
Virtual Factory Data Model to support
Performance Evaluation of Production

Systems

Walter TERKAJa, Marcello URGOb
a Istituto Tecnologie Industriali e Automazione (ITIA), Consiglio Nazionale delle

Ricerche (CNR)
b Dipartimento di Ingegneria Meccanica, Politecnico di Milano

Abstract. The performance evaluation of manufacturing systems is a critical and
difficult task to be addressed throughout the factory life-cycle phases, including
the early design, detailed design, ramp-up, reconfiguration, and monitoring. An
efficient and effective performance evaluation may have a relevant impact on the
profitability of an industrial company. This paper addresses the application of a
data model for virtual factories to the performance evaluation problem, aiming at
exploiting the interoperability with other software tools to continuously update the
virtual representation of a manufacturing system, so that accurate estimations can
be obtained. A test case is described and then used to check the viability of the
proposed approach in the case of Discrete Event Simulation (DES) based on a
commercial software tool like Arena.

Keywords: Performance Evaluation, Discrete Event Simulation, Data Model,
Ontology, Manufacturing Systems, Virtual Factory

1. Introduction

The design of manufacturing systems is a complex task strictly related to
manufacturing strategy decisions having an impact on a long time horizon (usually
more than two years) and involving a major commitment of financial resources [1]. For
instance, strategic decisions may regard the number of plants or facilities to be built,
their size and their location, the variety of products to be manufactured, the
manufacturing technology to be used and, within a plant, the number and type of
production resources, the characteristics of the transportation and handling systems, the
degree of automation. The complexity of these decisions and their importance from the
point of view of the profitability of capital investments emphasizes the need to have
formal and structured approaches to evaluate the performance of a manufacturing
system.

Usual performance indicators in a manufacturing context can be the production
volumes, the quality of the output, the incurred cost, etc. In addition, more detailed
performance indicators may be calculated, e.g. the utilization of production resources,
the average flow time of products, the average level of the work in progress. Different
models can be used to address specific types of analysis and levels of detail while
modeling a manufacturing system to evaluate its performance. In the field of discrete
part manufacturing, two main approaches are in common use:

 Analytical models using mathematical or symbolic relationships to provide a
formal description of the system [2] [3]. The model is then used to derive an
explicit expression of a performance measure or, in most of the cases, to
define an algorithm or a computation procedure able to calculate the
performance indicators.

 Simulation models represent the events occurring in a manufacturing system in
its operation by a sequence of steps that are executed in a computer program
[4] [5]. This sequence of steps is generated with respect to a set of rules
modeling the behavior of the system. Therefore the characteristics and
relationships between the elements in a manufacturing systems can be
described in detail. However, the higher is the detail level and the higher is
required computational effort. If a simulation model is run for a sufficiently
long time, then proper statistics can be collected and performance indicators
can be estimated.

Simulation models enable the representation of an higher level of details, thus
providing more accurate estimates of the manufacturing system behavior compared to
analytical models. However, to reach this level of details, also a more detailed
formalization of the manufacturing system is needed. Simulation modeling of
manufacturing systems usually relies on commercial software tools (e.g. Arena, Simio,
Plant Simulation, Visual Components, etc.) providing an integrated environment to
describe the system and its behavior in terms of relationships and rules and, in addition,
to deal with the generation of random values and the collection of the statistics.

Performance evaluation tools can be more effective if they are based on a virtual
representation of the manufacturing system that is continuously updated during both
the design and operational/execution phase, thus guaranteeing an overall coherence of
the obtained results. Moreover, the generation of a simulation models and/or analytical
model can be time-consuming and it would be beneficial if this activity could be as
much automated as possible. The resulting need of interoperability between
performance evaluation tools and tools supporting the design and management of real
industrial systems can be met by an extended framework enabling:

 the cooperation among different actors with different competences and
expertise in the design and management of a factory based on common
definitions and a shared virtual representation of its components linking
different manufacturing domains while guaranteeing their coherence;

 the management and update of a huge amount of manufacturing data made
available through standard and interoperable interfaces.

The development of a framework for the interoperability between software tools
supporting factory processes is currently carried out by the European project “Virtual
Factory Framework” [6]. The Virtual Factory Framework (VFF) can be defined as “An
integrated collaborative virtual environment aimed at facilitating the sharing of
resources, manufacturing information and knowledge, while supporting the design and
management of all the factory entities, from a single product to networks of companies,
along all the phases of the their lifecycles” [7]. The VFF architecture is based on three
main pillars:

 Virtual Factory Data Model (VFDM), i.e. a coherent, standard, extensible, and
common data model for the representation of factory objects related to
production systems, resources, processes and products [8].

 Virtual Factory Manager (VFM), i.e. the manager of a shared data repository
containing factory data that can be accessed and modified by all the software
tools integrated in the framework [9] [10].

 decoupled Virtual Factory modules, i.e. the software tools that are able to
communicate with the VFM to retrieve and send shared data formalized
according to the VFDM (e.g. [11]).

This paper focuses on development and enhancement of the VFDM for modeling a
generic manufacturing system and then evaluating its performance. Section 2 gives an
overview of the current state of the art on data models for manufacturing systems and
presents the VFDM solution. Section 3 describes a test case representing a production
line. Section 4 delves into the problem of evaluating the performance of a
manufacturing system formalized according to the VFDM; in particular Discrete Event
Simulation by means of the commercial software tool Arena is addressed. Finally,
conclusions are drawn in Section 5.

2. Modeling Manufacturing Systems

2.1 State of the Art

Several scientific contributions and proposed technical standards have faced the
problem of developing a holistic and complete data model for representing
manufacturing systems, both considering tangible (e.g. machine tools, part types to be
produced, etc.) and intangible (e.g. process plans, production logics, etc.) aspects.

Among the available technical standard, ANSI/ISA-95 [12] is an international
standard for developing an automated interface between enterprise and control systems.
This standard has been developed for applications in all industries and in all sorts of
processes, like batch processes, continuous and repetitive processes. ISA-95 aims at
providing both consistent terminology and information models as well consistent
operations models. B2MML (Business To Manufacturing Markup Language) [13] is an
XML implementation of the ANSI/ISA-95 and consists of a set of XML schemas [14]
that implement the data models in the ISA-95 standard.

According to ANSI/ISA-95 standard, a manufacturing process can be modeled
using the ProcessSegment class. The ProcessSegment class can represent a single step
in a manufacturing process or a whole process through composition. The
ProcessSegment class is linked to further classes to characterize the process, e.g. the
needed equipment (EquipmentSegmentSpecification class), the personnel
(PersonnelSegmentSpecification class) and the material (MaterialSegmentSpecification
class). Furthermore, precedence relations between different process steps can be
defined thanks to the ProcessSegmentDependency class. The
EquipmentSegmentSpecification class allows the user to specify the pieces of
equipment needed for the execution of a process step and how the equipment.
ANSI/ISA-95 standard enables the user to freely define customized properties that can
be attached to most of the classes representing processes and production resources.
However, such flexibility can be a major drawback from the interoperability point of
view. Indeed, if two users adopt ANSI/ISA-95, they still have to agree on the definition
of the object properties before being able to exchange data characterized by a proper
semantic. Furthermore, ANSI/ISA-95 does not provide a complete support for

modeling physical data such as the placement and shape representation of objects in the
manufacturing system (e.g. a machine tool).

A different approach in the modeling of manufacturing process is offered by the
Process Specification Language (PSL) standard [15]. PSL is an ontology providing a
way to formally describe a process and its characteristics. The ontology has been
developed at the National Institute of Standards and Technology (NIST) and has been
approved as an international standard in the document (ISO 18629). The PSL ontology
grounds on a set of axioms of first order logic written in CLIF (Common Logic
Interchange Format) and organized in a core set together with extensions. The core
provides the definition of an activity and its occurrence related to a time variable. The
extensions enable the modeling of the execution through states, the definition of logical
expression constraining the execution of the activities, and the capability of modeling
resource and their usage by the execution of the activities. Grounding on an ontology,
the PSL standard provides a robust and reliable framework to formalize the knowledge
related to a process and guarantee an adequate level of interoperability. However, this
standard is still scarcely adopted in the industrial domain, probably because of the
perceived complexity at the enterprise level.

The Industry Foundation classes (IFC) standard by buildingSMART [16], partially
based on STEP standard [17], represents an open specification for Building Information
Modeling (BIM) data that is exchanged and shared among the various participants in a
building construction or facility management project. The IFC standard is available as
an EXPRESS schema specification [18] and is structured as a set of schemas that are
grouped into four layers: Resource layer (i.e. general purpose or low level
concepts/objects), Core Layer (where the most abstract concepts of the model are
defined), Interoperability Layer defining concepts or objects common to two or more
domains, and the Domains/Application Layer. The standard was mainly conceived for
Architectural Engineering Construction (AEC) industry domains (e.g. Building
Controls, Structural elements, Structural Analysis, etc.) and therefore provides most of
the definitions needed to represent tangible elements of a manufacturing systems.
Furthermore, generic definitions of intangible characteristics (e.g. processes, work
plans, etc.) are provided, so that its data structures can be specialized for other
industrial domains, such as the manufacturing domain.

2.2 Virtual Factory Data Model

The Virtual Factory Data Model (VFDM) of the VFF project is based on already
existing technical standards and extends their definitions to represent the characteristics
of a manufacturing system in terms of the products to be manufactured, the
manufacturing process they must undergo and the resources entitled to operate the
different manufacturing operations [8]. The VFDM is mainly based on the IFC
standard release IFC2x4 RC2 [19] that was translated into a set of ontologies by
adopting the Semantic Web approach [20]. Indeed, the XSD/XML technology [14] was
considered at first, but it is not suitable for knowledge representation, explicit
characterization of data with their relations on a semantic level, and management of
distributed data, thus endangering referential consistency. On the other hand, the
Semantic Web approach offers the possibility to represent formal semantics, merge
ontologies dealing with different domains, efficiently model and manage distributed
data, and ease the interoperability between different applications.

The Entities in the IFC standard are mapped to OWL Classes in the VFDM. Most
of the classes derived from IFC are specializations of two fundamental classes named
IfcTypeObject and IfcObject, both being subclasses of IfcObjectDefinition. The former
class is the generalization of any thing or process seen as a type, the latter seen as an
occurrence. OWL individuals of class IfcObject may be linked with a corresponding
individual of class IfcTypeObject.

IfcTypeObject has the following subclasses: IfcTypeProduct, IfcTypeProcess,
IfcTypeResource. IfcTypeProduct represents a generic object type that can be related to
a geometric or spatial context (e.g. manufactured products, machine tools, transport
systems, etc.). IfcTypeProcess defines a generic process type that can be used to
transform an input into output (e.g. assembly operation, machining operation, etc.).
IfcTypeResource represents the information related to resource types needed to execute
a process. A resource represents the “use of thing”.

IfcObject has the three main subclasses (i.e. IfcProduct, IfcProcess, IfcResource)
that represent an occurrence of the corresponding type modeled by the subclasses of
IfcTypeObject.

The previously described generic classes can be exploited to model a wide range of
manufacturing systems while taking into consideration both physical and logical
aspects. The subclasses of IfcTypeObject can be used to specify the designed
characteristics of a manufacturing system, e.g. the part types to be produced (as
individuals of IfcTypeProduct), the process plans (as individuals of IfcTypeProcess),
the required type of production resources (as individuals of IfcTypeResource). On the
other hand, the subclasses of IfcObject can be used to represent the execution phase of
a manufacturing system by defining the workpieces in process (as individuals of
IfcProduct), the actually executed operations (as individuals of IfcProcess), and the
usage of production resources (as individuals of IfcResource).

The relations between the processes and resources can be formalized as shown in
Figure 1 where the boxes represent classes and the arcs represent property restrictions
linking classes according to the Manchester OWL Syntax [21]. Moreover, Figure 1
shows how system design data (upper part of the figure) can be linked with system
execution data (lower part of the figure).

Figure 1. Relations between process and resource classes in the VFDM.

IfcTypeProcess
IfcRelAssignsTo

Process
IfcRelAssignsTo

Resource
IfcTypeResource IfcObjectDefinition

operatesOn only hasRelatedObjectsonly

hasRelatingProcess only hasRelatingResource onlyhasAssignments only

isResourceOf only

IfcProcess
IfcRelAssignsTo

Process
IfcRelAssignsTo

Resource
IfcResource IfcObjectDefinition

operatesOn only hasRelatedObjectsonly hasRelatedObjectsonly

hasRelatingProcess only hasRelatingResource onlyhasAssignments only hasAssignments only

isResourceOf only only

isTypedBy only

hasRelatedObjectsonly

hasAssignments only

IfcRelDefines
ByType

hasRelatingType only

isTypedBy only

hasRelatingType only

IfcRelDefines
ByType

During the manufacturing system design/planning phase, the resource types needed by
a process type can be specified by means of the objectified relationship class
IfcRelAssignsToProcess, whereas the resource providers (as individuals of class
IfcObjectDefinition) can be linked to a resource type thanks to the class
IfcRelAssignsToResource.

During the manufacturing system execution phase (both real and simulated),
occurrences of processes and resources can be created while referring to specific types
defined during the design phase thanks to the class IfcRelDefinesByType.

As described by Terkaj et al. [8], the VFDM specializes some classes of the IFC
standard for the manufacturing domain, paying attention in particular to the type classes
IfcTypeProduct, IfcTypeProcess, IfcTypeResource and the corresponding occurrence
classes IfcProduct, IfcProcess, IfcResource.

VffProcessType and VffProcess are defined as subclass of IfcTypeProcess and
IfcProcess, respectively, to model generic transformation processes that, provided a
given input, obtains a certain output according to certain rules and using a specified set
of resources, i.e. a recipe. A process can be described as a whole or can be decomposed
into subprocesses thanks to the class IfcRelNests. VffProcessType and VffProcess are
further specialized to represent manufacturing, assembly, maintenance and handling
processes. Moreover, precedence constraints between the processes can be defined by
means of the objectified relationship class IfcRelSequence, whereas input and output
entities of a process can be linked by using the classes IfcRelAssignsToProcess and
IfcRelAssignsToProduct, respectively.

VffProductionResourceType and VffProductionResource are subclasses of
IfcTypeResource and IfcResource, respectively, modeling a generic resource used in a
factory (and its production systems). These classes are further specialized to represent
equipment resources, material resources, and human resources, respectively.

In the VFDM the classes VffMachineryElementType and
VffMachineryElementType have been defined as subclasses of IfcTypeProduct and
IfcProduct, respectively, to represent generic pieces of machinery equipment.

Finally, specific property classes (e.g. VffProcessProperties,
VffMachineryElementProperties) have been created to properly characterize processes,
resources and machinery elements.

3. Test Case on Production Line

This section presents a test case representing a production line to show how the VFDM
can be employed to create factory projects and use them with different digital tools.
The test case consists of four ontologies that instantiate the VFDM classes, thus
exploiting the data distribution empowered by the Semantic Web approach: three
factory libraries (i.e. VffLibrary01, VffLibrary02, VffLibrary17) and one main factory
project (i.e. VfProductionLine04). All these ontologies import the set of VFDM
ontologies.

VffLibrary01 ontology defines a production site and a building.
VffLibrary02 ontology defines five machine types (as individuals of class

VffMachineryElementType (i.e. MtA, MtB, MtC, MtD, MtE). Each machine type is
associated with two possible shape representations in VRML and 3DS format.

VffLibrary17 ontology defines a part type as individual of class VffWorkpieceType
(i.e. a subclass of IfcTypeProduct) and a possible process plan to obtain a final product

from a raw piece. The process plan named processPlan01 is defined as an individual of
class VffManufacturingProcessType (i.e. a subclass of VffProcessType) and
decomposed into five process segments (as individuals of class
VffManufacturingProcessType) characterized by a processing time and a predefined
sequence. Moreover, each process segment requires a specific type of production
resource and the processing time is modeled as an exponential distribution (see
Table 1).

Table 1. Process planning.

Individual of
VffManufacturing
ProcessType

Description Required resource type as
individual of
VffProductionResourceType

Stochastic
Processing time
distribution

processPlan01 Process plan N/A Exponential(0.033)

DR01 Drilling operation drillingRes01 Exponential(0.033)

ML01 Milling operation millingRes01 Exponential(0.02)

ML02 Milling operation millingRes02 Exponential(0.02)

QC01 Quality control qualityControlRes01 Exponential(0.033)

GR01 Grinding operation grindingRes01 Exponential(0.025)

VfProductionLine04 ontology contains the factory project that imports and enriches the
data provided by the three libraries. The factory project defines the units of
measurement, the representation context and world coordinate system where the
production site and the building imported from VffLibrary01 are placed. One
production line is designed and placed in the building of the factory. The production
line consists of seven machines (as individuals of VffMachineryElement) that are typed
by the machine types defined in VffLibrary02 (see Table 2) and characterized by a
shape representation and a placement. The production line is designed to process the
part type defined in VffLibrary17 and is thus organized into five production stages.
Each needed production resource type can be provided by one or more machinery
element as shown in Table 2. An example of relations between the individuals defined
in the test case is shown in Figure 2 where the boxes represent individuals (identified
by their local URI and class) and the arcs represent object properties linking the
individuals. In particular, it is shown that the process segment ML02 requires the
resource type MillingRes02 that can be provided by the machine type MtC (i.e. MS02
or MS03) or by the specific machine MS04.

Table 2. Machinery elements.

individual of
VffMachineryElement

Related individual of
VffMachineryElementType

Description Provided resource type as
individual of
VffProductionResourceType

DS01 MtA Drilling machine drillingRes01

MS01 MtB Milling machine millingRes01

MS02 MtC Milling machine millingRes02

MS03 MtC Milling machine millingRes02

MS04 MtB Milling machine millingRes02

CS01 MtD Quality control
machine

qualityControlRes01

GS01 MtE Grinding machine grindingRes01

Figure 2. Relations between process type, resource type and machinery element.

Figure 3. 3D visualization of the manufacturing system represented in the test case.

The presented test case has been serialized in RDF/XML files [22] and can be
uploaded/downloaded to/from a shared data repository that is made available by a
VFM installation, so that the contained factory project and libraries can be accessed by
any VF module that is integrated in the VFF framework thus. For instance, Figure 3
shows a visual representation of the factory project made by a VF module named
GIOVE Virtual Factory [11].

4. Discrete Event Simulation

The applicability of the VFDM to model a manufacturing system and its behavior,
aiming at evaluating its performance, has been validated focusing the attention on the
case of Discrete Event Simulation (DES) and taking as a reference the test case
presented in the previous section.

ML02
(IfcTypeProcess)

id1
(IfcRelAssignsTo

Process)

id2
(IfcRelAssignsTo

Resource)

MillingRes02
(IfcTypeResource)

MS04
(VffMachinery

Element)

operatesOn hasRelatedObjects
isResourceOf

MS03
(VffMachinery

Element)

hasRelatedObjects

isTypedBy

hasRelatingType

id4
(IfcRelDefines

ByType)

id3
(IfcRelAssignsTo

Resource)

MtC
(VffMachinery
ElementType)

isResourceOf

hasRelatedObjects

MS02
(VffMachinery

Element)

isTypedBy

MS01

DS01

MS03

MS04
MS02

GS01
CS01

The capability of generating simulation models in an automatic (or semi-
automatic) way has been often considered one of the great challenges in the simulation
of manufacturing systems [23] [24]. In such kind of approaches, a simulation model is
generated from a data source using algorithms for creating the model and proper
interfaces to interact with a specific simulation environment. The automatic generation
of a simulation model answers to the need of speeding up the overall time required to
build a simulation model and, in addition, should also reduce the time needed to verify
a model by decreasing the time required to debug the code.

Within the area of the simulation of manufacturing systems, similar issues have
been also addressed in the literature, e.g. by Lorenz and Schulze [25], Randell and
Bolmsj [26], and Mueller et al. [27]. Most of the presented approached are
characterized by one or more of the following drawbacks:

 the work is strictly focused on a specific manufacturing sector (e.g.
semiconductors [27]);

 lack of universal validity;
 limited level of automatism that can be actually reached.

The design of the VFDM was driven by the need of providing a way to unambiguously
describe a generic manufacturing system regardless the specific application and, hence,
to address some of the lacks of the approaches already proposed in the literature.

4.1 Discrete Event Simulation using Arena

Among the great number of available general-purpose commercial off-the-shelf
(COTS) simulation packages, Arena by Rockwell Automation [28] is one of the most
used both in the academic and industrial world for applications in the manufacturing
field [29] [30].

An Arena model is built by dragging modules into the model window and
connecting them to define the flow of entities through the model. An example is shown
in Figure 4 where parts are generated in the Generate Parts block on the left and then
flow to the Machine Part block representing the execution of a certain set of
operations.

Figure 4. A simple simulation model in Rockwell Arena.

As shown in Figure 5, a set of resources can be invoked to operate the defined
operations. In this case, each part entering the block asks for the resource Machine 1
that has been already defined in the Arena model. A different and more flexible way of
defining a process or a sequence takes advantage of the capability of defining
sequences. A sequence consists of an ordered list of stations that an entity will visit.

For each station in the sequence, values may be assigned to attributes and variables.
Moreover, using sequences it is possible to assign different routing to different type of
entities, i.e. part types. Each station in the sequence is referred to as a step (or jobstep)
and can be characterized by specific attributes (e.g. the processing time).

Figure 5. The process definition window in Rockwell Arena.

4.2 Arena and VFF

A DES simulator based on Arena can exploit the interoperability enablers offered by
VFF only if it becomes a VF module (see Sect.1), thus being able to access and
understand the contents of the shared data repository where factory projects and
libraries are formalized according to the VFDM. The information stored into a
VFDM-compliant project can be used to automatically generate an Arena simulation
model only if the Arena data structures are properly mapped to the VFDM classes. This
mapping has been implemented by a software component named Arena-VF Connector
that is attached to Arena and works as a client exploiting the services offered by the
VFM. The Arena-VF Connector has been developed in C++ language and can
import/export ontologies serialized in RDF/XML format. The Arena-VF Connector
makes use of the VF Connector C++ Library that is based on the Redland C libraries
[31] and provides functionalities to parse, create and modify the ontologies thanks to an
internal map between OWL classes/restrictions and C++ classes/methods. The
instances of C++ classes are used as handlers of the ontology individuals to support and
ease the binding between the factory project individuals and the internal data structure
of Arena. The Arena-VF Connector makes use of the COM interface provided by
Arena to automatically generate Arena models.

The development of a Arena-VF Connector requires a deep analysis because Arena
represents a manufacturing system according to proprietary data structures and the
relationships between the processes and resources are formalized in a different way
compared to the VFDM. In particular, Arena requires each step of a process to be
explicitly assigned to a station, thus preventing (grounding on the traditional modeling)
the opportunity of defining a group of entities that can be used as resources and
postponing the actual assignment of the parts to different stations at run time. The

definition of a sequence in Arena allows the modeling of the process steps, but each
process steps must be directly linked to a station or a group of station of the same type.
To cope with this limitation, the assignment of parts to stations at run time must be
explicitly managed in Arena.

Taking as a reference the example in Figure 2, the manufacturing system model
can be translated into an Arena model as shown in Figure 6. The resource type (e.g.
millingRes02) required by a specific process step (e.g. the milling operation ML02) in
the sequence is mapped to a Station block and the assignment to the available objects
providing the needed resource (e.g. the machines MS02, MS03, MS04) is explicitly
managed through a tree of Branch blocks with as many leaves as the number of
machine occurrences that can execute the process step. On the leaves of the branch tree
the parts to be manufactured are routed to the specific machine using a Route block
after recording the destination in an attribute of the Assign block. Instead of Branch
blocks, different methods can be used to model specific assignments policies as well.
Finally, the machine occurrences (i.e. MS02, MS03, MS04) are mapped to Station
blocks (see the bottom of Figure 6) that are followed by a traditional sequence of Arena
blocks, i.e. a Seize block allotting the machine, a Delay block initialized with the
processing time and a Release block freeing the machine. Then the manufactured part
can be routed to the following process step in the sequence (SEQ keyword in the Route
block).

Arena also offers the opportunity of modeling identical machines (e.g. MS02 and
MS03) as a single resource with cardinality greater than one. However, by adopting this
option the dispatching of parts to the identical machines is internally managed by
Arena according to predefined policies that cannot be directly controlled.

Figure 6. Automatically generated Arena model

MS04
MtC

Further blocks can be added to an Arena simulation model for collecting specific
statistics regarding the involved resources. These statistics can be formalized according
to the VFDM by using the definitions imported from the IFC standard. For instance,
the IfcResourceTime class offers a set of attributes to store the time-related information
associated to a resource, e.g. the start and finish time for the assigned workload and the
percentage usage during the considered time horizon. The time-related attributes can
specify scheduled or actual values, thus showing how the VFDM can be used to
support factory planning, performance evaluation and factory monitoring activities.

The performance of the considered manufacturing system has been evaluated in
terms of utilization of the different resources and flow time of the parts. The results
have been also validated against a simulation model built manually and representing
the same manufacturing system (Figure 7).

Figure 7. Manually generated Arena model

Table 3: Simulation results.

Performance indicator
(average)

Automatically
generated model

Manually
generated model

Confidence interval (99%) on the
mean of the difference between
the two results

Utilization DS01 60.15 % 60.13 % [-0.41,0.45]

Utilization MS01 60.20 % 59.94 % [-0.16, 0.69]

Utilization MS02 33.49 % 33.05 % [-0.94, 0.87]

Utilization MS03 33.30 % 33.53 % [-0.31, 0.81]

Utilization MS04 33.44 % 33.52 % [-1.03, 0.86]

Utilization CS01 59.99 % 59.82 % [-0.79, 1.13]

Utilization GS01 80.26 % 79.63 % [-0.12, 1.38]

Flow time 0.107 [hours] 0.104 [hours] [0.00, 0.01]

Table 3 reports the results for 10 simulation runs of length 10 days with a warm up of
one day, for both the automatically and the manually generated simulation models. The
last column in Table 3 reports the 99% confidence intervals for the mean of the
difference between the results of the two simulation models. All the confidence
intervals contain the value 0, hence, the difference can be considered equal to 0 and,
consequently, the two simulation models provides the same results demonstrating the
validation of the automatically generated simulation model.

5. Conclusions

This paper has presented a data model for representing virtual factories, in particular
aiming at modeling the complex relationships between physical and logical entities of a
manufacturing system. It was shown how the adoption of a shared data model can
enhance the interoperability between software tools supporting the design, management
and performance evaluation of the factories.

Further developments of the data model are needed to better represent the
production logics characterizing a manufacturing system so that the generation of a
simulation model can be automated as much as possible. Moreover, the accuracy of the
generated simulation models will be improved if the common data model is used to
formalize the data coming from the shop-floor, thus closing the loop between the real
factory and its virtual representation.

In this paper the VFDM has been used mainly to support interoperability, however
further research can be carried out to exploit the enablers of the Semantic Web
approach to perform reasoning and enrich the knowledge about specific manufacturing
contexts.

Finally, the applicability of the VFF approach needs to be further tested by
integrating more software tools for performance evaluation into the framework. Such
integration will be supported by the development of programming libraries helping the
implementation of customized versions of VF Connector.

Acknowledgements

The research reported in this paper has been funded by the European Union Seventh
Framework Programme (FP7/2007-2013) under the grant agreement No: NMP2 2010-
228595, Virtual Factory Framework (VFF) and the grant agreement No: 262044,
VISION Advanced Infrastructure for Research (VISIONAIR). The authors would like
to thank COMPA S.A. (Sibiu, Romania) for kindly providing information for
representing the test case.

References

[1] W. Terkaj, T. Tolio, and A. Valente, "Designing Manufacturing Flexibility in Dynamic Production
Contexts," in Design of Flexible Production Systems.: Springer, ch. 1, pp. 1-18.

[2] M. Colledani and T. Tolio, "A Decomposition Method to Support the Configuration/Reconfiguration of
Production Systems," CIRP Annals - Manufacturing Technology, vol. 54, no. 1, pp. 441-444, 2005.

[3] M. Colledani, F. Gandola, A. Matta, and T. Tolio, "Performance evaluation of linear and non-linear
multi-product multi-stage lines with unreliable machines and finite homogeneous buffers," IIE
Transactions, vol. 40, no. 6, pp. 612-626, 2008.

[4] M. Bruccoleri et al., "Testing," in Design of Flexible Production Systems, T Tolio, Ed.: Springer, 2009,
pp. 239-293.

[5] G. Pedrielli, M. Sacco, W. Terkaj, and T. Tolio, "Simulation of complex manufacturing systems via
HLA-based infrastructure," Journal Of Simulation, To be published 2012.

[6] VFF, Holistic, extensible, scalable and standard Virtual Factory Framework (FP7-NMP-2008-3.4-1,
228595). [Online]. http://www.vff-project.eu/

[7] M. Sacco, P. Pedrazzoli, and W. Terkaj, "VFF: Virtual Factory Framework," in Proceedings of ICE -
16th International Conference on Concurrent Enterprising, Lugano, Svizzera.

[8] W. Terkaj, G. Pedrielli, and M. Sacco, "Virtual Factory Data Model," in Proceedings of 2nd OSEMA
(Ontology and Semantic Web for Manufacturing) Workshop, 2012.

[9] M. Sacco et al., "Virtual Factory Manager," in Virtual and Mixed Reality - Systems and Applications.
Proceedings of International Conference, Virtual and Mixed Reality 2011 held as Part of HCI
International 2011, Orlando, FL, 2011, pp. 397-406.

[10] G. Ghielmini et al., "Virtual Factory Manager of Semantic Data," in Proceedings of DET2011 7th
International Conference on Digital Enterprise Technology, Athens, Greece, 2011.

[11] G.P. Viganò, L. Greci, S. Mottura, and M. Sacco, "GIOVE Virtual Factory: A New Viewer for a More
Immersive Role of the User During Factory Design," in Digital Factory for Human-oriented Production
Systems, L., Redaelli, C., Flores, M. Canetta, Ed.: Springer, 2011, pp. 201-216.

[12] International Society of Automation. ISA-95: the international standard for the integration of enterprise
and control systems. [Online]. http://www.isa-95.com/

[13] The Organization for Production Technology. (2011) Business To Manufacturing Markup Language
(B2MML). [Online]. www.wbf.org/associations/12553/files/B2MML-
BatchML%20v0500%20Schemas-Word-PDF.zip

[14] W3C. (2004, October) XML Schema Part 1: Structures Second Edition. [Online].
http://www.w3.org/TR/xmlschema-1/

[15] National Institute of Standards and Technology. (2008) Process Specification Language (PSL).
[Online]. http://www.mel.nist.gov/psl/

[16] buildingSMART. IFC Overview. [Online]. http://buildingsmart-tech.org/specifications/ifc-overview
[17] International Organization for Standardization, ISO 10303 - Industrial automation systems and

integration -- Product data representation and exchange.
[18] International Organization for Standardization, ISO 10303-11:2004 Industrial automation systems and

integration -- Product data representation and exchange -- Part 11: Description methods: The EXPRESS
language reference manual, 2004.

[19] buildingSMART. Industry Foundation Classes - IFC2x Edition 4 Release Candidate 2. [Online].
http://buildingsmart-tech.org/ifc/IFC2x4/rc2/html/index.htm

[20] W3C. (2009) OWL 2 Web Ontology Language - Document Overview. [Online].
http://www.w3.org/TR/owl2-overview/

[21] W3C. (2009) OWL 2 Web Ontology Language Manchester Syntax. [Online].
http://www.w3.org/TR/owl2-manchester-syntax/

[22] W3C. (2004) RDF/XML Syntax Specification (Revised). [Online]. http://www.w3.org/TR/REC-rdf-
syntax/

[23] S. Bergmann and S. Strassburger, "Challenges for the Automatic Generation of Simulation Models for
Production Systems," in Proceedings of the 2010 Summer Simulation Multiconference, Ottawa,
Canada, 2010, pp. 545-549.

[24] J. W. Fowler and O. Rose, "Grand Challenges in Modeling and Simulation of Complex Manufacturing
Systems," SIMULATION: The Society for Modeling and Simulation International, vol. 80, no. 9, pp.
469–476, 2004.

[25] P. Lorenz and T. Schulze, "Layout based model generation," in Proceedings of the 27th conference on
Winter simulation (WSC '95), 1995, pp. 728-735.

[26] L. G. Randell and G. S. Bolmsjo, "Database driven factory simulation: a proof-of-concept
demonstrator," in Proceedings of the 33nd conference on Winter simulation, 2001, pp. 977-983.

[27] R. Mueller, C. Alexopoulos, and L.F. McGinnis, "Automatic generation of simulation models for
semiconductor manufacturing," in Proceedings of the 39th conference on Winter simulation, 2007, pp.
648-657.

[28] Rockwell Automation , Arena User's Guide, Version 12.00.00, 2007.
[29] Law and A. M., Simulation modeling and analysis, 4th ed.: McGraw-Hill, 2007.
[30] W.D. Kelton, Simulation with Arena, 5th ed.: McGraw-Hill, 2006.
[31] D. Beckett. Redland RDF Libraries. [Online]. http://librdf.org/

