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ABSTRACT 
 

In this paper, we use a multistage deterministic dynamic programming (DDP) 

approach to optimize medical equipment replacement for several revenue and 

depreciation scenarios. Each scenario is an optimal path which shows whether to keep 

an existing piece of medical equipment (defender) or replace it with a more 

economical alternative (challenger). Such an optimal path is a keep-replace sequence 

of the highest returns (or lowest costs) obtained with backward recursion in time. For 

each scenario, we estimated the optimal-sequence benefit as the difference between the 

highest returns (or the lowest costs) and returns (costs) of keeping medical equipment 

until the end of its expected life. We investigated this benefit for the scenarios of no 

revenue for the defender and the challenger, the scenario of equal revenues for both, 

and the scenario of higher revenue for the challenger. Our experiments show that the 

percentages of optimal-sequence benefits relative to the current acquisition cost for the 

three scenarios are 124%, 164%, and 204%, respectively. Moreover, the number of 

replacement actions increases with increasing challenger revenue and decreases with 

increasing depreciation rate. Last, the effect of the inflation rate on the optimal-

sequence benefit was investigated. 
 

KEYWORDS: Medical equipment, deterministic dynamic programming, optimal 

replacement, clinical engineering, healthcare technology management. 
 

1. INTRODUCTION 
 

The equipment replacement problem has been under study in the field of 

engineering economics since the 1940s [1]. Landmark contributions to this problem 

include those of [2, 3]. Christer and Goodbody in 1980 asked "At what time should a 
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currently operating equipment or fleet of equipment be replaced?" Several approaches 

have been proposed since then to answer this question for different settings and 

applications [4]. In healthcare facilities, a piece of medical equipment is usually 

replaced because of performance degradation and/or technological obsolescence [5, 6]. 

Traditional replacement policies are based upon simple calculations of equipment 

depreciation and economic life. Needless to say, such policies are suboptimal since 

they do not take into consideration any optimality criteria. To overcome this gap, 

different approaches have been proposed in the literature for medical equipment 

replacement. For instance [7] developed a quantitative approach which takes into 

consideration technical factors, safety factors, and financial factors. The replacement 

decision is made based on the resultant relative replacement number for each device. 

The use of risk assessment tools to prioritize medical equipment (whether for 

replacement or maintenance) was first proposed by [8] who devised a simple 

mathematical model to prioritize equipment based on certain attributes such as 

equipment service and support, equipment function, cost benefits, and clinical 

efficacy. A list of decision criteria was prepared to get ranked for an effective 

replacement analysis of critical medical equipment [9]. To determine replacement 

priority of old medical equipment, an evaluation tool based on multi-criteria decision 

analysis was developed, regarding technical and economic portion [10]. A scoring 

system that produced real-time equipment replacement prioritization results was 

designed by [11]. An analytical-hierarchy-process group-decision-making model was 

proposed to prioritize medical equipment replacement using a priority index [12]. 

Other decision support methods seeking quantitative solutions to the equipment 

replacement problem were tested. Examples include fault tree analysis [9, 13] quality 

function deployment, genetic algorithms [14], artificial neural networks [15], and 

fuzzy logic [16]. The search for an optimal solution to the equipment replacement 

problem was equally prolific. The total expected cost was formulated of retaining an 

existing medical equipment for a further K
th

 year versus replacing it with a new one 

for a period L [17]. The objective function was the total expected discounted cost per 

unit of usage over (K+L) years. The minimization was carried out with respect to K 
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and L. The authors showed the applicability of their model in the case of medical 

ventilators. The results showed that, the relationship between the optimal replacement 

time of the current machine, and the penalty cost seems to follow a fixed pattern, 

regardless of the current machine age. Deterministic and stochastic models were 

proposed to determine the optimal replacement time for linear accelerators in a 

radiotherapy department [18]. A cost analysis was performed to quantify the losses 

incurred by equipment downtime. On average, the stochastic model yielded longer 

replacement times than the deterministic one [19]. 

Much earlier, Bellman was the first to formulate the equipment replacement 

problem as a dynamic programming (DP) problem [20]. He formulated a discounted 

DP version of the economic life of an asset model and determined analytically the 

optimal age to replace the asset. Basically, a DP model is a recurrence equation that 

connects different stages of the problem in order to assure that the optimal solution for 

each stage is the optimal solution for the whole problem [21]. DP has been used in 

several fields to solve replacement problems such as the automobile replacement 

where deterministic dynamic programming (DDP) was used to develop a general 

solution methodology that can be used to make optimal keep/replacement decisions for 

both brand-new and used vehicles both with and without annual budget considerations 

[22]. In a specific study in Benin City, Edo State, Nigeria which covered the period 

2008 to 2013 and for the Toyota brand of buses only, the replacement problem was 

approached using backward recursive dynamic programming analysis [23]. The 

conventional keep-replace dynamic programming model was extended to allow the 

options to overhaul the asset [24]. Also, the framework of dynamic programming was 

reviewed for hydropower scheduling, and highlight the differences between 

deterministic and stochastic approaches [25]. A dynamical model was proposed to 

optimize replacement scheduling for the drainage pump station which is one of main 

facilities of flood control infrastructure [26]. 

The medical equipment replacement problem studied in this paper is solved using 

DDP under the assumption that the following model parameters are constant or 

predetermined and can be estimated using historical data: the annual operation and 
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maintenance cost, annual revenue of equipment, first cost of a new equipment and 

salvage value. If there is a significant uncertainty in some model parameters such as 

the maintenance cost, then the stochastic dynamic programming approach (SDP) may 

be more appropriate [27]. The SDP approach shall be investigated in a future 

publication. In this paper, we make four main contributions. First, we use a multistage 

deterministic dynamic programming (DDP) approach to decide optimally whether to 

keep or replace an existing piece of medical equipment based on economic viability. 

To the best of our knowledge, this methodology wasn’t used before in the medical 

equipment field. Second, we simulate three interesting possibilities for medical 

equipment replacement based on the relative revenues of an existing piece of medical 

equipment (defender) and the alternative equipment (challenger). Third, a simulation 

of three different depreciation models is made. Finally, we study the combined effects 

of different inflation rates and depreciation models on the three possibilities. 

The rest of this paper is organized as follows: Section 2 reviews the DDP 

method, and discusses the relevant operation and maintenance costs, revenue models, 

future acquisition costs, as well as inflation and depreciation models. Section 3 shows 

the results of three numerical simulation scenarios. Discussion and Conclusions are 

given in Sections 4 and 5, respectively. 

 

2. METHODS 
 

In this section, we review Bellman’s dynamic programming approach for 

equipment replacement. Figure 1 shows the basic structure of a Bellman's grid where 

each node represents the equipment’s age at a specific point in time. Each arc 

represents the decision to either keep or replace the equipment. A solid arc connecting 

nodes of ages n and n+1 indicates a “Keep” decision, while a dashed arc indicates a 

“Replace” decision. If the equipment is replaced at the end of a period containing N 

stages, the number of all possible paths is equal to 2
N
 -1. Because we have two 

decisions at each state the maximum number of states equal to O (1+2+3+…+N-1 +1). 

Thus, O (N
2
) represents the time complexity of Bellman’s dynamic programming 

algorithm. Using the backward recursion, the solution procedure begins from the end 
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and moves backward stage by stage till the optimal path starting at the beginning stage 

is found. We used a table to store all results ever calculated by recursive procedure. 

Once the recursive procedure requests a set of inputs which were already used, the 

results are just obtained from the table. In this case the time of algorithm will be 

reduced. We describe the DDP scheme following an approach similar to [22]. 

 

 

Fig. 1. Bellman’s grid for equipment replacement. 
 

2.1. DDP Formulation of the Replacement Problem 
 

In order to formulate the replacement problem using the DDP model, we start 

with defining all stages and states, mathematical notations, the optimal-value function, 

and the DDP recursive equations. 

 

2.1.1 Stages and states 
 

The yearly interval refers to the stage variable while the age of the equipment at 

the beginning of each year refers to the state variable. The following is a list of all 

mathematical notations. 

Y = age of equipment at the starting stage. 

N = horizon or number of stages, the period of (Keep/ Replace) decisions. 
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i = current year in which a piece of equipment is waiting for the Keep/Replace 

decision at the starting stage. i = Y +1, Y + 2, ..., Y + N. 

'd', 'c': A subscript 'd' denotes existing (old) equipment (defender), while a subscript 'c' 

denotes alternative equipment (challenger). 

TCi = Total operation and maintenance cost of equipment (including downtime) during 

the decision year at the end of which the equipment turns i years old, 

TRi = Total Revenue of equipment during the decision year at the end of which the 

equipment turns i years old,  

FCcj = First Cost or unadjusted basis of a new equipment (challenger) during year j, j = 

Y, Y+1, …, Y+N-1. 

RCdj = Replacement Cost of the old equipment (defender) during year j. 

Sdi = Salvage value of equipment during the decision year at the end of which the 

equipment turns i years old,  

We assume that all equipment will be salvaged at the end of equipment expected 

life, and that future equipment value decreases by way of depreciation. 

 

2.1.2  Optimal-value function 
 

The optimal-value function is defined as a function that returns the maximum 

total estimated return from any point in the design period (state/stage) forward to the 

end of the equipment lifespan (horizon). Hence, the optimal-value function is defined 

as follows: 

  ( ) = “maximum total estimated return of equipment that is i-years-old in 

year j onward until the end of lifespan N”. 

 

2.2.3   Model equation 
 

At the beginning of year j, the decision maker has two available actions for an i-

year-old equipment: either to Keep or Replace the equipment. If the decision is to 

replace, the equipment will be used throughout that year and replaced at the start of the 

next stage. The costs of the two actions are as follows: 
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Keep action: For this action, the i-year-old equipment is kept, so the cost of stage j is 

(         ). The subsequent stage j+1 and state i+1 as a result of this action have 

an optimal-value function     (   ). Therefore, the recursive optimal value for the 

keep action is: 

 (         )      (   ) (1) 

Replace action: For this action, the i-year-old equipment is replaced, so the cost 

of stage j is equal to the cash flow value which consists of      (the first cost or 

unadjusted basis of a challenger during the year j),      (the replacement cost of the 

defender during year j),      (the annual O and M cost of the i-year-old defender when 

ordering a challenger during that decision year),     (the revenue from the salvage 

value of the defender at the end of the decision year when the defender is i years old at 

the beginning of the decision year), and      (the annual revenue of the defender 

during the decision year at the end of which the defender turns i years old). The next 

stage and state as a result of this action are j+1 and 0, respectively, and hence their 

optimal-value function is     ( ). Therefore, the recursive optimal value for the 

replace action is: 

 [(        )  (              )      ( )] (2) 

Notice that the challenger becomes the defender after every replacement 

decision. Hence, the optimal-value function is expressed as: 

 
  ( )       {[(         )      (   )] 

[(        )  (              )      ( )]} 
(3) 

Indeed, the optimal policy for the remaining stages is independent of the policy 

of the previous ones. The solution to   ( ) subproblem does not affect the solution to 

    (   ) subproblem of the same problem. Therefore, subproblems are solved 

independently as Cormen did for the shortest path problem [28]. The subproblems are 

solved one after one, thus each time finding the optimal solutions for that subproblem 

provides the whole optimal solution of the main problem. A recursive relation exists 
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which finds the optimal solution for   ( ), given that     (   ) has already been 

solved. 

 

2.2. O and M Costs, Revenue, and Future Acquisition Costs  
 

Experts express the service fees as a percentage of the purchase value of 

equipment depending on the equipment type and age [29, 30]. In this paper, we divide 

the equipment lifespan into four periods: the warranty period plus, three equal 

subdivisions of the remaining lifespan. We suggest the service fees for these periods to 

be proportional to the equipment age: 

- Warranty period: Set the service fees to 2% of the purchase value, 

- First non-warranty period: Set the service fees to 3-7% of the purchase value, 

- Second non-warranty period: Set the service fees to 5-10% of the purchase value, and 

- Last non-warranty period: Set the service fees to 8-15% of the purchase value. 

The expected annual operation costs and annual revenues are calculated as fixed 

amounts or as percentages of the first-year operational costs and revenue, respectively. 

Note that the revenue could decrease annually because of the increase in downtime or 

the deterioration in equipment performance over time. For estimating the future 

acquisition costs, we calculate the rate of increase in purchasing price    as [31, 32]: 

     (
   

   
)

 
 ⁄

    (4) 

Where: 

    = Equipment purchase price at installation time,   . 

    = Equipment purchase price at current time,    (Now). 

 

2.3. Inflation Models  
 

Inflation is an increase in the amount of money necessary to obtain the same 

amount of goods or services before the inflated price was present [31, 32]. Inflation 

decreases the purchasing power of money. Inflation can be expressed as the equipment 

future value in terms of the present value [32]: 

     (   )  (5) 
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Where F is the future value in monetary units, P is the present value in monetary units, 

and   is the inflation rate over a time period n. 

To account for the effect of varying yearly inflation rates over a period of several 

years, we can compute a single rate that represents an average inflation rate. Since 

each individual year’s inflation rate is based on the previous year’s rate, the years have 

a compounding effect. The average inflation rate is the rate of increase in average 

prices of goods and services over a specified time period, usually a year. This rate is 

given by: 

   (
 

 
)
 
 ⁄

        (6) 

2.4. Depreciation Models  
 

The salvage value S is the estimated market value at the end of the equipment 

useful life. It can be expressed as an estimated monetary amount or as a percentage of 

the first cost. In this paper, we investigate straight line (SL), declining balance (DB) 

and double declining balance (DDB) depreciation models are shown in Fig. 2 [33]. 

For a straight-line (SL) depreciation model, the annual depreciation,   , is defined as: 

    (   )   
   

 
 (7) 

Where: t = age in years (t = 1, 2, …., n), B = first cost or unadjusted basis, S = 

estimated salvage value, n = recovery period, and dt = depreciation rate = 1/n. 

 

Fig. 2. Three equipment depreciation models: straight line (SL), declining  

balance (DB), and double declining balance (DDB). 
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Since the equipment is depreciated by the same amount each year, the book 

value after t years of service, denoted by BVt, will be equal to the first cost B minus the 

annual depreciation times, t: 

             (8) 

The declining-balance (DB) depreciation is also known as the book depreciation, 

the fixed-percentage depreciation, or uniform-percentage depreciation. Under this 

model, the annual depreciation is determined by multiplying the book value at the 

beginning of a year by a fixed (uniform) percentage d, expressed in decimal form. If d 

= 0.1, then 10% of the book value is removed each year. Therefore, the depreciation 

amount decreases each year (See Fig. 2). The maximum annual depreciation rate for 

the DB model is twice the straight-line depreciation rate, that is, 

        ⁄  (9) 

In this case, the method is called the DDB depreciation. 

Another commonly used percentage for the DB method is 150% of the SL rate, 

where d = 1.5/n. 

The depreciation for year t is the fixed rate d times the book value at the end of 

the previous year. 

              (10) 

The actual depreciation rate for each year t, relative to the basis B, is: 

     (   )
    (11) 

If BV at t-1 is not known, the depreciation in year t can be calculated using B and d: 

       (   )
    (12) 

The book value in year t is determined in one of two ways: by using the rate d 

and basis B or by subtracting the current depreciation charge from the previous book 

value. The equations are: 

      (   )
             (13) 

Where the range of d is 0 < d ≤ 2/n. 
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3. RESULTS 

3.1. Numerical Simulation Settings 
 

In the following numerical simulations, we assume a 5-year-old equipment [34] 

with a lifespan of 12 years, a first cost of 10,000 monetary units (MU), a current 

acquisition cost of 11,500 MU, a salvage value of 800 MU, a SL depreciation model, a 

zero-inflation rate, and maintenance cost percentages of 1%, 3%, 5% and 7% for the 

warranty, 1
st
, 2

nd
, and last non-warranty periods, respectively. Our goal is to find the 

Keep-Replace sequence of highest return (lowest cost). We investigate three different 

scenarios based on the relative revenues of the defender and the challenger options. 

These three scenarios represent common possibilities for medical equipment 

replacement. 

 

3.2. Scenario I: No-Revenue for Defender and Challenger  
 

In this scenario, there is no uninstallation cost and no revenue for both defender 

and challenger. We look for the lowest cost in this scenario. Table1 shows the optimal 

sequence (R – K – K – R – K – K – K) with the optimal-sequence benefit value of 

14,244 MU which is equal to 124% of the current acquisition cost. For further 

illustration, Fig. 3 shows the decision tree for this scenario and the optimal (lowest 

cost) path (bold line) from the 127 available paths [27].  

Table 1. Results of the three scenarios including both optimal and conventional costs, 

sequences, and benefits. 

Scenario 

Year y y+1 y+2 y+3 y+4 y+5 y+6 

Total Benefit 
Equipment Age (Year) 6 7 8 9 10 11 12 

Equipment Market Value 5400 4633 3867 3100 2333 1567 800 

Purchase Price 11826 12161 12506 12860 13225 13600 13985 

Equipment O&M Cost 2476 2690 2928 3196 3495 3831 4206 

Scenario I 

Optimal Sequence (OS) R K K R K K K 

14244 

Optimal Annual Costs (OC) -8576 -1836 -1980 -2807 -1908 -2055 -2216 

Conventional Sequence (CS) K K K K K K R 

Conventional Annual Costs (CC) -2476 -2690 -2928 -3196 -3495 -3831 -17006 

Annual Benefit (AB) -6100 854 948 389 1587 1776 14790 

Scenario II 

OS R K R K R K K 

18906 

OC -5245 2044 1121 1997 1063 1946 1683 

CS K K K K K K R 

CC 855 543 206 -154 -546 -970 -14230 

AB -6100 1502 915 2151 1609 2916 15913 

Scenario III 

OS R R R K R K K 

23495 

OC -5245 2363 2335 2773 1816 2722 2435 

CS K K K K K K R 

CC 855 543 206 -154 -546 -970 -14230 

AB -6100 1820 2129 2927 2362 3692 16665 
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Fig. 3. Decision tree of scenario I with keep-replace values. 
 

Each node represents the age of the equipment starting from 5 years. Each arc 

represents the decision to either keep the equipment (solid arc) or replace the 

equipment (dashed arc). The remaining period of the equipment lifespan (7 years) is 

the design horizon. Figure 4(a) shows the cumulative costs of both the optimal 

sequence and the conventional sequence. The graph shows the optimal sequence with 

the lowest aggregate cost of -21,378 MU.  

 

3.3. Scenario II: Equal Revenue for Defender and Challenger  
 

In this scenario, there is no uninstallation cost and both defender and challenger 

equipment have equal revenues of 4000 MU with an annual decrement rate of 3%. We 

look for the highest benefit in this scenario. Table 1 shows the optimal sequence (R – 

K – R – K - R – K – K) with the optimal-sequence benefit value of 18,906 MU which 

is equal to 164% of the current acquisition cost. The cumulative returns of both the 

optimal sequence and the conventional sequence are shown in Fig. 4(b). The optimal 

sequence has the highest return of 4609 MU. 
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3.4. Scenario III: Higher Revenue for Challenger  
 

In this scenario, there is no uninstallation cost and the revenue of the challenger 

(4800 MU) is 20% more than the revenue of the defender (4000MU) where both have 

an annual decrement rate of 3%. We look for the highest benefit in this scenario. Table 

1 shows the optimal sequence (R – R – R – K – R - K – K) with the benefit value of 

23,495 MU which is equal to 204% of the current acquisition cost. The cumulative 

returns of both the optimal sequence and the conventional sequence are shown in Fig. 

4c. The graph shows that the optimal sequence has the highest return of 9,198 MU. 

 

3.5. Simulation Results for DB and DDB Depreciation Models  
 

Figure 5 shows the simulation results for the three aforementioned scenarios 

under the declining-balance (DB) model. The optimal-sequence benefits for the three 

scenarios are 11,773 MU, 16,669 MU, and 21,302 MU. These benefits as percentages 

of the current acquisition cost are 102%, 145%, and 185%, respectively. Similarly, 

Fig. 6 shows the simulation results for the three aforementioned scenarios under the 

double-declining-balance (DDB) model. The optimal-sequence benefits for the three 

scenarios are 11,161 MU, 14,769 MU, and 19,090 MU. These benefits as percentages 

of the current acquisition cost are 97%, 128%, and 166%, respectively. 

 

3.6. Effect of the Inflation Rate  
 

Different inflation rates were used with different depreciation models for the 

three scenarios. Figure 7 shows that the optimal-sequence benefit changes with 

increasing inflation rate (1% to 10%) for the SL (with salvage value of 800 MU), DB 

(with 1/12 depreciation rate), DDB (with 2/12 depreciation rate) depreciation models 

for all scenarios. Indeed, the number of replacement actions decreases with increasing 

depreciation rate. For example, for Scenario I, the number of replacement actions are 

30, 29 and 10 for the SL, DB and DDB models, respectively. In addition, while the 

benefit increases with increasing inflation rate for Scenario I, the benefits of Scenarios 

II and III decrease as the inflation rate increases. This pattern may be explained by the 

effect of the revenue in Scenarios II and III, or no revenue in Scenario I. 
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(a) 

 

 
(b)  

 

 
(c) 

Fig. 4 Three scenarios for defender and challenger 

revenues in medical equipment replacement using 

the straight-line (SL) depreciation model. (a) 

Scenario I: No revenue for both defender and 

challenger. (b) Scenario II: Defender and challenger 

equipment generate the same revenue. (c) Scenario 

III: The challenger revenue is more than the 

defender revenue by 20%. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 5 Three scenarios for defender and challenger 

revenues in medical equipment replacement using 

the declining-balance (DB) depreciation model. (a) 

Scenario I: No revenue for both defender and 

challenger. (b) Scenario II: Defender and challenger 

equipment generate the same revenue. (c) Scenario 

III: The challenger revenue is more than the 

defender revenue by 20%. 
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(a) 

 

 
(b)  

 

 
(c) 

Fig. 6 Three scenarios for defender and challenger 

revenues in medical equipment replacement using 

the double declining-balance (DDB) depreciation 

model. (a) Scenario I: No revenue for both defender 

and challenger. (b) Scenario II: Defender and 

challenger equipment generate the same revenue. (c) 

Scenario III: The challenger revenue is more than 

the defender revenue by 20%. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7 Optimal-sequence benefit changes with 

different inflation rates for straight line (SL), 

declining balance (DB), and double declining 

balance (DDB) depreciation. (a) Scenario I: No 

revenue for both defender and challenger. (b) 

Scenario II: Defender and challenger equipment 

generate the same revenue. (c) Scenario III: The 

challenger revenue is more than the defender 

revenue by 20%. 
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3.7. Effect of the Challenger’s Excess Revenue  
 

For Scenario III and using the SL depreciation model, the cumulative returns of 

both the conventional sequence and the optimal sequence for increasing percentages of 

challenger revenue (compared to the defender revenue) are shown in Fig. 8. 

Expectedly, the optimal-sequence benefit increases in proportion to the increase in the 

challenger’s excess revenue. 

 

 

Fig. 8. Cumulative returns versus equipment age for Scenario III. 

 

4. DISCUSSION 
 

Due to the difficulty of obtaining maintenance and purchase data of the medical 

equipment, we resorted to assuming reasonable data in order to test the model and 

analyze its outcomes. We discuss the results under the SL depreciation model. In the 

first scenario, one finds the optimum replacement time when there is no revenue by 

calculating the lowest cost. The optimal sequence among 127 sequences Fig. 3 was to 

replace the equipment next year and use the new one for two years before replacing it 

with new equipment again and keeping this equipment for the remaining design 

period. In this case, the aggregate expected cost was decreased to the minimum level, 

where the final benefit equals 124% of the current acquisition cost Table1. 

For the second scenario, the defender and the challenger have the same revenue. 

In this case, the optimal sequence was (R-K-R-K-R-K-K). Despite of the repeated 
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replacement, Fig. 4b shows that the cost was increased at the beginning then the return 

was increased. In other words, the calculated cumulative return indicates that the final 

benefit value equals 18,906 MU which represents 164% of the current acquisition cost. 

The last scenario discusses the replacement problem when the challenger revenue 

is more than that of the defender. This happens, for example, when the challenger has 

a newer technique, a higher performance, or a higher capacity and hence a higher 

revenue. To examine the effect of the relative increase in revenue of the challenger on 

the optimal sequence, we studied different increasing percentages of challenger 

revenue compared to the defender revenue Fig. 8. For example, when the challenger 

revenue was increased by 20%, the optimal sequence was (R-R-R-K-R-K-K) and the 

final benefit value reached 23,495 MU which is equal to 204% of the current 

acquisition cost. 

Optimal-Sequence Benefit Analysis: The question here, is the optimal-sequence 

benefit (OSB) worthy of the extra investment in the optimal sequence? 

To answer this question, let's use the concept of "Time Value of Money" and do 

some calculation for the Scenario I (Similar calculations can be done for the other 

scenarios). From Table 1, the investment (6100 MU) is the Present Value (PV) at year 

Y. Assuming a basic Interest Rate (IR) of 10%, we compute the Future Value (FV) for 

N number of periods where the investment will be held for 6 years at a compound 

interest rate as:       (    )        (      )              

Now by comparing FV with OSB, we can get the answer that the optimal-

sequence earning (OSE) is: OSE = OSB – FV = 14,244 – 10,807 = 3,437 MU. 

Alternatively, to obtain the same OSB (listed in the last column of Table 1), the 

IR should be at least 15%, 21%, and 25% in Scenarios I, II, and III, respectively. 

These hypothetical interest rates are quite high and unlikely. This shows that the 

optimal replacement strategy is more plausible and economical. 

 

5. CONCLUSIONS  
 

The decision process for medical equipment replacement or retention is affected 

by several factors of logistics, obsolescence, cost, and depreciation. In this paper, we 
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analyzed the problem of optimal replacement of medical equipment using a 

deterministic dynamic programming approach. We investigated different realistic 

scenarios related to the revenues of the replacement or keeping options under different 

depreciation and inflation models. We found that the optimal sequences in all 

scenarios are clearly beneficial compared to the conventional sequence. We supported 

our conclusions through a hypothetical economic analysis. The application of the 

proposed approach in medical facilities can lead to effective budget management, and 

reduced maintenance and operation costs. In addition, the proposed approach keeps the 

medical facilities updated optimally. Finally, in our problem, the optimal replacement 

time is often before equipment reaches the end of its lifespan (depends on economic 

factor not technical obsolescence). However, a used medical equipment is of interest 

for small and medium health facilities especially that have not budget enough for new 

equipment. Also, it may be resold as a spare part. Therefore, our proposed model may 

have cost analysis by calculating or neglecting revenue from resold existing 

equipment. So, we can take the best decision. 
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 تحدين عملية استبدال الأجهزة الطبية باستخدام البرمجة الديناميكية الحتمية
 

حيث تطثل  البحث البخمجة الجيظاميكية الحتطية متعجدة الطخاحل لتحدين استبجال الأجهدة الطبية يدتخجم
يهضح ما إذا كان يجب الاحتفاظ بالجهاز )الطجافع(  ىاستبجال( الحل الأمثل الح –ل )احتفاظ نتيجة التدمد

عجم وجهد الاول  من ثلاثة سيظاريههات،وتم التحقق  ،   أو استبجاله بجهاز بجيل )الطظافذ( أكثخ اقتصادا
الطظافذ أعمى من إيخادات إيخادات  الثالثالإيخادات لكميهطا، و  ى تداو  والثانى إيخادات لمطجافع والطظافذ،

الفائجة لكل سيظاريه عمى أنها الفخق بين أعمى العهائج )أقل التكاليف( لمحل الأمثل وعهائج وتم تعخيف  الطجافع
تظهخ الظتائج أن الظدب الطئهية و  وهه الاحتفاظ بالأجهدة حتى نهاية عطخها الطتهقع ى)تكاليف( الحل التقميج

 %442%، 462%، 402 ىلى تكمفة الاستحهاذ الحالية لمديظاريههات الثلاثة هلفهائج التدمدل الأمثل ندبة إ
أن عجد إجخاءات الاستبجال تدداد مع زيادة إيخادات الطظافذ وتتظاقص مع  ةحظملا تطت كطاى، عمى التهال

 دراسة تأثيخ معجل التضخم عمى فائجة التدمدل الأمثل. تأخيخا، تط، و زيادة معجل الإهلاك

Altalabi, W. M., “Optimization of Medical Equipment Replacement Strategies” PhD 

thesis, Giza: Cairo University, 2020.  


