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Abstract A limit of Statistical Energy Analysis (SEA) is that of providing only the
mean values of the mechanical energy of a vibrating system. In the proposed pa-
per, the variability of SEA solution under uncertain SEA parameters (coupling loss
factors and internal loss factors) is investigated by comparing a sensitivity approach
and a Design of Experiment (DoE) approach. Uncertainties of the SEA parame-
ters depend on uncertainties in the physical properties of the considered mechanical
system (Young modulus, material density, geometry, ...). Numerical results are de-
rived using a benchmark structure made by three aluminum plates with a common
junction.

1 Introduction

In Statistical Energy Analysis, the studied systems belong to a random population
of similar systems [1]. Systems are considered similar if their physical parameters
are slightly different. SEA considers a structure as the union of several subsystems.
Each of them is a modal group, i.e. a set of similar modes. For instance, considering
two plates welded together, six modal groups can be identified, one set of flexural
modes and two sets of in plane modes for each plate.
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00184 Roma, Italy, e-mail: antonio.culla@uniroma1.it

Walter D’Ambrogio
Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università dell’Aquila, Piazza E.
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SEA estimates the mean value of the energy stored in the modal groups consti-
tuting the studied system. The mean value provided by SEA equations is in princi-
ple the average response of a set of similar systems. However, SEA equations are
represented by a linear system of equations for each frequency, or better for each
frequency band. The solution of each linear system gives the energy of each sub-
system in a given frequency band. No average operation is explicitly performed, but
all the statistics is not visible to the user. In general, this is not a problem because
many simple relationships used by physicists and engineers are the result of more
complicated mathematical procedures. Unfortunately, in this case this simple model
holds only under many strong hypotheses, listed in Section 2.

The linear system results from some mathematical manipulations, that include
also averages on frequency bands, on the classical equations of motion of multi de-
grees of freedom systems, and the observance of the strong hypotheses mentioned
before. The coefficients of the linear system, named coupling loss factor (CLF) and
internal loss factor (ILF), are the result of these average processes and account for
the parameters of the native physical system. Therefore, SEA gives the energy of
each modal group belonging to the studied system. This energy is the most represen-
tative sample of a statistical population of similar systems and on a frequency band.
No information is given about the dispersion of the data around the result. In order
to provide a true statistic solution it is necessary, at least, to know the variance of the
result. A correct procedure should calculate the variance of the energy by starting
from the equation of motion following a similar procedure like that performed for
the mean calculation. Lyon [1, 2] estimates the variance by using a particular prob-
ability distribution of natural frequencies. Therefore this procedure neglects a direct
dependence of the modal parameters on the randomness of the physical properties.
However, he concludes that ”There is a considerable area of interesting research
work that needs to be done in analysing variance of interacting systems.”

Radcliffe and Huang [3] study the problem by introducing a stochastic perturba-
tion in SEA equations, by using a first order approximation of them in terms of this
random perturbation and by calculating the variance of the new linear equations.
They state that the lack of information of SEA solution may be filled by calculating
the solution variance due to the random perturbation of SEA parameters (coupling
loss factor, injected power, ...). Langley and Cotoni [4] follow the Lyon’s approach
and study the problem by considering the Gaussian orthogonal ensemble, detailed
in Weaver [5]. Some other authors [6, 7] assume that uncertainties lie on the system
parameters and they achieve results not exhibiting the same tendency of the Lyon’s
prediction. Bussow et al. [8] propose an analytical approach for the investigation of
the problem of uncertain system parameters. The analysis is performed by partial
derivatives of the energies. It shows the effect of uncertainties of a given parameter.

All these methods to approach the uncertainty problems use either parametric or
nonparametric models [9]. In the first case the physical properties of the system are
considered to be uncertain. The uncertainty of the response is calculated by consid-
ering the propagation of the physical uncertainties through the model. If the system
is very complex and random, its natural frequencies statistics can be assumed, that
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is the statistics of the response can be considered independent of the statistics of the
physical quantities. This is the nonparametric case.

In this paper a parametric approach is adopted. It proceeds from the belief of the
authors that SEA is a methodology able to analyse well both the actual nonparamet-
ric models (very complex and random systems) and the models (not so complex and
random) which could be solved also by a FE approach (simple structure, not much
uncertain, forced by random loads).

Moreover, aim of this paper is not only to evaluate the variability of SEA solu-
tion, but also to calculate the sensitivity of the energies stored into the subsystems
by considering uncertainties on ILF’s and CLF’s. To be more precise, the nominal
values of CLF’s and their range of variability are those resulting from a previous
analysis. The effect of uncertainties is modeled by using both a sensitivity approach
and a DoE approach [10, 11]. DoE provides a regression model of energies: the co-
efficients of this model show the influence of the uncertain parameters on the energy
stored in each subsystem. Finally, a comparison between sensitivity and DoE results
is presented.

2 SEA equations

Under some particular hypotheses, it is possible to assume that the transmitted
power between two subsystems is proportional to the difference of the energy stored
in each subsystem. A list of these hypotheses is presented below:

• all the modes of a subsystem must be similar (i.e. they must have almost the
same energy, damping, coupling with the other subsystems and they must be
almost excited by the same input power),

• the coupling between the subsystems must be conservative,
• the eigenfrequencies must be uniformly probable in the frequency range,
• the force exciting the subsystems must be random and not-correlated,
• the interactions between the subsystems must be weak.

Thus, the SEA equations of Nsub coupled subsystems can be written as follows:

Pi,in j = ω ηi Ei + ω

Nsub

∑
j=1, j 6=i

(ηi j Ei − η ji E j) (1)

where i and j are indexes of the subsystems, ηi and ηi j are the internal loss factors
(ILF) and the coupling loss factors (CLF), respectively, Pi,in j is the power injected
into the subsystem i, E is the energy in a given subsystem and ω is the central
frequency of the considered band. Equations (1) represents the energy balance of
the subsystems. The power dissipated in the subsystem i is:

Pi,d = ω ηi Ei (2)

The power transmitted from subsystem i to the subsystem j is:
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Pi j = ω (ηi j Ei − η ji E j) (3)

The solution of the linear system (1) provides the energy stored in each subsystem.
The set of equations (1) can be rewritten in a more convenient way as follows:

p = ω Ce (4)

where the coefficients of matrix C are combinations of ILF’s and CLF’s as shown
in the following equations:{

Ci j =−η ji i, j = 1 . . .Nsub, i 6= j

C j j = η j +∑
Nsub
i=1, i6= jη ji

(5)

If ni and n j are the modal densities of subsystems i and j, the following reciprocity
relationship holds:

ηi jni = η jin j (6)

By enforcing reciprocity, under the assumption that only the η ji with j > i are
known, it is: 

Ci j =

−η ji if j > i

−η ji
n j

ni
if j < i

C j j = η j−∑
Nsub
i=1, i6= jCi j

(7)

3 Uncertainty propagation in SEA

SEA gives only the mean value of the energy of a set of similar systems. This is
not a complete statistical information, because at least the dispersion of the data
around the mean is lacking. The correct variance of the solution could be obtained
by working directly on the equation of motion as it was done to provide the SEA
equations. Here a study on the variability of SEA results is performed. Therefore,
the goal of this research is not a way to achieve the variance matching the classical
SEA solution, but to understand how much the energies (SEA solution) depend on
uncertainties on CLF’s and ILF’s.

SEA equations are deterministic, and CLF’s are deterministic functions of the
physical parameters as well. The solution of this deterministic set of equations, the
energies of the modal groups, depends on the ILF’s, the CLF’s and the injected
powers. In order to study the variability of SEA solution, many techniques can be
followed (Monte Carlo, sensitivity, Design of Experiments, etc.).

Let us consider a given mechanical system made of Nsub subsystems. CLF’s de-
pend on the material properties and the geometric parameters of the coupled sub-
systems. Therefore, a given ηi j depends, for instance, on the Young modulus of the
systems i and j, Yi and Yj, and on the thickness of these subsystems, ti and t j. The
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energy of each subsystem is calculated by solving equation (4) with the obvious im-
plication that energies depend on the CLF’s and the ILF’s of the considered system.

By defining a range of variability of the physical parameters, a procedure can
be developed in order to obtain the range of variability of the CLF’s. At this point,
both a sensitivity approach and a DoE procedure are developed to account for the
dependence of the energy on the variability of SEA coefficients.

3.1 Approach using sensitivity

Sensitivity to loss factors is evaluated in correspondence to nominal values η̂ of
the CLF’s and ILF’s. To compare different sensitivity factors, it is assumed that
changes ∆ηkl in the coupling loss factors are not arbitrarily chosen, but are those
corresponding to variations of the physical parameters.

∆ekl =
∂e

∂ηkl

∣∣∣∣
η=η̂

∆ηkl (8)

and similarly for ILF’s.
To find ∂e/∂ηkl , it is necessary to differentiate the solution of Eq. (4):

e =
1
ω

C−1 p ⇒ ∂e
∂ηkl

=
1
ω

∂C−1

∂ηkl
p (9)

and similarly if internal loss factor ηk are considered instead of ηkl . Here it is as-
sumed that the injected power is not affected by changes in CLF’s and ILF’s.

The derivative of C−1 can be easily obtained from the identity CC−1 = I

∂C−1

∂ηkl
= −C−1 ∂C

∂ηkl
C−1 (10)

where ∂C/∂ηkl can be computed from Eq. (7):

∂Ci j

∂ηkl
=



1 if i = j and i = k
nk

nl
if i = l and j = l

−1 if i = l and j = k

−nk

nl
if i = k and j = l

0 else

(11)

and similarly for ∂C/∂ηk:

∂Ci j

∂ηk
=

{
1 if i = j and i = k
0 else

(12)
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The variance of the energy stored in a given subsystem i can be approximately
evaluated from the variance of CLF’s and ILF’s as follows:

σ
2
Ei

=
Nsub

∑
k=1

k−1

∑
l=1

(
∂Ei

∂ηkl

)2

σ
2
ηkl

+
Nsub

∑
k=1

(
∂Ei

∂ηk

)2

σ
2
ηk

(13)

3.2 Approach using Design of Experiments

In Design of Experiments (DoE), the values of the variables that affect an output
response are appropriately modified by a series of tests, to identify the reasons for
changes in the response. This does not prevent from performing numerical tests
whenever this may be convenient for a better understanding of the numerical prob-
lem under investigation.

Since many experiments involve the study of the effects of two or more variables
or factors, it is necessary to investigate all possible combinations of the levels of the
factors. This is performed by factorial designs which are very efficient for this task.

Specifically, if p factors at two levels are considered, a complete series of ex-
periments requires 2p observations and is called a two-level 2p full factorial design.
Usually, each series of experiments should be replicated several times using the
same value of the factors to average out the effects of noise. Of course, this is un-
necessary if experiments are numerical.

A feature of two-level factorial design is the assumption of linearity in the effect
of each single factor and of multi-linearity in interactions among factors. To account
for possible non linear effects, quadratic terms can be introduced, as in the following
regression model for two factors:

f = α0 +α1x1 +α2x2 +α12x1x2 +α11x2
1 +α22x2

2 + ε (14)

where the α’s are parameters whose values are to be determined, the variables x1
and x2 are defined on a coded scale from −1 to +1 (the low and high levels of the
two factors) and ε is an error term.

Of course, a three level (low level −1, intermediate level 0, high level +1) fac-
torial design, involving 3p observations, is a possible option if quadratic terms are
important. However, a more efficient alternative is the Central Composite Design
(CCD) that starts from the 2p design augmented with the center point i.e. a single
observation with all factors at intermediate level, and axial runs where each fac-
tor is considered at two levels (the low level −1 and the high level +1) while the
remaining factors are at the intermediate level, for a total of 2p observations.

Overall, a central composite design for p factors requires n = 2p +2p+1 obser-
vations instead of 3p observations required by the three level factorial design, with
advantages for p≥ 3.

For p control factors, the experimental response can be expressed as a regres-
sion model representation of a 2p full factorial experiment (involving 2p terms),
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augmented with p quadratic terms:

f = α0 +
p

∑
i=1

αixi +
p

∑
i=1

i−1

∑
j=1

α jix jxi + . . .+

+
p

∑
i=1

i−1

∑
j=1
· · ·

m−1

∑
n=1

αnm··· ji xnxm · · ·x jxi +
p

∑
i=1

αiix2
i + ε

(15)

The expression contains 2p + p parameters α , each one providing an estimate of the
effect of a single factor (linear or quadratic) or of a combination of them.

Note that Eq. (15) is linear in the parameters α , and it can be rewritten as:

f =
[
1 x1 · · · x2

p
]

α0
α1...
αpp

+ ε (16)

having arranged the parameters in a vector α . A different equation can be written
for each observation by varying the factors (x1, . . . ,xp) as indicated by CCD.

By arranging the experimental responses in a vector f, a linear relationship be-
tween f and α can be expressed in matrix notation as:

f = Xα + ε (17)

where X is a (2p +2p+1)× (2p + p) matrix. The least square estimate of α is:

α̂ = (XT X)−1XT f ⇒ f̂ = Xα̂ (18)

where f̂ is the fitted regression model.
The difference between the actual observations vector f and the corresponding

fitted model f̂ is the vector of residuals e = f− f̂. The residuals account both for the
modelling error ε and for the fitting error due to the least square estimation.

The total sum of squares SST is the sum of the squared deviations of each re-
sponse fi from its average value f̄ = ∑

n
i=1 fi/n:

SST =
n

∑
i=1

( fi− f̄ )2 = ∑ f 2
i −n f̄ 2 = fT f− f̄T f̄ (19)

SST can be partitioned into a sum of squares due to the model SSR and one due to
residual SSE :

SST = SSR +SSE (20)

It can be shown that the sum of squares of the residuals can be computed as:

SSE = fT f− α̂
T XT f (21)

A low value of the ratio SSE/SST between the error sum of squares and the total
sum of squares indicates that the chosen regression variables provide a good fit.
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4 Results

The studied structure is a system of three Aluminum plates with the same thickness
of 3 mm and different sizes: plate 1 (600 mm × 400 mm) along x axis, plate 2 (300
mm × 400 mm) and plate 3 (400 mm × 400 mm). These plates are welded along
the 400 mm side (Figure 1). Power is input to plate 1 only.

Fig. 1 Three plates system:
power is input to plate 1
(along x axis). Z 

X 

Y 

The considered problem concerns the variability of the SEA solution, the energy
of each subsystem, represented by the flexural modes of each plate, when the vari-
ability of CLF’s and ILF’s (6 parameters) is taken into account, while input power
is assumed to be constant at all frequencies with a value P1 of about 30 mW.

A range of variability of the Young modulus and the thickness is considered by
varying these parameters of ±10% around the nominal values: 7×1010 Pa and 3
mm, respectively.

The correspondence between the variability of the physical parameters and the
variability of the CLF’s is preserved, because the nominal value of the CLF’s, shown
in Table 1, corresponds to the nominal value of the physical parameters. Further-
more, the variation of the CLF’s, shown in Table 2, is the maximum difference from
the nominal value obtained, by varying the physical parameters of ±10%. It should
be noted that the ∆ηi j are about 50% of the corresponding ηi j as a consequence of
10% variations of physical parameters.

The reciprocity relationship (6) is used to get the ηi j and the ∆ηi j with i < j. The
modal densities are n1 = 12.46 ·10−3, n2 = 6.233 ·10−3 and n3 = 8.311 ·10−3. The
ILF’s are varied of ±10% around 0.01.
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Table 1 Nominal values η̂i j of the coupling
loss factors with i > j at 14 third octave bands.

Frequency η̂21 η̂31 η̂32
[Hz] values to be multiplied by 10−3

100 15.440 11.580 11.288
125 13.808 10.356 10.015
160 12.203 9.152 8.739
200 10.913 8.185 7.688
250 9.759 7.319 6.731
315 8.691 6.518 5.959
400 7.710 5.783 6.042
500 6.894 5.170 6.252
630 6.138 4.603 5.533
800 5.443 4.083 4.762
1000 4.865 3.649 4.167
1250 4.347 3.260 3.668
1600 3.838 2.878 3.198
2000 3.427 2.570 2.831

Table 2 Variations ∆ηi j , with i > j, of the
coupling loss factors.

Frequency ∆η21 ∆η31 ∆η32
[Hz] values to be multiplied by 10−3

100 7.992 5.993 6.307
125 7.250 5.437 5.237
160 6.405 4.803 4.587
200 5.725 4.294 4.067
250 5.117 3.838 3.600
315 4.555 3.416 3.076
400 4.037 3.028 2.991
500 3.607 2.705 3.536
630 3.209 2.406 3.127
800 2.842 2.132 2.642
1000 2.537 1.903 2.285
1250 2.264 1.698 1.999
1600 1.995 1.496 1.739
2000 1.778 1.333 1.541

Sensitivities of energies in the three subsystems, with respect to coupling loss
factors and internal loss factors, are evaluated according to the procedure outlined
in section 3.1. In practise, each value represents the first order approximation of
variation of the energy stored in a given subsystem (1,2, or 3) due to a change ∆ηi j
of a given CLF or ∆ηi of a given ILF. Results are shown in Table 3 with reference
to the 500 Hz third octave band, and to both CLF’s and ILF’s and in Figures 2, 3
and 4 for CLF’s only but for all third octave bands.

A DoE procedure, with Central Composite Design requiring 26 + 2 · 6 + 1 = 77
experiments for each of 14 third octave bands from 100 Hz to 2000 Hz, is used.
Table 4 shows the regression coefficients α at 500 Hz. Only the linear, quadratic
and bilinear terms of the regression model are shown. The fit is very good because
low values of SSE/SST (not shown) are found. The results show that the α of the
linear terms are always the most relevant. Furthermore, all energies decrease as
the internal loss factors η1, η2 and η3 increase, as expected. By comparing the
sensitivities and the linear terms of the regression model, it can be noticed that they
are quite similar: not only they indicate an energy variation in the same direction,
but the values provided by the two models are very close to each other as well.

Figures 2, 3 and 4 show the regression coefficients α of the energies of the three
subsystems. For the sake of comparison with sensitivities, only the linear terms of
the regression model are drawn. In both cases, the trends are very similar. Also, it
can be noticed that the magnitude of the sensitivities is always smaller than the mag-
nitude of the corresponding regression coefficients. This is not unexpected because
the regression model includes quadratic and multi-linear terms that can compensate
for the noted difference.
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Fig. 2 Energy of subsystem 1:
regression coefficients α

(solid) vs sensitivities (dash–
dotted) with respect to CLF’s
η21 (+), η31(�) and η32 (o)

100 200 500 1000 2000

−3

−2

−1

0
x 10

−4

Frequency [Hz]

Fig. 3 Energy of subsystem 2:
regression coefficients α

(solid) vs sensitivities (dash–
dotted) with respect to CLF’s
η21 (+), η31(�) and η32 (o)

100 200 500 1000 2000
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0

1

2

x 10
−4

Frequency [Hz]

Fig. 4 Energy of subsystem 3:
regression coefficients α

(solid) vs sensitivities (dash–
dotted) with respect to CLF’s
η21 (+), η31(�) and η32 (o)

100 200 500 1000 2000
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Table 3 Sensitivitiesa ∆e at 500 Hz

index loss E1 E2 E3
factor

1 η21 -0.0839 0.0641 0.0198
2 η31 -0.0984 0.0123 0.0861
3 η32 -0.0008 -0.0057 0.0065
4 η1 -0.2412 -0.1039 -0.1366
5 η2 -0.0894 -0.0557 -0.0622
6 η3 -0.1161 -0.0614 -0.0954

a All values are multiplied by 103

Table 4 Regression coefficientsb α at 500 Hz

index loss E1 E2 E3
factor

1 η21 -0.1101 0.0828 0.0262
2 η31 -0.1288 0.0158 0.1117
3 η32 -0.0081 -0.0046 0.0121
4 η1 -0.2504 -0.1046 -0.1372
5 η2 -0.0882 -0.0572 -0.0614
6 η3 -0.1137 -0.0603 -0.0969
7 η21η21 0.0316 -0.0233 -0.0081
8 η21η31 0.0408 -0.0181 -0.0224
9 η21η32 -0.0037 -0.0128 0.0165
10 η21η1 0.0113 -0.0019 0.0016
11 η21η2 -0.0071 0.0005 -0.0018
12 η21η3 -0.0021 0.0001 -0.0005
13 η31η31 0.0363 -0.0050 -0.0311
14 η31η32 0.0039 0.0149 -0.0187
15 η31η1 0.0132 0.0019 -0.0022
16 η31η2 -0.0013 -0.0002 -0.0001
17 η31η3 -0.0094 -0.0020 0.0002
18 η32η32 0.0023 0.0019 -0.0040
19 η32η1 0.0008 0.0004 -0.0004
20 η32η2 0.0004 0.0026 -0.0026
21 η32η3 -0.0010 -0.0029 0.0027
22 η1η1 0.0141 0.0045 0.0058
23 η1η2 0.0089 0.0048 0.0056
24 η1η3 0.0115 0.0055 0.0081
25 η2η2 0.0044 0.0008 0.0006
26 η2η3 0.0052 0.0031 0.0040
27 η3η3 0.0060 0.0015 0.0023

b All values are multiplied by 103

5 Conclusions

In this paper the effect of uncertainties of the loss factors is modeled by using both
a sensitivity and a DoE approach. The present technique to model uncertainties is
parametric, i.e. a model of the uncertainties of the system parameters is necessary
to evaluate the variability of the solution.

The results obtained by DoE and sensitivity are compared and they show a good
agreement. However, the DoE approach gives more information than sensitivity, be-
cause it allows to calculate the dependence of SEA solution both on the parameters
(CLF’s and ILF’s) and on their combinations.

In addition to the obtained results on the uncertainty propagation, an important
information can be obtained also for the design of a system with controlled energy
levels. In fact, by assuming that the energy of one subsystem must not exceed a given
level, the presented analysis allows to evaluate the sensitivity of such energy to the
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uncertain parameters and, consequently, where to act in order to reduce vibration
and noise.

Next activities will consider the study of more complicated systems to investigate
the dependency of the SEA solution on the parameters of not directly connected
subsystems and on the injected power.
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