
Low Cost Quality Aware Multi-tier Application
Hosting on the Amazon Cloud

Waheed Iqbal∗, Matthew N. Dailey†, David Carrera‡

∗Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan

waheed.iqbal@pucit.edu.pk
†Computer Science and Information Management, Asian Institute of Technology, Thailand

mdailey@ait.asia
‡Technical University of Catalonia Barcelona Supercomputing Center, Spain

dcarrera@ac.upc.edu

Abstract—Public cloud providers offer a variety of services
and resources enabling users to host their applications. In order
to determine the set of resources that will best minimize hosting
costs while simultaneously meeting performance requirements,
cloud users must be aware of the cost-performance tradeoffs
of the available resources. This is particularly true of multi-
tier Web applications using dynamic scaling strategies to sustain
specific response time requirements. In this paper, we provide a
cost-performance analysis of multiple scale out strategies using
the three most economically feasible Amazon EC2 compute
resources (micro, small, and medium virtual machine instances)
for a typical multi-tier Web application. We find that the special
CPU allocation policy of the micro instance makes it especially
suitable for satisfying Web application performance requirements
at minimal cost on the Amazon cloud.

Keywords-Auto scaling; Dynamic resource provisioning; cost-
effective provisioning; multi-tier applications; Amazon EC2.

I. INTRODUCTION

Cloud computing has attracted a large user base mainly

due to its pay-by-usage and on-demand resource provisioning

features. Public cloud providers such as Amazon, Rackspace,

IBM, Microsoft, and Google offer a variety of different options

for the end user to acquire and host applications.

Multi-tier Web applications are typical cloud-hosted

consumer-facing Internet applications consisting of at least

a presentation tier, a business tier, and a data management

tier. Multi-tier Web applications hosted on a specific fixed

infrastructure can only service a limited number of requests

concurrently before some bottleneck occurs. Once a bottleneck

occurs, if the arrival rate does not decrease, the application will

saturate, response time will grow dramatically, and eventually,

requests will fail entirely. Such bottlenecks can be resolved

using dynamic provisioning of the tiers to accommodate more

users and requests [1], [2], [3], but it is very challenging to

minimize cost while doing so [4].

When a user is selecting public cloud hosting options for

a multi-tier Web application, he or she is faced with the

daunting task of select the lowest cost option that provides

acceptable performance. For example, on Amazon’s Elastic

Compute Cloud (EC2), the user must select virtual machine

models having the right amount of CPU, memory, and storage

resources.

To help guide such selections, in this paper, we per-

form a cost and performance analysis based on the three

most economically-feasible EC2 instance types, namely micro,

small, and medium, and we compare multiple rule-based scale-

out strategies for a typical multi-tier Web application. Our rule-

based strategies, namely CPU Reactive (scale out when CPU

utilization thresholds are exceeded) and Response Reactive

(scale out when response time thresholds are exceeded) are

able to handle dynamically increasing workloads.

Our experimental evaluation shows that micro instances

achieve very good performance at minimal cost. This surpris-

ing result is mainly due to Amazon’s special CPU allocation

policy for micro instances. The policy provides higher than

usual CPU capacity to micro instances during short activity

spikes. By keeping micro instances running at their limit, we

presumably “steal” unused cycles from other virtual machines

running on the same physical machine. As long as we are

not unlucky in the assignment of our virtual machine to a

physical machine, we can obtain excellent performance from

micro instances at very low costs.

The main contributions of the paper are as follows.

1) We introduce a simple but effective strategy for bench-

marking instance types for appropriate maximum CPU

utilization thresholds.

2) We introduce and explore the performance of two dif-

ferent reactive scale out strategies for multi-tier applica-

tions hosted on public clouds.

3) We perform a cost/performance analysis of dynamic

scaling strategies for multi-tier Web applications running

on different types of Amazon EC2 instances.

In the rest of the paper, we present related work, an

overview of Amazon’s cloud services, our scale-out strategies,

the experimental design, and results.

II. RELATED WORK

There have been several efforts towards adaptive allocation

of cloud resources to satisfy performance metrics. For exam-

ple, Bodik et al. [5] present a statistical machine learning

approach to predict system performance for a single tier

application and minimize the amount of resources required

to maintain the performance of an application hosted on a

cloud. Liu et al. [6] monitor the CPU and bandwidth usage of

virtual machines hosted on an Amazon EC2 cloud, identify

the resource requirements of applications, and dynamically

switch between different virtual machine configurations to

accommodate changing workloads. However, none of these

solutions address the issues of multi-tier Web applications.

Thus far, only a few researchers have addressed the problem

of resource provisioning for multi-tier applications. Urgaonkar

et al. [7] present an analytical model using queuing networks

to capture the behavior of each tier. Jia et al. [8] present

an on-line method for capacity identification of multi-tier

Web applications hosted on physical machines using hardware

performance counters. However, this work does not include

cost/performance analyses of public cloud infrastructure for

multi-tier applications.

There have been several efforts to identify the performance

of Amazon cloud services for high performance applications.

For example, Jackson et al. [9] show that EC2 is six times

slower than modern HPC systems. Ostermann et al. [10]

evaluate the usefulness of Amazon EC2 instances for scien-

tific computing and conclude that cloud resources should be

improved to be used for scientific applications.

However, there has been less work on the performance of

Amazon cloud services for multi-tier Web applications. One

example is Jiang et al. [2], who present a dynamic resource

provisioning approach for multi-tier Web applications hosted

on clouds that attempts to ensure homogeneous performance

from every Amazon EC2 small instance deployed to a tier.

Our work focuses on cost and performance analysis of

the three most economically feasible EC2 instances (micro,

small, and medium) for multi-tier Web applications using two

different rule-based adaptive resource provisioning strategies.

To our knowledge, this paper is the first study of different

Amazon EC2 instances’ ability to host scalable multi-tier

Web applications. We examine the cost and performance of

different EC2 instance types under multiple scale-out strategies

in the context of a benchmark multi-tier Web application and

dynamically varying loads.

III. AMAZON CLOUD SERVICES

Amazon provides various types of virtualized infrastructure

and application services to host applications, store data, enable

high performance computing, and automate workflows over

the cloud. In this section, we discuss the Amazon cloud

services used in our experimental evaluation.

A. Elastic Compute Cloud (EC2)

Amazon Elastic Cloud (EC2) is a Web service providing

a variety of compute resources (virtual machines) over the

cloud. Different units of compute resources, such as “micro,”

“small,” “medium,” “large,” and “extra large” are available

for provisioning and use. The names of the instance types

hint at the relative amounts of resources (CPU, memory, and

storage) provided with each instance. EC2 uses standard units

to describe memory and storage, but it introduces an abstract

CPU allocation unit known as the “EC2 Compute Unit” (ECU)

to describe the fixed amount of CPU resources allocated to a

virtual machine. One ECU is equivalent to the CPU capacity of

a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. CPU and

memory is dedicated to a given virtual machine, but network

and disk subsystems are shared among the instances running

on the same physical machine.

A variety of different options are thus available for the end

user to acquire and host an application on Amazon’s cloud.

However, the most cost-effective choice for a particular user

will depend on certain characteristics of the application being

deployed and the workload it will serve. It is very difficult for

the typical end-user to select the best set of resources for his or

her specific application. Therefore, in this paper, we perform

a cost and performance analysis based on the three most

economically-feasible instance types, namely micro, small,

and medium, for a typical multi-tier Web application.

Table I shows the targeted on-demand EC2 instance types,

hardware resources (CPU and memory), and cost per hour for

the us-west-2 region. We briefly discuss each of the target

instance types in the following sections.

1) Micro Instances: The EC2 micro instance is the least

expensive option. Rather than providing a fixed level of CPU

resources, micro instances have two different CPU allocation

levels: background level and max level. Background level allo-

cation provides a consistent baseline CPU resource allocation.

Max level allocation is allowed for short periods of time to

accommodate short spikes in CPU requirements [11]. The

exact allocation of ECUs for the background and max levels

is not published, but the EC2 documentation does specify that

the maximum CPU allocation for a micro instance can be as

large as two ECUs. This means that the micro instance may

be feasible for low-throughput applications with occasional

workload spikes.

2) Small Instances: The small instance is another inexpen-

sive option for compute resources. Small instances have a fixed

CPU allocation. Small instances may be a good choice for a

low-throughput applications with known maximum CPU and

memory requirements.

3) Medium Instances: EC2 provides two different types of

medium instances (m1.medium and c1.medium). They are use-

ful for different types of applications: m1.medium is best for

applications requiring a large amount of memory and smaller

amounts of CPU, whereas c1.medium is best for applications

requiring small amounts of memory but large amounts of

CPU. In this paper, we only use c1.medium instances; from

here onward, we refer to our c1.medium instances simply as

“medium” instances.

4) Elastic Block Storage (EBS) and Instance Storage:

Amazon provides two types of storage for EC2 instances’ root

devices: Elastic Block Storage (EBS) and Instance Storage

(IS). EBS is persistent irrespective of the instance’s lifetime,

whereas IS storage does not persist beyond the instance’s

lifetime. EBS-backed EC2 instances are thus more reliable

in terms of persisting local instance data, but they incur extra

costs. We use EBS-backed instances in all of our experiments,

as EBS-backed instances are much faster than IS backed

TABLE I
TARGETED EC2 ON-DEMAND INSTANCE TYPE PRICES AND RESOURCE

ALLOCATIONS FOR THE US-WEST-2 REGION.

Instance Type CPU Memory
Price/Hour

(USD)

Micro Up to 2 ECU 613 MB $0.020

Small 1 ECU 1.7 GB $0.065

Medium (c1.medium) 5 ECU 1.7 GB $0.130

Medium (m1.medium) 2 ECU 3.75 GB $0.130

instances to launch, requiring less than a minute.
5) CloudWatch: The Amazon CloudWatch service allows

users to monitor various performance metrics for their AWS

resources. As examples, a CloudWatch user can monitor

the average, maximum, and minimum CPU utilization, the

I/O utilization, or the bandwidth consumption of launched

instances for specific durations. By default, CloudWatch mon-

itors resources over five-minute intervals. However, it is also

possible to perform more fine-grained monitoring over one-

minute intervals by enabling “detailed monitoring,” incurring

extra costs.

Besides the built-in metrics, developers can also add

application-specific metrics to the CloudWatch service through

an API. We use the CloudWatch API to monitor CPU utiliza-

tion of our instances, and we enable detailed monitoring. This

allows us to quickly identify CPU saturation.

IV. SCALE-OUT STRATEGIES

A multi-tier Web application hosted on a cloud can satisfy

specific response time requirements by performing horizontal

scaling (scale-out) using a variety of policies, including rule-

based methods and schedule-based methods. A rule base

defines a set of rules for triggering scale out operations; for

example, if a tier’s virtual machine CPU utilization reaches

85% or its memory utilization reaches 90%, we may want

to add an additional virtual machine to the tier. Schedule-

based approaches, on the other hand, adjust the number of

virtual machines allocated to an application based on a specific

schedule, e.g., based on particular hours of the day or days

of the week. More advanced techniques are also possible;

for example, in ongoing work [4], we use a combination

of heuristics and machine learning to scale out multi-tier

applications. In this paper, with the aim of profiling the cost-

effectiveness of the different Amazon EC2 instances for multi-

tier application provisioning, we experiment with two fairly

simple rule-based scale-out strategies. This section describes

the two strategies in further detail.

A. CPU Reactive

Most Web applications that generate dynamic content re-

quire a significant amount of CPU capacity, and such appli-

cations often saturate their CPUs when attempting to serve

an unexpectedly heavy workload. In preliminary experiments

with our sample benchmark Web application on EC2, we

established that CPU always saturates before the Web appli-

cation’s response times go beyond a specific threshold. This

means that CPU is the main resource limitation under heavy

workloads, so in our CPU Reactive strategy, we configure

the system to trigger scale-out operations whenever average

CPU utilization crosses a specific threshold. For our two-tier

(Web and database) multi-tier Web application, the policy is

as follows:

• Trigger a scale-out operation whenever the average CPU

utilization of all virtual machines allocated to a specific

tier goes beyond a specific threshold (αcpu).

• Scale-out operations are performed by adding one virtual

machine to the tier(s) triggering the operation.

This CPU Reactive approach may scale out none, one, or

both tiers depending on the CPU utilization of the tier-specific

virtual machines over a given monitoring interval.

B. Response Reactive

The Response Reactive strategy relies on response time

monitoring rather than CPU utilization monitoring to trigger

scale-out operations. This is sensible because ultimately, a

maximum response time requirement would be an important

service level objective (SLO) in the service level agreement

(SLA) for any operations team setting out to manage an

application’s performance.

In the Response Reactive approach, we trigger scale-out

operations whenever the application’s response time exceeds

a specific threshold. For our two-tier Web application, our

Response Reactive technique is as follows:

• Trigger a scale-out operation whenever the 95th per-

centile of the response time goes beyond a specific

threshold (τrt).

• Scale-out operations are performed by adding one virtual

machine to each tier(s) for which the average CPU

utilization is higher than a specific threshold (αcpu).

Like the CPU Reactive strategy, the Response Reactive strat-

egy may similarly scale out none, one, or both tiers. Although

the triggering event is different, the scale out operation itself

is identical in the two cases.

V. EXPERIMENTAL DESIGN

In this section, we provide details of our application setup,

workload generation methods, testbed cloud infrastructure,

experimental details, and evaluation criteria.

A. Benchmark Web Application

RUBiS [12] is an open-source benchmark Web application

for auctions. It provides typical core functionality of an auction

site, such as browsing, selling, and bidding for items, and it

provides three user roles: visitor, buyer, and seller. Visitors are

not required to register; they are allowed to browse for items

that are available for auction. We use the PHP implementation

of RUBiS as a sample Web application for our experimental

evaluation.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

L
o
a
d
 l
e
v
e
l
(n

e
w

 s
e
s
s
io

n
s
/s

e
c
)

Time (minutes) [t]

Fig. 1. Workload generation profile for all experiments.

Fig. 2. Testbed cloud infrastructure used for the experiments.

B. Workload Generation

We use httperf to generate synthetic workloads for

RUBiS. We generate workloads for specific durations with a

required number of user sessions per second. A user session

emulates a visitor that browses for categories and regions and

also browse bids on items up for auction. After every minute,

we increment the load level by 1, from load level 1 through

load level 90. After that, we maintain load level 90 for the

last 20 minutes of the experiment (the entire experiment is

thus 110 minutes). Each load level represents the number

of user sessions per second; each user session makes 32

browser requests to simulate a user session. Figure 1 shows

the workload distribution over time for all experiments.

C. Testbed Infrastructure

Amazon owns multiple geographical dispersed data centers

around the world known as regions. Each region is divided

into multiple locations known as availability zones. Users

are able to place their EC2 instances in any region and

any availability zone. We performed all experiments in the

us-west-2 region and the us-west-2c availability zone

of the Amazon public cloud. Figure 2 shows the testbed cloud

infrastructure used during the experiments. We use an EC2

medium instance (c1.medium) as the head node. The head

node is configured to fulfill the following responsibilities:

• Generate the workload (user sessions).

• Act as a proxy server for the benchmark Web application.

• Load balance incoming requests among the servers in the

provisioned Web server tier.

• Dynamically provision resources to the application.

The pool of dynamically-provisioned EC2 instances always

contains at least one virtual machine in the Web tier and

one virtual machine in the database tier of the benchmark

application. We set the maximum number of dynamically

provisioned instances to 18 for all experiments. We never

observed any of the head node’s resources (CPU, memory,

I/O, or network bandwidth) saturate during the experiments.

We use Nginx as the load balancer for the Web tier

because it offers detailed logging and allows reloading of its

configuration file without terminating existing client sessions.

Since RUBiS does not currently support load balancing over

TABLE II
EXPERIMENTAL DETAILS.

Experiment #
Allocation

Type
Scale-out
Strategy

Parameter
Value

Experiment 1 Micro
CPU Reactive αcpu = 100%

Response Reactive
τrt = 500ms
αcpu = 100%

Experiment 2 Small
CPU Reactive αcpu = 65%

Response Reactive
τrt = 500ms
αcpu = 65%

Experiment 3 Medium
CPU Reactive αcpu = 85%

Response Reactive
τrt = 500ms
αcpu = 85%

a database tier, we modified it to use round-robin balancing

over a set of database servers listed in a database connection

settings file, and we developed a server-side component to

update the database connection settings file after a scaling

operation has modified the configuration of the database tier.

Our focus is on scaling multi-tier applications, and we assume

that a mechanism such as [13] exists to ensure consistent reads

after updates to a master database.

D. Experimental Details

We performed three sets of experiments to analyze the cost

and performance of micro, small, and medium instances under

the CPU Reactive and Response Reactive scale-out strategies

for the same workload distribution. Table II shows details

of the experiments. We repeated each experiment using both

strategies. For each experiment, we initialize the system with

one virtual machine in the Web tier and one virtual machine

in the database tier of the benchmark application using the

specific instances for the experiment. During the experiments,

we monitor the 95th percentile of response time and the CPU

utilization of each provisioned virtual machine.

For the Response Reactive scale-out strategy, we configured

the average response time threshold value (τrt) to 500 ms,

an acceptable maximum response time requirement for Web

applications.

To determine an appropriate value for αcpu, we performed a

pilot experiment to identify the maximum CPU utilization for

each allocation type that does not affect the performance of the

benchmark Web application. We allocated one virtual machine

to the Web tier and one virtual machine to the database tier,

then we executed the increasing workload shown in Figure 1

to find the latest point at which the 95th percentile of the

response time did not increase substantially.

Figure 3 shows the throughput (requests served per second),

CPU utilization (%) in the Web and database tiers, and the

95th percentile of the response time using micro instances.

We observed dramatic growth in response time after the 7th

minute. We thus learned that micro instances continue to

perform well with 100% average CPU utilization. Therefore,

we set the average CPU utilization αcpu to 100% for the

experiments using micro instances.

Figure 4 shows the same data using small instances. We ob-

served dramatic growth in response time after the 6th minute.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 4 8 12 16 20 24 28 32 36R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (minutes)

95th percentile of mean response time (ms)

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16 20 24 28 32 36

T
h

ro
u

g
h

tp
u

t
(r

e
q

u
e

s
t/

s
)

Time (minutes)

Throughput

 0
 20
 40
 60
 80

 100

 0 4 8 12 16 20 24 28 32 36

C
P

U
 u

ti
l
(%

)

Time (minutes)

Web Server
DB Server

Fig. 3. Static micro allocation: throughput (requests served per second), CPU
utilization (%) of the Web and the database tiers, and 95th percentile of the
response time.

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 4 8 12 16 20 24 28 32 36R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (minutes)

95th percentile of mean response time (ms)

 0

 200

 400

 600

 800

 1000

 0 4 8 12 16 20 24 28 32 36

T
h

ro
u

g
h

tp
u

t
(r

e
q

u
e

s
t/

s
)

Time (minutes)

Throughput

 0
 20
 40
 60
 80

 100

 0 4 8 12 16 20 24 28 32 36

C
P

U
 u

ti
l
(%

)

Time (minutes)

Web Server
DB Server

Fig. 4. Static small allocation: throughput (requests served per second), CPU
utilization (%) of the Web and the database tiers, and 95th percentile of the
response time.

We thus learned that small instances perform well up to 65%

CPU utilization before application performance decreases.

Therefore, we set the average CPU utilization threshold αcpu

to 65% for the experiments using small instances.

Finally, Figure 5 shows the same data using medium

(c1.medium) instances. We observed dramatic growth in re-

sponse time after the 28th minute. We thus learned that

medium instances perform well up to 85% CPU utilization.

Therefore, we set the average CPU utilization threshold αcpu

to 85% for the CPU Reactive phase of the medium instances

allocation.

E. Evaluation Criteria

We evaluate the experiments by measuring the application’s

performance and the cost of the provisioned resources during

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 4 8 12 16 20 24 28 32 36R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (minutes)

95th percentile of mean response time (ms)

 0

 500

 1000

 1500

 2000

 0 4 8 12 16 20 24 28 32 36

T
h

ro
u

g
h

tp
u

t
(r

e
q

u
e

s
t/

s
)

Time (minutes)

Throughput

 0
 20
 40
 60
 80

 100

 0 4 8 12 16 20 24 28 32 36

C
P

U
 u

ti
l
(%

)

Time (minutes)

Web Server
DB Server

Fig. 5. Static medium allocation: throughput (requests served per second),
CPU utilization (%) of the Web and the database tiers, and 95th percentile
of the response time.

each experiment. We measure application performance by cal-

culating the percentage of requests missing the response time

requirements (%SLA missing) during the experiment. Amazon

cloud services have various costs, e.g. for data transfer, EBS

storage, EBS I/O requests, CloudWatch API requests, detailed

instance monitoring, and EC2 instances. Since it is difficult

to identify the exact cost incurred during each experiment, to

simplify the cost calculations, we only calculate cost based

on the number of CPU hours allocated/used during each

experiment.

VI. EXPERIMENTAL RESULTS

In this section, we describe the results obtained in Experi-

ments 1, 2, and 3 using the CPU Reactive and Response Reac-

tive scale-out strategies, and we also discuss the performance

and cost measurements obtained in each experiment.

For each experiment reported in this experiment, we provide

graphs showing throughput (requests served per second), the

95th percentile of the response time, the dynamic addition of

instances in each tier, and the average CPU utilization of the

Web and database tier instances for the specific allocation type

and scale-out strategy.

A. Experiment 1: Micro Allocation

Figure 6 shows the results of experiment 1 (micro instance

allocation) with the CPU Reactive scale-out strategy. When-

ever the system detects a violation of the CPU utilization

threshold, it uses the CPU Reactive scale-out strategy to

identify the tier(s) to scale out, then it dynamically adds

micro instances (virtual machines) to the identified tier(s).

The system quickly reaches the maximum allocation limit

(18 instances) during the experiment. By the 43rd minute, all

18 instances consistently utilize 100% of their CPUs, but we

never observe any significant growth in the 95th percentile of

the response time. The system throughput grows linearly in

response to the growing workload throughout the full range

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 6. Experiment 1 (micro allocation) results with CPU Reactive scale-
out strategy. The graphs show throughput (requests served/second), 95th

percentile of response time, dynamic addition of instances in each tier, and
CPU utilization of Web and database tier instances. Micro instances perform
well with the CPU Reactive strategy even at 100% CPU utilization.

of load levels. This experiment shows that micro instances

provide consistent performance even when the instances’ CPU

utilization reaches 100%.

Figure 7 shows the same measurements for micro instance

allocation and the Response Reactive scale-out strategy. On

response time requirement violations, the system uses the

proposed Response Reactive scale-out strategy to identify the

tier(s) to scale out, then it dynamically adds micro instances

(virtual machines) to the identified tier(s). We observe that

system is capable of reacting on performance violations and

restoring application performance multiple times dynamically.

We also observe that system throughput degrades whenever

the response time saturates.

B. Experiment 2: Small Allocation

Figure 8 shows the results of experiment 2 (small instance

allocation) with the CPU Reactive scale-out strategy. We

observe multiple periods in which the 95th percentile of

the response time increases, but the CPU Reactive scale-out

strategy works well, scaling out the appropriate tiers to restore

system performance.

Figure 9 shows the results of experiment 2 (small instance

allocation) with the Response Reactive scale-out strategy. The

system is capable of reacting on performance violations and

restoring application performance multiple times dynamically.

During this particular experiment, we observed an anomaly:

from the 61st minute of the experiment, a few of the Web

tier virtual machines behaved inconsistently, with higher than

normal response times compared to the other allocated virtual

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)
Response time threshold

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 7. Experiment 1 (micro allocation) results with Response Reactive scale-
out strategy. The system is capable of reacting on performance violations and
restoring application performance.

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 8. Experiment 2 (small allocation) results with CPU Reactive scale-out
strategy.

machines in the same tier. The average CPU utilization for

the tiers did not cross the scaling threshold, however, so

the system did not scale out the tier. However, by the 69th

minute, all of the virtual machines allocated to the Web tier

returned to normal and performed well for the rest of the

experiment, and the 95th percentile of the response time

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)
Response time threshold

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 9. Experiment 2 (small allocation) results with Response Reactive scale-
out strategy.

decreased without adding more resources to the tiers. The

anomaly was presumably due to contention for resources with

other virtual machines on the same physical machine.

C. Experiment 3: Medium Allocation

Figure 10 shows the results of experiment 2 (medium

instance allocation) with the CPU Reactive scale-out strategy.

We observe only one case of reaching the CPU utilization

threshold, in the Web tier. The system dynamically adds

a second virtual machine to the tier, and the application

performance is restored quickly.

Figure 11 shows the results of experiment 3 (medium

instance allocation) with the Response Reactive scale-out

strategy. We observe only one case of reaching the response

time threshold. The system is able to scale out the Web tier

of the application dynamically.

D. Summary

Table III summarizes the experimental results. The table

shows the percentage of requests missing the targeted response

time (%SLA Missing), the amount of CPU time used, in hours,

and the resulting cost of the specific set of instances for each

scale-out strategy in each experiment. Refer to Section V-E

(Evaluation Criteria) for an explanation of the cost calculation.

We see immediately that for our benchmark multi-tier Web

application hosted on the Amazon cloud, the CPU Reactive

technique is clearly better in terms of performance, because

fewer requests miss the SLA response time target. However,

the Resource Reactive scale-out strategy is consistently better

in terms of cost, because it waits for the workload to begin to

affect performance before it scales out any tier.

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 10. Experiment 3 (medium allocation) results with CPU Reactive scale-
out strategy.

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100

Time (minutes)

DB tier average CPU utilization (%)
Web tier average CPU utilization (%)

CPU threshold

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

DB tier machines
Web tier machines

 0

 200

 400

 600

 800

 0 20 40 60 80 100

95th percentile of response time (ms)
Response time threshold

 0

 1000

 2000

 3000

 4000

 0 20 40 60 80 100

Throughput (requests/s)

Fig. 11. Experiment 3 (medium allocation) results with Response Reactive
scale-out strategy.

Micro instances are very low cost. They also perform well,

particularly with the CPU Reactive strategy (no SLA violations

at all). Under the Response Reactive strategy, micro instances

do incur a moderate 1.1% SLA miss rate. Small instances

are the worst performers, with the highest costs. Medium

CPU Reactive instances are nearly as good as micro instances,

but medium instances offer little benefit under the Response

TABLE III
EXPERIMENTAL RESULTS SUMMARY.

Allocation
Type

Method
%SLA
Missing

CPU
Hours

Cost
(USD)

Micro
CPU Reactive 0.00 25.92 $0.52

Response Reactive 1.10 19.07 $0.38

Small
CPU Reactive 0.22 16.58 $1.08

Response Reactive 2.11 12.98 $0.84

Medium
CPU Reactive 0.01 4.60 $0.60

Response Reactive 0.23 4.47 $0.58

Reactive strategy.

Micro instances are 51.85% and 13.33% more cost effective

than small and medium instances, respectively, using the CPU

Reactive scale-out strategy and 54.76% and 34.48% more cost

effective than small and medium instances, respectively, using

the Response Reactive scale-out strategy.

Micro instances thus provide excellent performance at low

cost in the context of linearly increasing workloads. However,

they would most likely fail to provide high performance under

sudden large increases in workloads. Reactive scale out using

medium instances would probably be more appropriate under

such circumstances. Therefore, a hybrid approach using a mix

of micro and medium instances to accommodate different

workload profiles might be more appropriate.

Finally, we note that our ability to squeeze good per-

formance from a pool of micro instances depends on how

Amazon gives CPU resources to micro instances, allowing

up to two ECUs of CPU during short activity spikes. We

are presumably “stealing” unused cycles from other virtual

machines running on the same physical machine. Our ability

to do that would necessarily depend on the other machines’

workloads and Amazon not changing its policy for CPU

allocation to micro instances.

VII. CONCLUSIONS

In this paper, we have presented an investigation into cost-

effective choices for hosting multi-tier Web applications that

are required to satisfy specific response time requirements on

the Amazon public cloud for linearly increasing workloads.

We experimented with the three most economically-feasible

instance types, namely micro, small, and medium, for a typical

multi-tier Web application. We used two rule-based scale-

out strategies for dynamic scale out of allocated resources

to maintain the application’s performance. Our experimental

study shows that micro instances provide the best combination

of price and performance under linearly increasing workloads.

We are currently developing machine learning approaches

to identify the resources required to satisfy response time

requirements for multi-tier applications hosted on the Amazon

cloud. We are also exploring the possibility of using a hybrid

approach based on both micro and medium instances to

accommodate large unexpected increases in workload.

REFERENCES

[1] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, p. 871, 2011.

[2] J. Dejun, G. Pierre, and C.-H. Chi, “Resource provisioning of Web ap-
plications in heterogeneous clouds,” in Proceedings of the 2nd USENIX

Conference on Web Application Development, 2011.
[3] N. Bonvin, T. Papaioannou, and K. Aberer, “Autonomic sla-driven pro-

visioning for cloud applications,” in Cluster, Cloud and Grid Computing

(CCGrid), 2011 11th IEEE/ACM International Symposium on. IEEE,
2011, pp. 434–443.

[4] W. Iqbal, M. N. Dailey, and D. Carrera, “Minimalistic adaptive resource
management for multi-tier applications hosted on clouds,” in Proceed-

ings of the 2012 IEEE 26th International Conference on Parallel and

Distributed Processing Symposium Workshops PhD Forum (IPDPSW),
pp. 2546–2549.

[5] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson,
“Statistical machine learning makes automatic control practical for
internet datacenters,” in HotCloud’09: Proceedings of the Workshop on

Hotp Topics in Cloud Computnig, 2009.
[6] H. Liu and S. Wee, “Web server farm in the cloud: Performance

evaluation and dynamic architecture,” in CloudCom ’09: Proceedings

of the 1st International Conference on Cloud Computing. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 369–380.

[7] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,”
in SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS

international conference on Measurement and modeling of computer

systems, vol. 33. ACM, 2005, pp. 291–302.
[8] J. Rao and C.-Z. Xu, “Online capacity identification of multitier websites

using hardware performance counters,” IEEE Transactions on Parallel

and Distributed Systems, vol. 99, 2010.
[9] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,

J. Shalf, , H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the amazon web services
cloud,” in Proceedings of the 2010 IEEE Second International Confer-

ence on Cloud Computing Technology and Science, ser. CLOUDCOM
’10, 2010, pp. 159–168.

[10] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing,” in Cloud Computing, ser. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, vol. 34, ch. 9, pp. 115–131.

[11] Amazon Inc, “Amazon EC2 Micro Instances,” http://docs.
amazonwebservices.com/AWSEC2/latest/UserGuide/concepts micro
instances.html.

[12] OW2 Consortium, “RUBiS: An auction site prototype,” 1999, http://
rubis.ow2.org/.

[13] xkoto, “Gridscale,” 2009, http://www.xkoto.com/products/.

