
were found to play minor roles in the vicriviroc biotransfor-
mation [43]. The safety, pharmacokinetics, and antiviral ac-
tivity of vicriviroc were studied in a 14-day monotherapy in
adults infected with HIV [44] and in healthy volunteers [45].
The vicriviroc was then put into clinical trials for further

evaluation [46]. Cyclophilin-18 (C-18) from the protozoan
parasite Toxoplasma gondii inhibited infectivity of HIV and
functioned as a CCR5 antagonist. The structural determinants
of anti-HIVactivity were approached for further modification
of C-18 into an antiviral agent [47]. A spirodiketopiperazine
CCR5 antagonist, AK602, showed potent antiviral activity
and good tolerance in short-term monotherapy in adults with
M-tropic HIV infection [48, 49]. Besides the cases mentioned
above, several other CCR5 antagonists have also been report-
ed [50–55]. Maraviroc is the orally administered CCR5 an-
tagonist from Pfizer Inc. and the first promising CCR5 antag-
onist to be approved for the treatment of HIV infection. A 10-
day monotherapy with maraviroc in 63 individuals infected
with M-tropic HIV was conducted for the efficacy and safety
assessment. The result proved that maraviroc was a viable
CCR5 antagonist for the clinical treatment of HIV infection
[56]. Maraviroc was finally approved by the Food and Drug
Administration (FDA) advisory committee for HIV-1 infec-
tion in 2007. Phase II, phase III clinical trials, and post-
approval studies were conducted in both treatment-naïve and
treatment-experienced patients [57–60]. Reviews of the effi-
cacy, pharmacology, and tolerability of maraviroc in clinical
treatments are available [59–65]. As the first approved co-
receptor antagonist for HIV infection treatment, maraviroc is
effective against most drug-resistant HIV strains when ap-
proved. But resistance against maraviroc is developing rapidly
[66]. As wementioned above, several other CCR5 antagonists
are in clinical trials or on the way to approval [67]. The drug
design targeting CCR5 is a promising direction.

CCR5 delta32/delta32 stem cell transplantation

Populations with the CCR5 delta32 genotype showed lower
HIVRNA levels and higher CD4 cell counts when infected by
HIV [68, 69]. This indicates resistance to HIV infection [70,
71]. Shortly after the discovery of the resistance of CCR5
delta32 to M-tropic HIV, the mechanism for the generation of
the HIV-1-resistant form of CCR5 was approached [72]. An
HIV-infected patient was cured after stem cell transplantation,
as reported in 2009 [73]. The details are as follows. A 40-year-
old man (famously known as the “Berlin patient”) with HIV-1
infection for more than 10 years presented to hospital for the
treatment of newly diagnosed acute myeloid leukemia. In the
last 4 years, the man had been treated with highly active
antiretroviral therapy (HAART): 600 mg of efavirenz,
200 mg of emtricitabine, and 300 mg of tenofovir per day
[74]. No acquired immunodeficiency syndrome (AIDS)-asso-
ciated illnesses were observed, with 415/mm3 CD4 T cell
count and an undetectable level of HIV-1 RNA in the patient
[74]. A viral rebound of 6.9×106 copies of HIV-1 RNA per
milliliter occurred when HAART was discontinued for the
treatment of the acute myeloid leukemia. HAART was
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resumed immediately. HIV-1 RNA reduced to an undetectable
level in 3 months [74]. HAART was administered till 1 day
before the stem cell transplantation procedure. The man was
treated with allogeneic stem cell transplantation [74]. The
CD34+ peripheral blood stem cells for transplantation were
from a homozygous CCR5 delta32 allele donor with identical
human leukocyte antigen (HLA). Engraftment was achieved
in 13 days. The man underwent a second transplant with
2.1×106 CD34+ cells per kilogram, leading to a complete
remission of the acute myeloid leukemia [74]. CCR5-
expressing macrophages were detected in the patient
159 days after transplant. Although HAART was
discontinued 1 day before the transplant procedure, no
active and replicating HIV was detected during a follow-
up of 20 months [74]. The CCR5 delta32 allele in the
peripheral blood monocytes changed from a heterozygous
into a homozygous genotype in the patient [74]. As we
know, homozygosity for CCR5 delta32 is significantly
resistant to HIV-1, but not completely. The transplant
result is remarkable. Although allogeneic stem cell trans-
plantation has been attempted for the control of the HIV-1
infection in other studies, this is the only successful ex-
ample [74, 75]. The previous transplantation was conduct-
ed without regard to the donor’s CCR5 delta32 status. The
anti-HIV research targeting CCR5 was encouraged by the
case.

Gene therapy

Gene therapy usually provides anti-HIV genes to susceptible
cells of HIV infection. Anti-HIV genes can be designed for the
expression of proteins or RNAs that interrupt the function of
cellular or viral proteins or RNAs, thereby disrupting HIV
replication [76]. RNA-based gene therapy has been
approached for anti-HIV research [76–80]. Gene therapy is a
potential treatment to control HIV infection. The cure of HIV
infection in the Berlin patient has rekindled interest in genetic
engineering strategies to achieve the same result. Significant
advances have been achieved in the studies of DNA repair
mechanisms and DNA transcription factors interaction in
recent years. The cure of AIDS through precise gene editing
is now a realistic possibility. Novel gene-editing strategies
have been applied for HIV gene therapy [81]. A gene transfer
clinical trial was conducted in 74 adults infected with HIV.
The patients were treated with a tat-vpr-specific anti-HIV
ribozyme in autologous CD34+ cells, indicating that gene
transfer via cells is safe enough to be developed as a conven-
tional therapy [82]. Previously studies showed that popula-
tions with homozygous CCR5 delta32 deletion are resistant to
M-tropic HIV-1 infection [14, 83]. Zinc finger nucleases
(ZFNs) were used to generate homozygous CCR5 delta32
genotype de novo. Approximately 50 % of CCR5 alleles of

primary CD4+ T cells were disrupted after CCR5 ZFNs
transient expression, resulting in a stable, potent, and heritable
resistance to HIV-1 infection in vitro and in vivo in an HIV-
infected mouse model [84]. Mice that received transplantation
of ZFN-modified human hematopoietic stem cells achieved
significantly lower HIV-1 levels [85]. A new ZFN that
targeted CCR5 delta32 (ZFNCCR5D32) was generated and
used for the establishment of cells resistant to M-tropic HIV.
The established CCR5 knockout cells were resistant to M-
tropic HIV. The new ZFN showed no detectable off-target
activity compared with previous studies [86]. Recently, 12
patients received treatment with ZFN-modified autologous
CD4 T cells in a single dose. The patients had been treated
with HAART for chronic aviremic HIV infection. 11–28 % of
the infused 10 billion autologous CD4 T cells were ZFN-
modified [87]. A significant increase of the median CD4 T
cell count from 448 to 1,517 per cubic millimeter was ob-
served at week 1. CCR5-modified CD4 T cells showed a
median concentration of 250 cells per cubic millimeter at
1 week and were estimated to have a mean half-life of
48 weeks [87].

Summary

As the major co-receptor for M-tropic HIV infection, CCR5
has been validated as an ideal target for anti-HIV research.
After a long period of development, the first CCR5 antagonist,
maraviroc, was finally approved for the clinical treatment of
HIV infection in 2007. This stimulates the efforts in looking
for new anti-HIV drugs targeting CCR5 and other co-
receptors. At the same time, several other CCR5 antagonists
are in clinical trials for the assessment of the clinical treatment
of AIDS. The populations of CCR5 delta32 naturally confer
resistance to CCR5 using HIV-1 strains. This is attractive for
anti-HIV research from the very beginning. Multiple ap-
proaches have been tried in order to inhibit HIV-1 infection
by using the CCR5 delta32 deletion. The Berlin patient is the
only case of cure of HIV infection by the transplantation of
stem cells from a homozygous CCR5 delta32 donor. Although
it is different to conduct this kind of transplantation for HIV
infection treatment clinically, this case proves the possibility
of the cure of HIV infection via gene therapy by CCR5 gene
editing. Recently, two studies were conducted to control HIV
infection with ZFN-modified CCR5 delta32 cells. ZFN-
modified autologous CD4 T cells were infused into an HIV-
infected patient successfully, with exciting results. This great-
ly encourages the effort in the search for a cure of HIV
infection via modified CCR5 delta32 cells infusion in clinical
treatment.
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