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Backscatter Sensors Communication for 6G Low-powered

NOMA-enabled IoT Networks under Imperfect SIC

Manzoor Ahmed, Wali Ullah Khan, Asim Ihsan, Xingwang Li, Jianbo Li, and Theodoros A. Tsiftsis

Abstract—The combination of non-orthogonal multiple access
(NOMA) using power-domain with backscatter sensor commu-
nication (BSC) is expected to connect a large-scale Internet of
things (IoT) devices in future sixth-generation (6G) era. In this
paper, we introduce a BSC in multi-cell IoT network, where a
source in each cell transmits superimposed signal to its associated
IoT devices using NOMA. The backscatter sensor tag (BST) also
transmit data towards IoT devices by reflecting and modulating
the superimposed signal of the source. A new optimization
framework is provided that simultaneously optimizes the total
power of each source, power allocation coefficient of IoT devices
and reflection coefficient of BST under imperfect successive
interference cancellation decoding. The objective of this work
is to maximize the total energy efficiency of IoT network subject
to quality of services of each IoT device. The problem is first
transformed using the Dinkelbach method and then decoupled
into two subproblems. The Karush-Kuhn-Tucker conditions and
Lagrangian dual method are employed to obtain the efficient
solutions. In addition, we also present the conventional NOMA
network without BSC as a benchmark framework. Simulation
results unveil the advantage of our considered NOMA BSC
networks over the conventional NOMA network.

Index Terms—Sixth-generation (6G), backscatter sensor com-
munication (BSC), energy efficiency, Internet of things (IoT),
non-orthogonal multiple access (NOMA).

I. INTRODUCTION

In the last couple of years, Internet-of-things (IoT) has been

emerged as a new technological innovation in a wide range of

applications such as smart factories, smart cities, smart homes,

smart hospitals, autonomous vehicles, and so on [1], [2]. The

IoT is expected to connect billions of sensor devices in the

future sixth-generation (6G) systems [3], which would require

the efficient utilization of existing spectrum resources [4], [5].

However, one of the key challenges would be energy issues

especially for those systems where the battery replacement

of sensor devices can be very costly [6]. In particular, the

sensor devices which are hidden in walls and appliances or

deployed in radioactive areas and pressurized pipes, making

battery replacement difficult if not possible [7]. In such cir-

cumstances, ambient energy harvesting is a highly desirable
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approach to maintain the life of sensor devices for a long

period [8], [9]. It is important to mention here that ambient

energy can sufficiently power sensor devices due to their low

energy consumption. In this regard, a promising solution is

Backscatter communication (BC) [10]. BC allows the sensor

devices to transmit data by reflecting and modulating the

existed radio frequency signal [11].

A. Technical Literature Review

Recently, power-domain non-orthogonal multiple access

(NOMA) has gained significant importance due to its high

spectral efficiency and massive connectivity [12], [13]. Com-

pared to orthogonal multiple access (OMA) techniques,

NOMA supports multiple IoT devices over the same spec-

trum/time resources which can be accomplished through two

techniques, i.e., superposition coding at transmitter side and

successive interference cancellation (SIC) at receiving side

[14], [15]. Various research works on backscatter commu-

nication in traditional OMA networks have been studied in

literature. For example, Guo et al. [16] have provided the

efficient power allocation approach for cooperative BC to

investigate the achievable rate of the system. The authors of

[17] computed a closed-form solution for the outage prob-

ability (OP) of BC. In [18], the authors derived a closed-

form expression for the OP of a BC system over Rayleigh

fading channels. They also investigated the trade-off between

harvested energy and data rate through power splitting factor.

Qian et al. [19] calculated a closed-form expression for the

symbol-error rate and designed an efficient multi-level energy

detector for BC system. The authors of [20] investigated

an optimization problem for throughput maximization of BC

through calculating the optimal reflection coefficient (RC) and

the trade-off between active and sleep state. Jameel et al. [21]

exploited Q-learning approach to improve the achievable data

rate while the constraint on delay is taken into account. In

addition, Li et al. [22] investigated security and reliability of

BC by through calculating the OP and intercept probability

(IP) of the system. Recently, the performance of BC has

been investigated using reinforcement learning techniques. The

authors of [23], [24] have provided intelligent power allocation

algorithms to improve the performance of BC systems.

The integration of BC in NOMA has recently been studied

in literature. For example, in [25], the expression of OP

has been derived in NOMA BC network where a source

is equipped with multi-antenna scenario. Zhang et al. [26]

have derived a closed-form expression for the OP and ergodic

capacity in NOMA BC symbiotic radio systems. The work of

[27] has studied the security issues of NOMA BC network.

Khan et al. [28] have considered NOMA BC in vehicle-

to-everything network to maximize the sum capacity of the

http://arxiv.org/abs/2109.12711v1
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system. To improve the spectrum management and network

capacity, Liao et al. [29] have studied resource allocation

problem in full duplex NOMA BC networks. The work of

[30] has improved the average successful decoding bit by

efficient RC selection criteria in NOMA BC network. In

similar study, Farajzadeh et al. [31] have optimized unmanned

aerial vehicle altitude and maximize the successful decoded bit

rate of NOMA BC network. Yang et al. [32] have optimized

the time and RC of BC to maximize the system minimum

throughput. Moreover, the work of [33] has investigated the

OP and the throughput of NOMA BC system. Besides, Li et

al. [34] have studied the physical layer security of multiple-

input single-output NOMA BC network. In [35], the authors

have proposed an optimization problem of transmit power and

RC for BC to maximize the energy efficiency (EE) of the

system. To investigate the security and reliability of NOMA

BC system, the authors of [36] have investigated the OP and

IP under channel estimation error, imperfect SIC and residual

hardware impairment. In addition, the joint optimization of

power and RC under imperfect SIC was solved in [37] to

maximize the sum rate of NOMA BC system.

B. Motivation and Contributions

The above-existed literature [16]–[35] considers perfect SIC

at the receiver side which is impractical in real systems. Of

course, a decoding error can occur during the SIC process at

receiver side such that the interference of other devices cannot

be removed. This will result in significant degradation of the

system performance. Besides that, most of the research works

consider only single-cell and two-user scenarios. Generally,

a network is consists of different cells having various sizes.

These cells normally share the same spectrum resources to

enhance the spectral efficiency, result in causing inter-cell

interference to each other. Moreover, the works in [36], [37]

consider imperfect SIC in the single-cell system but their

objectives were to improve the sum-capacity and physical

layer security. Based on the above observations, there is a

need to investigate a system performance with multi-cell,

considering inter-cell interference and imperfect SIC decoding.

Thus, the problem that jointly optimizes the total power budget

of source, power allocation coefficient (PAC) of IoT devices,

and RC of backscatter tag in each cell to investigate the EE of

NOMA BC in multi-cell network under imperfect SIC has not

yet been investigated, to the best of our knowledge. To bridge

this gap, this work aims at proposing a new optimization

approach for maximizing the system EE of the multi-cell

NOMA backscatter sensors communication (BSC) network

under imperfect SIC decoding. Dinkelback method is first

adopted to convert the objective of EE from the fractional form

into a subtractive form. The converted problem is divided into

subproblems and closed-form solutions are then derived based

on dual method and Karush-Kuhn-Tucker (KKT) conditions.

Simulation results show the benefit of our multi-cell NOMA

BSC scheme compared to the benchmark multi-cell NOMA

scheme in terms of system total EE. The main contributions

of this paper are summarized as follow:

1) A new optimization framework for a multi-cell IoT net-

work is considered, where a source in each cell transmits

a superimposed signal to its serving IoT devices using

NOMA protocol. A backscatter sensor tag (BST) in each

cell also transmits data symbols towards nearby IoT

devices by reflecting and modulating the superimposed

signal of the source node. The objective is to maximize

the total achievable EE of BSC network under im-SIC

decoding. We simultaneously optimize the RC of BST,

PAC of IoT devices, and total power budget of the source

in each cell subject to the quality of services of IoT

devices.

2) The optimization problem to maximize the total EE is

formulated as a non-convex which is very complex and

hard to be solved. Hence, the Dinkelbach method is first

adopted to the original problem to convert the objective

of EE from the fractional form into a subtractive form.

The converted problem is then divided into two sub-

problems, i.e., power optimization at source and RC at

BST in each cell. Next, we prove the RC subproblem

as concave and exploit KKT conditions to obtain an

efficient solution. Similarly, we prove that the power

allocation subproblem is concave and solve it using the

Lagrangian dual method.

3) We also investigate the same model without BSC (also

known as pure NOMA IoT network without backscatter-

ing) and set it as the benchmark framework. The numeri-

cal results for the proposed framework are corroborated

by using Monte Carlo simulation which demonstrates

the advantage of NOMA BSC network over the conven-

tional NOMA IoT network without BSC. In addition,

the proposed algorithm is less complex and converges

after few iterations.

The remaining of this paper is structured as follows: The

system model and problem formulation are provided in Section

II. The EE maximization solution is proposed in Section III.

Simulation results and discussion is presented in Section IV

followed by the concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-cell BSC network as shown in Fig.

1, wherein each cell, a source (denoted as S) communicates

with two downlink IoT devices (Di,k and Dj,k) using NOMA

protocol1. The network also consists of F uplink BSTs where

it set can be denoted as f = {1, 2, 3, . . . F}. A BST in each

cell also receives the downlink superimposed signal from S,

uses it to modulate information, and then reflects it towards

IoT devices in the uplink direction, where the IoT devices

also act as readers. The set of cells can be denoted as K such

as k = {1, 2, 3, . . .K}, where k represents source Sk. We

assume that: 1) All the transmitters and receivers are using

single antenna for communication; 2) all the sources reuse the

same spectrum/time resources; 3) the channel state information

of IoT devices in each cell is available at the source [39]; 4)

a decoding error can occur during the SIC process at receiver

1This work considers two IoT devices in each cell, however, it can be easily
extended to the multi-user scenario. For instance, if the region of each cell is
partitioned into multiple clusters and each cluster consists of two IoT devices.
In such a case, NOMA is among IoT devices in the same cluster and OMA
can be utilized between different clusters [38].
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Fig. 1: Illustration of system model.

side such that the interference of other devices cannot be

removed. Therefore, we consider SIC with decoding error. A

superimposed signal xk transmitted by source Sk to Di,k and

Dj,k can be expressed as:

xk =
√

PkΛi,kxi,k +
√

PkΛj,kxj,k, (1)

where Pk is the transmit power of Sk, Λi,k and Λj,k denote

the PAC of Sk. xi,k and xj,k are the unit power data symbols

of Di,k and Dj,k from Sk . Meanwhile, the BST denoted as

Bf,k also receives xk from Sk, reflect it towards Di,k and Dj,k

by adding data symbol w(t) such that E[|w(t)|2] = 1, where

E[.] represents the expectation operation. Therefore, Di,k and

Dj,k receive signals from both Sk and Bf,k. Following the

work in [40], If the channel from Sk to Di,k and Dj,k is

modeled as hi,k = h̄i,kd
−̺/2
i,k and hj,k = h̄j,kd

−̺/2
j,k , where

h̄ς,k ∼ CN (0, 1), ς ∈ {i, j} are the coefficient of Rayleigh

fading, dς,k is the distance from Sk to Di, k and Dς,k and

̺ shoes the path loss exponent. Then, the received signal of

Di,k and Dj,k can be written as:

yi,k =
√

hi,kxk +
√

Φf,kg
k
i,f (hf,kxk)w(t)

+

K
∑

k′=1,k′ 6=k

√

Pk′hki,k′xk′ +̟i,k, (2)

yj,k =
√

hj,kxk +
√

Φf,kg
k
j,f(h

k
j,fxk)w(t)

+

K
∑

k′=1,k′ 6=k

√

Pk′hkj,k′xk′ +̟j,k, (3)

where in both (2) and (3), the first segment refer to the desired

signal of Sk, the second segment is the reflected signal of Bf,k

and the third segment represents the inter-cell interference of

neighboring cells. Further, hf,k is the channel gain between

Bf,k and Sk, Φf,k refers to the RC of Bf,k. Further, gki,f and

gkj,f denote the channel gains from Bf,k to Di,k and Dj,k. In

addition, Pk′ is the interference power from Sk′ , hki,k′ and hkj,k′

are the channel gains from Sk′ to Di,k and Dj,k. Moreover,

̟i,k and ̟j,k are the additive white Gaussian noises (AWGN)

with zero mean and σ2 variance. According to the NOMA,

Di,k can decodes the signals xi,k and w(t) by applying the

SIC technique. In contrary, Dj,k cannot apply SIC and decodes

the signal xj,k with interference.

By considering the detecting and decoding sensitivity of

receiver, BSk a decoding error can occur during the SIC

process at Di,k such that the interference of Dj,k cannot be

removed. Therefore, the received signal to interference plus

noise ratio (SINR) of Di,k when subtracting the signal of Dj,k

can be given as:

γki→j =
PkΛj,k|hi,k|2 + Φf,k|hf,k|2|gki,f |2

PkΛi,k(|hi,k|2 + Φf,k|hf,k|2|gki,f |2) +∆k
j,k′ + σ2

,

(4)

where ∆k
j,k′ = |hkj,k′ |2

∑K
k′=1 Pk′ is the inter-cell interference

due to the co-channel deployment. The SINR at Di,k to decode

its own signal can be stated as:

γki→i =
PkΛi,k(|hi,k|2 + Φf,kGi,k)

PkΛj,k|hi,k|2β +∆k
i,k′ + σ2

, (5)

where Gi,k = |hf,k|2|gki,f |2. β represents the imperfect SIC

parameter which is given as β = E[|xi,k − x̃i,k|2], where

xi,k − x̃i,k stands for the difference between the original and

the estimated signals. The corresponding rate of Di,k can be

written as Ri,k = log2(1+γ
k
i→i). The SINR at Dj,k to decode

xj,k can be written as:

γkj→j =
PkΛj,k(|hj,k|2 + Φf,kGj,k)

PkΛi,k(|hj,k|2 + Φf,kGj,k) +∆k
j,k′ + σ2

, (6)

where Gj,k = |hf,k|2|gkj,f |2. Thus, its corresponding data rate

is can be written as Rj,k = log2(1 + γkj→j).

The objective of this work is to maximize the total EE of



SUBMITTED TO IEEE 4

multi-cell NOMA BSC network. The total EE is given by

EE =

K
∑

k=1

(

Rk

PkΛi,k + PkΛj,k + pc

)

, (7)

where Rk = Ri,k+Rj,k is the sum rate of Sk while the circuit

power is represented by pc. The EE of the system can be

maximized through the efficient allocation of transmit power

of Sk , PAC of IoT devices, and the RC of BST in each cell.

In addition, we also aim to ensure the minimum data rate of

IoT devices in each cell. Mathematically, a joint optimization

problem (P) is to maximize the total EE of multi-cell NOMA

BSC network can be formulated as:

(P) max
(Λi,k,Λj,k,Φf,k)

EE (8)

s.t. C1 : PkΛi,k

(

|hi,k|2 + Φf,kGi,k

)

≥
(

2Rmin − 1
)

×
(

|hi,k|2PkΛj,kβ +∆k
i,k′ + σ2

)

, ∀k,
C2 : PkΛj,k

(

|hj,k|2 + Φf,kGj,k

)

≥
(

2Rmin − 1
)

×
(

PkΛi,k(|hj,k|2 + Φf,k|Gj,k

)

+∆k
j,k′ + σ2), ∀k,

C3: PkΛi,k ≤ PkΛj,k, ∀k, ∀i, j,
C4: 0 ≤ Pk ≤ Pmax, ∀k,
C5: Λi,k + Λj,k ≤ 1, ∀k,
C6: 0 ≤ Φf,k ≤ 1, ∀f, ∀k,

where constraints C1 and C2 guarantee the minimum data

rate of IoT Di,k and Dj,k associated with Sk . Constraint C3

ensures the SIC decoding at receivers. Constraint C4 limits the

transmit power of Sk. Constraint C5 describes the condition

for PAC of IoT devices connected to Sk while constraint C6

limits the RC of BST between 0 and 1.

III. ENERGY EFFICIENCY MAXIMIZATION SOLUTION

The above EE maximization problem defined in (8) is

coupled on two variables in each cell, i.e., 1) Transmit power

of the source and PAC of IoT devices in each cell, and 2)

RC of BST in each cell. Thus, it is very hard to solve it

directly. Therefore, this problem can be solved in three steps: i)

First, we apply Dinkelbach method to transform the objective

function of (P) into subtractive one; ii) second, on the fixed

value of source transmit power in each cell, we compute the

efficient RC of BST in each cell, and iii) third, we substitute

the RC of BST in (8) and calculate the transmit power of

source and PAC of IoT devices. Based on Dinkelbach method,

the problem in (8) can be transformed as:

max
(Λi,k,Λj,k,Φf,k)

K
∑

k=1

Rk −Π

K
∑

k=1

Pk(Λi,k + Λj,k) + pc,

s.t. C1 − C6, (9)

where Π shows the maximum EE and it can be achieved when

K
∑

k=1

Rk −Π∗(

K
∑

k=1

Pk(Λ
∗
i,k + Λ∗

j,k) + pc) = 0. (10)

The problem in (9) is still hard to be solved due to the

interference terms in the SINR of Di,k and Dj,k and the

coupled variables Λk and Φf,k. Thus, we decouple problem

(9) into two subproblems, i.e., RC selection subproblem and

transmit power allocation subproblem.

A. Efficient Reflection Coefficient Selection

Here we compute the efficient RC of BST in each cell.

For any given power allocation Λ∗
k at Sk in each cell, the

optimization problem in (9) can be simplified to BST RC

selection subproblem as:

max
(Φf,k)

K
∑

k=1

log2

{(

1 +
Xi,k + Φf,kYi,k

Zi,k

)

+ log2

(

1 +
Xj,k + Φf,kYj,k

Zj,k + Φf,kWj,k

)}

−Π

K
∑

k=1

Pk(Λ
∗
i,k + Λ∗

j,k) + pc, (11)

s.t. C1,C2,C4,C6,

where Xi,k = PkΛ
∗
i,k|hi,k|2, Yi,k = PkΛ

∗
i,kGi,k , Zi,k =

PkΛ
∗
j,k|hi,k|2β +∆k

i,k′ + σ2, Xj,k = PkΛ
∗
j,k|hj,k|2, Yj,k =

PkΛ
∗
j,kGj,k , Zj,k = PkΛ

∗
i,k|hj,k|2β +∆k

j,k′ + σ2 and Wj,k =
PkΛ

∗
i,kGj,k. By using the following proposition, we demon-

strate that Rk is a concave/convex using Φf,k.

Proposition 1. The sum rate of Sk

Rk = log2

{(

1 +
Xi,k + Φf,kYi,k

Zi,k

)

+ log2

(

1 +
Xj,k + Φf,kYj,k

Zj,k + Φf,kWj,k

)}

, (12)

is concave/convex with reference to Φf,k.

Proof. Refer to Appendix A.

According to the Proposition 1, the optimization problem

(11) is concave which motivates us to exploit KKT conditions

for obtaining optimal Φf,k.

Proposition 2. The closed-form of BST RC can be then

expressed as:

Φf,k =

[

(2γ
min
i,k − 1)−Xi,k

Yi,k

]

, (13)

Proof. Please, refer to Appendix B.

In the sequel, we calculate efficient power allocation in each

cell.

B. Efficient Power Allocation

Here we calculate the efficient transmit power of source and

PAC of IoT devices in each cell. For the fixed value of BST

RC Φ∗
f,k , the optimization problem in (9) can be then written

as:

max
(Λi,k,Λj,k)

K
∑

k=1

Ek = max
(Λi,k,Λj,k)

K
∑

k=1

Ri,k +Rj,k

Pk(Λi,k + Λj,k) + pc

s.t. C1 − C5. (14)
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We can also write Equation (5) and (6) as:

γki→i =
PkΛi,kAi,k

PkΛj,kBi,k + Ci,k
, (15)

with Ai,k = |hi,k|2 + Φf,kGi,k , Bi,k = |hi,k|2β, Ci,k =
∆k

i,k′ + σ2, and

γkj→j =
PkΛj,kAj,k

PkΛi,kBj,k + Cj,k
, (16)

where Aj,k = |hj,k|2 +Φf,kGj,k , Bj,k = |hj,k|2 +Φf,kGj,k,

Cj,k = ∆k
j,k′ +σ2. In the following proposition, we will prove

that (14) is concave/convex regarding Λk = {Λi,k, Λj,k}.

Proposition 3. The sum rate of Sk

Rk = log2(1 +
PkΛi,kAi,k

PkΛj,kBi,k + Ci,k
)

+ log2(1 +
PkΛj,kAj,k

PkΛi,kBj,k + Cj,k
) (17)

is concave/convex with reference to Λk = {Λi,k, Λj,k}.

Proof. The proof is demonstrate in Appendix C.

Based on Proposition 3, the objective function in (14) is

concave-convex fractional programming problem, which can

be solved through Dinkelbach algorithm as follow:

max
(Λi,k,Λj,k)

K
∑

k=1

Ek = max
(Λi,k,Λj,k)

K
∑

k=1

F (Π)

= max
(Λi,k,Λj,k)

K
∑

k=1

Rk −Π(

K
∑

k=1

Pk(Λi,k + Λj,k)− pc) (18)

s.t. C1 − C5.

where Π = Rk
K∑

k=1

Pk(Λi,k+Λj,k)+pc

, while F (Π) is the para-

metric form of fractional objective function in (18). Solving

the roots of F (Π) is equivalent to computing the fractional

objective function in (18). F (Π) as function of Π is con-

vex because it is negative when Π tends to infinity and

is positive when Π approaches minus infinity. Therefore,

motivated by the above observations, this convex problem can

be solved through Lagrangian dual decomposition method.

The Lagrangian function of problem (18) can be defined as:

L(Λk,λk, µk, ǫk) =

K
∑

k=1

{

log2

(

1 +
PkΛi,kAi,k

PkΛj,kBi,k + Ci,k

)

+ log2

(

1 +
PkΛj,kAj,k

PkΛi,kBj,k + Cj,k

)}

−Π

K
∑

k=1

Pk(Λi,k + Λj,k)− pc + λi,k(PkΛi,kAi,k (19)

− (2Rmin − 1)PkΛj,kBi,k + Ci,k) + λj,k(PkΛj,kAj,k

− (2Rmin − 1)(PkΛi,kBj,k + Cj,k) + µk(Pmax − Pk)

+ ǫk(1− Λi,k − Λj,k),

where λk = {λi,k, λj,k}, µk, and ǫk are the dual variables,

which are related to the constraints C1, C2, C4, and C5. The

Lagrangian dual function can be presented as:

g(λk, µk, ǫk) = max
Λk>0,λk,µk,ǫk≥0

L(Λk,λk, µk, ǫk) (20)

Then, its a dual problem can be formulated as follow:

min
λk,µk,ǫk≥0

g(λk, µk, ǫk) (21)

For the fixed dual variables and given EE Π , the formulated

optimization problem depends on KKT conditions.

Proposition 4. The closed-form expression for energy-efficient

PAC of Di,k and Dj,k can be derived as:

Λ∗
i,k =

[

−b±
√
b2 − 4ac

2a

]+

(22)

Λ∗
j,k = 1− Λ∗

i,k (23)

where [.]+ = max[0, .] and the values of

a = P 2
k (−Ai,kAj,kBj,k(1 + λi,k)(Ci,k +Bi,kPk) +Ai,kB

2
j,k

(1 + λi,k)(Ci,k +Bi,kPk) +Ai,kAj,kBi,k(1 + λj,k)(Cj,k

+Bj,kPk)−Aj,kB
2
i,k(1 + λj,k)(Cj,k +Bj,kPk)), (24)

b = Pk(Ci,k +Bi,kPk)(−Ai,kCj,k(−2Bj,k(1 + λi,k)

+Aj,k(2 + Li,k + λj,k)) +Ai,kAj,kBj,k(λi,k − λj,k)Pk

+ 2Aj,kBi,k(1 + λj,k)(Cj,k +Bj,kPk)), (25)

c = (Ci,k +Bi,kPk)(Ai,kC
2
j,k(1 + λi,k) +Aj,k

(−Ci,k(1 + λj,k)(Cj,k +Bj,kPk) + Pk(Ai,kCj,k

(1 + λi,k)−Bi,k(1 + λi,k)(Cj,k +Bj,kPk)))). (26)

Proof. Please, refer to Appendix D.

Next we calculate the optimal transmit power of each

source, i.e., Pk. To do so, we differentiate (19) with respect

to Pk , it results as:

τ + χPk + ψP 2
k + ΓP 3

k + ωP 4
k = 0, (27)

where τ, χ, ψ,Γ and ω are given in (26)-(29) on the top of

the next page. Equation (27) is the polynomial of order four

which can be easily solved by any conventional solver. The

objective of the problem is to maximize the EE, thus, P ∗
k can

be founded through the larger root of (27). With optimal Λ∗
i,k,

Λ∗
j,k and P ∗

k , problem (20) can be written as:

max
(Λ∗

i,k
,Λ∗

j,k
,P∗

k
)

K
∑

k=1

{

log2

(

1 +
P ∗
kΛ

∗
i,kAi,k

P ∗
kΛ

∗
j,kBi,k + Ci,k

)

+ log2

(

1 +
P ∗
kΛ

∗
j,kAj,k

P ∗
kΛ

∗
i,kBj,k + Cj,k

)}

−Π

K
∑

k=1

P ∗
k (Λ

∗
i,k + Λ∗

j,k) + pc, (33)

subject to: λk, ǫk ≥ 0

Subsequently, we use sub-gradient method to iteratively update

the Lagrangian multipliers λi,k , λj,k, µk and ǫk as [41]:

λi,k(t+ 1) = λi,k(t) + δ(t)(P ∗
kΛ

∗
i,kAi,k

− (2Rmin − 1)P ∗
kΛ

∗
j,kBi,k + Ci,k), ∀k, (34)
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τ = Ci,kCj,k(−Aj,kCi,k(−1 + Λi,k))(1 + λj,k) + Cj,k(Ai,kΛi,k(1 + λi,k)− Ci,k(µk +Π)), (28)

χ = Ci,kCj,k(2(Bi,kCj,k(−1 + Λi,k)−Bj,kCi,kΛi,k)(µk +Π) +Aj,k(−1 + Λi,k)(2Bi,k(−1 + Λi,k)(1 + λj,k)

− Ai,kΛi,k(2 + λi,k + λj,k) + Ci,k(µk +Π)) +Ai,kΛi,k(2Bj,kΛi,k(1 + λi,k)− Cj,k(µk +Π))), (29)

ψ = −(B2
i,kC

2
j,k(−1 + Λi,k)

2 − 4Bi,kBj,kCi,kCj,k(−1 + Λi,k)Λi,k +B2
j,kC

2
i,kΛ

2
i,k)(µk +Π) +Ai,kΛi,k(B

2
j,k

Ci,kΛ
2
i,k(1 + λi,k) +Bi,kC

2
j,k(−1 + Λi,k)(µk +Π)− 2Bj,kCi,kCj,kΛi,k(µk +Π))−Aj,k(−1 + Λi,k)

(B2
i,kCj,k(−1 + Λi,k)

2(1 + λj,k)−Bi,kCj,k(−1 + Λi,k)(Ai,kΛi,k(1 + λj,k)− 2Ci,k(µk +Π))− Ci,k

Λi,k(Bj,kCi,k(µk +Π) +Ai,k(−Bj,kΛi,k(1 + λi,k) + Cj,k(µk +Π)))), (30)

Γ = (Bj,kΛi,k(−2B2
i,kCj,k(−1 + Λi,k)

2 + 2Bi,k(Bj,kCi,k +Ai,kCj,k)(−1 + Λi,k)Λi,k −Ai,kBj,kCi,kΛ
2
i,k) +Aj,k

(−1 + Λi,k)(B
2
i,kCj,k(−1 + Λi,k)

2 −Bi,k(2Bj,kCi,k +Ai,kCj,k)(−1 + Λi,k)Λi,k +Ai,kBj,kCi,kΛ
2
i,k))(µk +Π), (31)

ω = −Bi,kBj,k(−1 + Λi,k)Λi,k(Bi,k(−1 + Λi,k)−Ai,kΛi,k)(Aj,k −Aj,kΛi,k +Bj,kΛi,k)(µk +Π). (32)

λj,k(t+ 1) = λj,k(t) + δ(t)(P ∗
kΛ

∗
j,kAj,k

− (2Rmin − 1)(P ∗
kΛ

∗
i,kBj,k + Cj,k), ∀k, (35)

ǫk(t+ 1) =ǫk(t) + δ(t)(1 − (Λ∗
i,k + Λ∗

j,k)), ∀k, (36)

µk(t+ 1) =µk(t) + δ(t)(Pmax − P ∗
k ), ∀k, (37)

where t is the index of iteration. Equations (34), (35), (36),

and (37) are iteratively calculated until the required criterion

satisfied.

C. Proposed Algorithm and Complexity Analyses

Here, we design algorithm based on the solutions provided

in Section III-A and B, respectively. As shown in Algorithm

1, we initialize all the system parameters and variables. For

the given values of Pk, Λi,k and Λj,k, we compute Φf,k.

Subsequently, we substitute the value of Φ∗
f,k in power alloca-

tion subproblem (14) and calculate Λi,k and Λj,k followed by

Pk. Then, we iteratively update λi,k, λj,k and εk. The above

process will continue until convergence criteria satisfied.

The computational complexity of the proposed optimiza-

tion framework can be calculated regarding the number of

iterations. The complexity of our algorithm depends on the

different variables and parameters of the system such number

of cells and the number of users, i.e., K, I, J . Based on these

observation, the complexity of the proposed algorithm in any

given iteration is computed as O[(I + J)K]. Since we have

considered two user in each cell, therefore, the computational

complexity can also be written as O[2K]. Further, if the

number of total iteration required for convergence is T , the

total computational complexity becomes O[2TK].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide the simulation results to evaluate

the performance of the proposed framework. Unless specified

otherwise the system parameters are taken as follow: σ=0.01,

β=0.1, K=10, pc=0.1 W, and Pmax= 32 dBm. In the consid-

ered problem, the power allocation is always lower bounded

by the Rmin in order to make the impact of changing Pmax

more prominent. In the first three results of this section, we

Algorithm 1: Proposed resource optimization algo-

rithm.

if t = 0 then
Initialize all parameters and variables, i.e., number

of cells, number of users, number of BSTs,

maximum power budget of each source, RC of

each BST, variance, minimum data rate, circuit

power, values of imperfect SIC and channel gains.
else

First we calculate the reflection coefficient of

backscatter tag in each cell for the given values

of Λi,k,Λi,k and Pk

for k = 1 : K do
Find Φf,k according to (13)

end

Next we substitute the value of Φ∗
f,k in (14) and

calculate the values of Λi,k,Λi,k and Pk

while not converge do

for k = 1 : K , i = 1 : I , j = 1 : J do
Compute Λi,k according to (22) and Λj,k

according to (23)

Compute Pk according to (27)

Update the dual variables λi,k , λj,k and ǫk
end

end

Return P ∗
k , Λ∗

i,k, Λ∗
j,k, Φf,k

end

have taken Rmin=0. To analyze the benefits of backscatter-

ing, the performance of the proposed framework WBS (with

backscatter sensor) is compared with a simplified network with

no backscatter sensor (NBS)2.

The effect of increasing Pmax on the total EE of the system

is presented in Fig. 2. An increase in the value of Pmax results

in increasing the EE of the system initially. However, after a

certain point, an increase in Pmax has no impact on the total

EE. This is because, at these points, the transmission power

2Due to the novelty of the proposed framework, it is difficult to compare it
with the existing works of the literature. Thus, we resort to compare it with
pure NOMA without backscatter communication.
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Fig. 2: The impact of increasing Pmax on the total EE of the system
with different values of β
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Fig. 3: The effect of increasing Pmax on the total EE for different
number of cell in the system

is efficient, and allocating more power for the transmission

results in decreasing the total EE of the system. Thus, when the

value of Pmax is further increased, the allocated power for the

transmission remains unchanged. Further, it can be seen that

smaller values of β result in providing more EE. The reason

is that, at small β, less interference is faced by the near IoT

devices, whereas, increasing β would increase the SIC error

resulting in the reduction of the overall system EE. At smaller

values of Pmax, the transmission power is also very less, this

cause a very small interference to the other IoT devices in

the system. Thus, the values of total EE for different β have a

very small gap, for smaller values of Pmax. However, this gap

increases with the increasing Pmax, i.e., as the transmission

power increases the interference also increase and the impact

of imperfect SIC on the EE becomes more prominent. It is

clear from Fig. 2 that the system with BST outperforms the

network with no BST for all values of Pmax.

The total EE of the system also depends on total cells in the

network. The impact of increasing Pmax on the EE of system
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Fig. 4: The effect of increasing Pmax on the EE for different pc

containing different K is shown in the Fig. 3. For any value

of K, increasing the value of Pmax increases the EE initially,

however the efficiency becomes constant after a certain point

because the transmission power remains unchanged. It is

interesting to see that the difference between the EE offered

the WBS and NBS systems increases with increasing Pmax.

This is because when the transmission power increases, the

interference faced by all the IoT devices also increase. In the

case of WBS systems, the increased transmission power also

results in increasing the BST rate. Hence, the increase in the

EE of WBS is more, as compared to the NBS. With more

number of K in the system, the benefit of BST becomes more

clear, as it clear from the Fig. 3 that the gap between WBS

and NBS increases with

The circuit power consumption (pc) also affects the EE of

the network. Fig. 4 shows that larger values of pc decreases

the EE of the system. Further, it is clear from the figure

that the WBS systems outperform the NBS for all values of

Pmax. An important point to note in Fig. 4 is that, when pc
is increased the optimal value of power allocation is achieved

at comparatively greater value of Pmax. As in the case of

pc=0.1, the EE becomes constant at Pmax= 16 dBm. However,

for pc=0.3 and pc=0.5, the convergence behavior of EE is

observed for Pmax ≥ 19 and 21, respectively. This shows that

for smaller values of pc consumption, the optimal behavior of

the network is obtained with small values of Pmax.

The effect of increasing required rate of IoT devices (Rmin)

on the system EE shown in Fig. 5. It is observed that the

total EE decreases with the increasing values of Rmin. The

possible reason for this is the increase in the transmit power

to satisfy the required rate of those IoT devices with weaker

channel gains. However, this will reduce the overall EE of

the network. If the rate requirement can not be satisfied by

varying Λi,k then the system increases Pk which results in

further decreasing the EE. Data rate of IoT devices is a

logarithmic function of power, hence, allocating more power

to meet the rate requirement it results in decreasing the EE of

the system. This can also be seen from the EE definition in

(7), as the numerator increases logarithmically with power and
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Fig. 5: The impact of increasing Rmin on the EE with different β
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Fig. 6: The effect of increasing Rmin on the EE with different number
of cells

the increase in denominator is linear, when power allocation

is increased beyond the optimal point, the EE of the system

reduces. Another interesting thing to note in the Fig. 5 is that

whenRmin is increased the EE of NBS decreases more rapidly

as compared to WBS. This is because in NBS system when the

allocated power is increased, it also results in increasing the

interference which further adds to decrease the EE. However,

in the case of WBS, allocating more power also enhances the

data rate of BST rate, so this compensates for the increased

interference to some extent.

The results in Fig. 6 depicts the gap of system EE of WBS

and NBS. The performance gap increases with the increase

in K. This is because when the number of K is increased,

the total BST in the system also increases, so the benefit of

BSC becomes more prominent. Another point to note is that

in the case of WBS when Rmin is increased, the reduction

in the case of K=10 is more rapid as compared to the system

with 5 cells, and the network with only one cell faces the

least reduction in the EE. This is because the IoT devices in

the system having more cells receive more interference. Thus,
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Fig. 7: Convergence of EE for different number of cells

when the allocated power is increased to satisfy the minimum

rate requirement, the EE decreases rapidly (for K=10 each user

faces interference from 9 other cells, whereas in the case of

K=5, the inter-cell interference is caused by 4 cells). In the

case of K=1 the users only face intra-cell interference which

is somewhat compensated by the BST, hence in this case, the

decrease in the EE is minimal.

The convergence behavior of the proposed framework is

shown in Fig. 7. When the number of the cells in the system

are increased, the number of optimization variables increases

which results in increasing the complexity of the system. The

Fig. 7 shows that the system with just one cells takes the least

number of iterations to converge, whereas the system with 10

cells is the slowest to converge. However, it can be seen that

for any number of cells in the system, the proposed framework

converges within limited iterations.

V. CONCLUSION

BSC and NOMA are the two emerging technologies to

connect large-scale low-powered IoT devices in coming 6G

era. In this paper, we has proposed the EE maximization

approach for multi-cell NOMA BSC under the assumption

of imperfect SIC. In particular, the power of source, PAC

of IoT devices and RC of BST in each each have been

jointly optimized to maximize total EE of the network. The

Dinkelbach’s algorithm has adopted first to transform the

optimization followed by KKT conditions and dual method to

obtain the efficient solutions. The simulation results has shown

that the proposed multi-cell NOMA BSC framework outper-

forms the benchmark optimization framework and converges

in a few iterations.

APPENDIX A: PROOF OF PROPOSITION 1

Here, concavity/convexity of Rk w.r.t. Φf,k is proved. The

first derivative of Rk w.r.t. Φf,k is given as:

∂Rk

∂Φf,k
=

Yi,k

ln(2)(Ai,k + Zi,k)
+

Cj,k

ln(2)(Bj,k
2 +Bj,kAj,k)

(38)
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where Ai,k = (Xi,k + Φf,kYi,k), Aj,k = (Xj,k + Φf,kYj,k),
Bj,k = (Zj,k+Φf,kWj,k), and Cj,k = (Yj,kZj,k −Xj,kWj,k).
It’s second order derivative is as:

∂2Rk

∂Φf,k
2 = −

(

Yi,k
2

ln(2)(Ai,k + Zi,k)2

+
Cj,k(2Wj,kEj,k + C+

j,k)

ln(2)B2
j,k(Bj,k + Bj,kAj,k)2

)

< 0 (39)

where Ej,k = Bj,k + Yj,kΦf,k, and C+
j,k =

(Yj,kZj,k +Xj,kWj,k).
We can see that (39) is negative, therefore Rk is

concave/convex and is an increasing function with Φf,k.

APPENDIX B: PROOF OF PROPOSITION 2

We employ the dual method to obtain an efficient closed-

form solution for convex optimization problem in (11) with

respect to RC of BST. The Lagrangian function of problem

(11) can be defined as:

L(Φf,k, λi,k, λj,k, µk, ηf,k) =

K
∑

k=1

Nk(Φf,k)

−Π

K
∑

k=1

Pk(Λi,k + Λj,k)− pc + λi,kQ(Φf,k, i, k)

+ λj,kQ(Φf,k, j, k) + µk(Pmax − Pk) + ηf,kR(Φf,k) (40)

where

Nk(Φf,k) = log2

{(

1 +
Xi,k + Φf,kYi,k

Zi,k

)

+ log2

(

1 +
Xj,k + Φf,kYj,k

Zj,k + Φf,kWj,k

)}

(41)

Q(Φf,k, i, k) = Xi,k + Φf,kYi,k − (2Rmin − 1)Zi,k (42)

Q(Φf,k, j, k) = Xj,k + Φf,kYj,k − (2Rmin − 1)

× (Zj,k + Φf,kWj,k) (43)

R(Φf,k) = Φf,k − 1 (44)

In (40) λi,k, λj,k, µk and ηf,k are called the Lagrangian

multipliers. Next, we exploit the KKT conditions such as:

∂L(Φf,k, λi,k, λj,k, µk, ηf,k)

∂Φf,k
|Φ=Φ∗ = 0, (45)

The above equation results in

Yi,k

ln(2)(Ai,k + Zi,k)
+

Cj,k

ln(2)(Bj,k
2 +Bj,kAj,k)

+ λi,kYi,k

+ λj,k(Yj,k − (2Rmin − 1)Wj,k) + ηf,k = 0 (46)

Yi,k

ln(2)(Ai,k + Zi,k)
+

Cj,k

ln(2)(Bj,k
2 +Bj,kAj,k)

+ ηf,k

= (λj,k(2
Rmin − 1)Wj,k − λj,kYj,k)− λi,kYi,k (47)

In (46), Cj,k = Yj,kZj,k −Xj,kWj,k = ∆k
j,k′ + σ2 > 0. The

left hand side of (46) is always positive and therefore

(λj,k(2
Rmin − 1)Wj,k − λj,kYj,k) > λi,kYi,k (48)

In (48), (λj,k(2
Rmin − 1)Wj,k − λj,kYj,k) is always positive

because (2Rmin − 1) is always positive and Wj,k > Yj,k.

Since λi,k ≥ 0, the λj,k is nonnegative. The slack compli-

mentary condition in KKT conditions is satisfied. Therefore,

Q(Φf,k, i, k) and Q(Φf,k, j, k) corresponding to λi,k and λj,k
are active. Hence, Q(Φf,k, i, k) = 0 and Q(Φf,k, j, k) = 0.

Finally, the optimum Φf,k is obtained from active inequality

constraint as given in (13).

APPENDIX C: PROOF OF PROPOSITION 3

Here, the concavity/convexity of Λi,k and Λj,k is proved.

The Hessian matrix should be negative definite, if a function

is concave. The Hessian matrix is negative definite, when

its principal minors have alternative signs. Here we derive a

Hessian matrix for our formulated problem and demonstrate

it as negative definite. The sum-rate of Sk can be written as:

Rk = log2(1 + γki→i) + log2(1 + γkj→j) (49)

Rk = log2(1 +
PkΛi,kAi,k

PkΛj,kBi,k + Ci,k
)

+ log2(1 +
PkΛj,kAj,k

PkΛi,kBj,k + Cj,k
) (50)

The Hessian matrix of (50) is defined as:

H =

[

∂Rk

∂2Λi,k

∂Rk

∂Λi,k∂Λj,k

∂Rk

∂Λj,k∂Λi,k

∂Rk

∂2Λi,j

]

(51)

∂Rk

∂2Λi,k
= ϕ1,1 = −

A2
i,kV

2
j,kT

2
j,k −Aj,kB

2
j,kT

2
i,k(2Vj,k +Aj,kΛj,k)Λj,k

ln(2)T 2
i,kT

2
j,kV

2
j,k

(52)

∂Rk

∂Λi,k∂Λj,k
= ϕ1,2

= −
Ai,kBi,kT

2
j,k −Aj,kBj,kT

2
i,k

ln(2)T 2
i,kT

2
j,k

(53)

∂Rk

∂2Λj,k
= ϕ2,1

= −
A2

j,kV
2
i,kT

2
i,k −Ai,kB

2
i,kT

2
j,k(2Vi,k +Ai,kΛi,k)Λi,k

ln(2)T 2
j,kT

2
i,kV

2
i,k

(54)

∂Rk

∂Λj,k∂Λi,k
= ϕ2,2

= −
Ai,kBi,kT

2
j,k −Aj,kBj,kT

2
i,k

ln(2)T 2
i,kT

2
j,k

(55)

where, Ti,k = Ai,kΛi,k +Vi,k, Tj,k = Aj,kΛj,k +Vj,k , Vi,k =
Bi,kΛj,k + Ci,k, and Vj,k = Bj,kΛi,k + Cj,k. The obtained
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Hessian matrix can be expressed as:

H =

[

ϕ1,1 ϕ1,2

ϕ2,1 ϕ2,2

]

(56)

We can see that ϕ1,1 and ϕ2,2 in (??) are the first order

principle minors and also negative. Moreover, it can be evident

that the second order minors are the determinant of (??) and

can be written as

detH = ϕ1,1ϕ2,2 − ϕ1,2ϕ2,1 > 0 (57)

APPENDIX D: PROOF OF PROPOSITION 4

The derivative of Equation 19 with respect to Λi,k is

∂L(Λk,λk, µk, ǫk)

∂Λi,k
=

Ai,k

ln(2)(Ai,kΛi,k +Bi,kΛj,k + Ci,k)

+
Aj,kBj,kΛj,k

ln(2)(Bj,kΛi,k + Cj,k)(Aj,k−Λj,k +Bj,kΛi,k + Cj,k)

−D (58)

where D = ΠPk − λi,kAi,k + λj,k(2
Rmin − 1)Bj,k + ǫk. Put

Λj,k = 1− Λi,k in Equation (34) which results in

Ai,k

ln(2)(Xi,kΛi,k +Wi,k)
−

γkj→jBj,k

ln(2)(Yj,kΛi,k +Wj,k)
−D

(59)

where Xi,k = Ai,k −Bi,k, Yj,k = Bj,k−Aj,k, Wi,k = Bi,k+
Ci,k and Wj,k = Aj,k + Cj,k.

After some manipulation, Equation (35) results as:

Ai,k(Yj,kΛi,k +Wj,k)− γkj→jBj,k(Xi,kΛi,k +Wi,k)

− ln(2)D(Yj,kΛi,k +Wj,k)(Xi,kΛi,k +Wi,k) = 0 (60)

After expanding and writing in ax2 + bx+ c

(− ln(2)DXi,kYj,k)Λ
2
i,k + (Ai,kYj,k − γkj→jBj,kXi,k

− ln(2)DXi,kWj,k − ln(2)DYj,kWi,k)Λi,k + (Ai,kWj,k

− γkj→jBj,kWi,k − ln(2)DWi,kWj,k) (61)

The solution of above problem is as follow,

Λi,k =

[−b±
√
b2 − 4ac

2a

]+

(62)

The proof is completed.
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