

Cite it as: Wafa’a Kassab and Khalid A. Darabkh, “A-Z Survey of Internet of Things: Architectures, Protocols,
Applications, Recent Advances, Future Directions and Recommendations,” Journal of Network and Computer
Applications, Elsevier, vol. 163, p.102663, August 2020. DOI: https://doi.org/10.1016/j.jnca.2020.102663

Published via this link: https://www.sciencedirect.com/science/article/pii/S1084804520301375

A-Z Survey of Internet of Things: Architectures, Protocols,

Applications, Recent Advances, Future Directions and

Recommendations

Wafa’a Kassab1 and *Khalid A. Darabkh2
1Department of Infrastructure and Information Security, Ministry of Finance

Amman, 11118, Jordan
2*Department of Computer Engineering, The University of Jordan,

Amman, 11942, Jordan

Emails: wafaa.kassab@mof.gov.jo and k.darabkeh@ju.edu.jo

Abstract - Ubiquitous sensing, provided via wireless sensor networks technologies, disseminates across many

domains of contemporary day living. This provides the ability to sense, process, analyze and infer environmental parameters

from natural resources and delicate ecologies to urban environments. The explosion in the number of devices that are

connected to the internet has led to the emergence of the Internet of Things (IoT) technological revolution. In these

technologies, actuators and sensors incorporate smoothly with the IoT environment. Furthermore, the sensed data is shared

through platforms to innovate a common operating picture. This cutting-edge technology is fueled by a diversity of IoT

devices that enables technologies such as near field communication, embedded actuator, sensor nodes, radio frequency

identification tags, and readers. IoT has emerged from its infancy and has established a fully integrated future internet.

Different visions of IoT technologies have been reviewed, however, what emerges currently in this field should be faced and

displayed via the research community. In this paper, we are keen to discuss the recent worldwide implementation of IoT,

where the prime enabling technologies, recent and future communication protocols and application areas that drive IoT

research in the near future are explored. Furthermore, the original, recent, future enhancements of all IoT stack’s protocols

are extensively discussed. Middleware’s definition, usages, types and open research challenges are further illustrated. Not

only to this extent but rather, this survey details the simulation tools of IoT networks, IoT sensors along with their recent

application areas, broad IoT research challenges, as well as in-depth analysis of IoT research history and recommendations

that attract current IoT researchers’ attention.

Keywords – IoT architectures; protocols; applications, IoT middleware; IoT simulators; IoT challenges; future directions;

recommendations

1. Introduction

The next revolution in the era of computing will be out of the realm of the classical desktop. In IoT environment, the

numerous things that surround us will be connected to the internet in one way or another [1]. Various sensor network technologies

and Radio-Frequency Identification (RFID) will emerge to face this novel challenge, where communication and information systems

are embedded in the area that surrounds us [2] [3] [4] [5] [6]. This will lead to the creation of tremendous amounts of data that has

to be processed, stored and presented in an efficient, easy and seamless manner [7] [8] [9] [10]. The cloud-computing model offers

a virtual infrastructure to perform such computing through integrating surveillance and storage devices, analytics tools, client

delivery, and visualization platforms [11]. The cost-based paradigm that cloud computing provides will authorize service

provisioning for users and businesses to access their applications on-demand from anywhere and at any time [12].

The indispensable part of IoT is its smart connectivity with the present network and context-aware computation utilizing

network resources. The evaluation of widespread communication and information networks comes from the growing existence of

4G-LTE and Wi-Fi wireless communication protocols [13]. However, to let IoT vision emerges successfully, computing standards

need to go beyond conventional mobile computing technologies and develop into connecting every existing thing around us and

embedding intelligence in the surrounding environment. There are essential demands that have to exist in order to achieve context-

aware computation and smart connectivity in an IoT environment. These demands are 1) Understanding of IoT users and their

appliances, 2) Pervasive communication networks and software architectures to transfer and process the sensed data to where it is

relevant, 3) Analytics tools for autonomous and intelligent behavior in IoT systems.

An essential evolution of the present internet into a network of connected-things not only interacts with the physical

environment through actuation, monitoring, and control, nor simply harvests data from the surrounding environments, but also

utilizes existing internet criteria to facilitate data transmission, analytics, and communication [14] [15] [16] [17] [18]. IoT area is

fueled by the propagation of intelligent devices that are enabled by various wireless technologies such as RFID, Bluetooth,

telephonic data services and Wi-Fi, in addition to embedded actuators and sensor nodes. IoT has emerged from its infancy and is

transforming from the present traditional internet into a completely integrated future internet [1] [19]. The revolution of IoT has led

to an increasing interconnection among things at an unprecedented scale and speed to create an intelligent environment. In 2011,

the number of interconnected devices overtook the number of people on the face of the earth. Currently, there are 9 billion devices

that are connected to the internet and it is anticipated to reach 24-50 billion IoT devices in 2020 [6] [12]. As stated by the global

system for mobile communications, this will yield a profit of $1.3 trillion for mobile network operators that cover main sectors such

https://doi.org/10.1016/j.jnca.2020.102663
https://www.sciencedirect.com/science/article/pii/S1084804520301375

as automotive, consumer electronics, utilities, and health. Numerous researches, industries, and companies are presently involved

in the development of different IoT aspects to satisfy the increasing technological requirements that come with such rapid growth.

1.1 Related Works

Many works have surveyed and covered the different aspects of IoT technology. However, the contributions of these works

and the research community on IoT-related topics are still highly fragmented and inadequate, and to a large extent concentrated on

only a few aspects of this domain. Also, the involvement of communications and networking societies is still limited, despite the

importance of their contributions to the evolution of this field. This subsection presents a literature review for some of these works

organized chronologically, with a brief discussion regarding the topics they handled in their surveys.

Atzori et al tried in their survey paper to describe different visions of IoTs model based on diverse scientific communities'

points of views [20]. This survey addressed the main communication technologies and identified wireless and wired actuator and

sensor networks without providing any details regarding the protocols and their enhancements related to each IoT layer architecture.

Furthermore, it illustrated and reviewed the main technologies of the IoT paradigm along with the benefits behind spreading this

technology in different domains of everyday life. Finally, their work discussed different proposed issues and open research

challenges that faced the IoT domain until 2009. Miorandi et al presented the vision of the IoT model and defined the main related

concepts wherein they indicated the significant additions provided by related researches and technology contexts in this field [21].

Additionally, multiple research and security challenges were investigated followed by a brief discussion of possible IoT applications

and their impact on different fields. Finally, the authors reviewed related IoT initiatives until 2012. However, their paper not only

did not cover all the aspects of the IoT field but is also outdated. The concept and history of IoT were demonstrated with a brief

introduction of different IoT architectures by Said et al [22]. Furthermore, they introduced a few applications that can be

implemented based on IoT technology, besides demonstrating open problems and research challenges in this field. The definitions,

taxonomy, and trends of IoT technology with a brief discussion regarding some technologies and applications of this field were

presented by Gubbi et al [12]. Moreover, an example of cloud computing implementation using Aneka/Azure cloud platform was

presented, without introducing further details about the specifications of cloud computing technology. Many challenges and open

research issues were examined by Whitmore et al, with a brief introduction about IoT technologies, applications, and business

models [23]. Al-Fuqaha et al gave some technical details about IoT technologies, architectures, applications, and protocols [24]. In

addition, they provided a concise presentation regarding the interaction among IoT solutions, big data, fog, and cloud computing.

Finally, some Quality of Service (QoS), security issues, and challenges were examined. A limited discussion was provided by

Kraijak and Tuwanut about architecture, protocols, applications, privacy and security problems in the IoT domain. Finally, they

presented the applications and future trends of IoT [25]. Masek et al described Machine-to-Machine (M2M) communication

protocols in cellular networks, with a summarized presentation of some bidirectional communication protocols [26]. They also

offered a brief investigation regarding the convenience of both protocol buffers format and JavaScript Object Notation (JSON) for

M2M communication. They also proposed a live smart home project for Telekom Austria group using JSON and protocol buffer

techniques to implement M2M communication. Many IoT aspects were covered by Ray [27]. Firstly, he tried to give multiple

definitions of IoT paradigm from different researchers' perspectives. Secondly, different architectures of this technology were

discussed. Thirdly, the main domains and applications that can be implemented by IoT technology were presented, followed by

sections about previous wireless and wired technologies and protocols that were implemented in this field. Finally, possible research

and security challenges were investigated. The Survey paper of Sethi and Sarangi covered different taxonomies of IoT stacks with

a brief description of each layer's technologies and protocols [28]. Also, they profiled some types of IoT sensors with their related

applications. Some challenges behind proposing the term of middleware were discussed along with identifying their types.

Burhanuddin et al provided a theoretical background of the IoT paradigm, with an analysis review of many surveys on this field

[29]. Further, they discussed the requirements needed to implement IoT applications, followed by a discussion about future

directions and challenges that face this domain. An inadequate interpretation was given to cover relevant sides of IoT middlewares

such as the needs behind middleware, its capabilities, enabling technologies, and challenges by Ngu et al [30].Moreover, the authors

classified various types of IoT middlewares and gave many examples for each architecture, without taking into consideration other

aspects of IoT model. Silva et al presented one type of IoT architectures with its relevant technologies and then went to simply

summarize some of the prevalent communication protocols and standards that are adopted by the IoT field [31]. Although some IoT

applications were identified, followed by a brief discussion of some issues and security challenges that face the domain, it was

overall, an insufficient study that left the reader with many questions about the intricacies of the subject at hand. Different points of

view were presented regarding various types of IoT stack architectures with possible attacks relevant to each layer and suggestions

to overcome and solve these issues by Burhan et al [32]. In addition, a number of communication technologies were highlighted

along with their drawbacks and characteristics. An overview of different procedures that were proposed to secure IoT environment

with their restrictions until 2018 was discussed, where a novel IoT architecture model was proposed by the authors to fill security

gaps in the previous architectures. To this end, a section for some issues and challenges that face the security of IoT environment

was provided. Atlam et al identified the general notion characteristics of IoT, followed by a presentation of simple IoT stack

architecture [33]. On the other hand, they discussed some communication technologies and applications of the IoT field. However,

limited discussion regarding IoT challenges and future directions was introduced.

ˇColakovi´c and Hadžiali´c identified features and visions of IoT and provided insights of some enabling technologies and

communication protocols based on their functionalities, while they slightly reviewed the middleware and network domains [34].

The authors focused further on addressing and discussing the challenges and open issues that face the IoT model. A detailed

presentation was provided for the communication protocols of the application layer, such as Hypertext Transfer Protocol (HTTP),

Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), Data Distribution Service (DDS),

Advanced Message Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP) along with their

implementations in different segments of the IoT environment (IoT, cloud, fog) by Dizdarević [35]. Thereafter, the author conducted

a comparison between these protocols considering distinctive aspects such as latency, bandwidth consumption and throughput,

energy consumption, security, and developer’s choice. Finally, a concise description of open issues and challenges were provided.

Balaji et al [36] presented a few technologies and protocols that are utilized in IoT domain, followed by a summary of some security

issues that face this field. In addition, they mentioned the popular IoT- based lifesaver tools and discussed a number of real-time

applications. Finally, few of the issues prevalent in the IoT field were explained and the future scope and applications were left out.

A comprehensive focus on IoT forensic was presented by Yaqoob et al [37]. This work demonstrated novel factors that affect and

enable forensics in the IoT domain. It further provided an investigation of several IoT forensics literatures and categorized them

depending on sources of evidence, forensics phases, networks, enablers, forensics data processing, forensics tools, forensics layers,

etc. to analyze their strengths and weaknesses. Several research challenges and issues were identified as future research directions.

Sharma et al presented many definitions for IoT notions based on different researchers' perspectives [38]. The authors

chronologically addressed the evolution of this technology. In the end, a slight discussion was provided to handle different IoT

aspects such as its technology trends, communication standards, architecture and an overview of its future.

1.2 Findings and Impacts

There are many surveys that have been done to investigate different fields and issues of IoT domain till now. To the best

of our knowledge, there are no prior surveys similar to ours. Interestingly, Table 1 displays how this work is distinctive from other

highly cited papers mentioned in the previous section considering many perspectives out of which IoT paradigm, architectures,

spreading spectrum techniques, layers protocols (original, recent, future enhancements), IoT middleware (recent challenges), IoT

simulation tools, IoT applications, research security and challenges, and research history analysis and recommendations. In light of

the aforementioned deficiencies of the related works, the major findings of this work can be summarized as follows:
1. Having higher value for researchers, as this survey is considered to be a starting point for their future researches because it

gives the reader the opportunity to comprehend what has been done in IoT field, what still needs to be developed as well as

what the risks and weakness factors are that need to be addressed. In addition, it exhibits the current trends in IoT research

that are encouraged by the need for the convergence in multiple interdisciplinary technologies and IoT applications.

2. Highlighting diverse visions, definitions, and a thorough overview of IoT components and features for the reasoning of

expediting a better comprehension of different IoT specifications by researchers and technicians.

3. Providing a detailed demonstration of different spreading spectrum techniques (i.e., Direct-Sequence Spread Spectrum

(DSSS), Frequency-Hopping Spread Spectrum (FHSS), Chirp Spread Spectrum (CSS), Time-Hopping Spread Spectrum

(THSS)). Based on such important information, the network designers can use the proper or suitable spreading spectrum

techniques in their IoT communication systems, which will reduce crosstalk interference, obtain less static noise and data

integrity, reduce signals susceptibility to multipath fading, avoid signals interference, and guarantee security implementation

by making IoT data signals hard to detect, intercept or demodulate.

4. Providing insights and deep synopsis of the most recent standards and protocols, which are classified based on different IoT

stack architecture (i.e., application, transport, network, and data link layers), thereby making sure that the reader will be aware

of the full picture of the original, current, and future enhancements of each protocol. Matter of fact, conducting comparisons

between all protocols in each layer from different perspectives will help the researchers and technicians in deciding which

one suits them more quickly in professional and organized manners without digging through precise details provided in

standard specifications, sources, and Request for Comments (RFC).

5. Presenting a comprehensive overview of the emerging challenges and issues in the IoT domain in order to be tackled through

future researches. In fact, after studying numerous IoT research papers we have come to the conclusion that most of the

challenges and security issues emerge from the remarkable increase in data traffic, the huge variety of traffic types, diversity

of IoT devices, great variances in data forms, heterogeneous networks, etc. All of these concerns have a dramatic effect on

the performance and QoS of the IoT systems.

6. Detailing the most and recent trends and specifications of IoT middleware aspects. In other words, we make sure that the

readers get a full understanding of the recent challenges and issues that face the middleware field, the diverse classification

of middleware architectures, and differences of emerging middleware platforms for each type of architecture.

7. Introducing a comprehensive overview of IoT simulators that are currently available through classifying them into categories

according to their functions and then conducting comparisons while considering prevailing needs and aspects. Besides, the

major challenges raised through moving from simulating the Wireless Sensor Network (WSN) environment into IoT are

highlighted, thereby allowing the developers to upgrade the current versions of these simulators to suit IoT environment’s

requirements.

8. Analyzing the IoT research history, utilizing Scopus database through 2011 to 2020, in a very professional manner which

primarily includes both IoT stack and middleware architectures. In particular, as far as the former is concerned, we analyze

the growth and diminishment of publications in the whole IoT stack which includes data link and communication protocols,

network, transport, as well as application layers. In regards to the latter one, we analyze its publications’ growth and

diminishment considering actor-based, event-based, cloud-based, and service-based architectures bearing in mind that

addressing the challenges and limitations of middleware architectures has to take the functional components as service

composition, registration, and discovery and non-functional needs, such as ease of deployment, privacy, security, availability,

reliability, timeliness, and scalability all into consideration. As a result, we provide recommendations that will certainly

attract most IoT researchers.

1.3 Paper Outline

The remaining of this paper is organized as follows:

 Overview of the IoT paradigm (definition, functional blocks, basic components of smart devices) (section 2).

Table 1: Comparison of this survey with other related IoT works considering several IoT aspects

Articles Survey subject Year Overview

of IoT

paradigm

Architecture

of IoT

Spreading

spectrum

techniques

IoT layers protocols

IoT middleware IoT

simulation

tools

IoT

applications

Research

security

and

challenges

Research

recommendations

Original Recent Future

enhancements

Recent Challenges

Atzori et al
[20]

The internet of things: A survey 2010 1 ★ ☆ ★ ☆

Miorandi et

al [21]

Internet of things: Vision,

applications and research

challenges

2012 ☆ ☆ ★

Said et al

[22]

Towards internet of things:

survey and future vision

2013 ☆ ☆ ☆

Gubbi et al

[12]

Internet of things (IoT): A vision,

architectural elements, and future
directions

2013 ☆ ☆ ☆ ☆ ☆

Whitmore et
al [23]

The internet of things A survey
of topics and trends

2014 ☆ ☆ ☆ ☆

Al-Fuqaha
et al [24]

IoT survey on enabling,
technologies, protocols

and applications

2015 ☆ ✔2

✔
 ☆3 ✔ ✔

Kraijak et al
[25]

Survey on IoT architecture,
protocols, applications,

security, privacy, implementation

and future trends

2015 ☆ ☆ ☆ ☆

Masek et al
[26]

Implementation of true IoT
vision: Survey on enabling

protocols and hands-on

experience

2016 ★ ☆

Ray
[27]

A survey on Internet of things
architectures

2016 ☆ ★ ★ ☆
✔ ✔ ★

Sethi et al
[28]

Internet of Things: Architectures,
protocols, and applications

2017 ★ ★ ☆ ☆ ☆ ☆

Burhanuddin
et al [29]

Internet of things architecture:
current challenges and future

direction of research

2017
✔ ☆

Ngu et al

[30]

IoT middleware: A survey on

issues and enabling technologies

2017 ★ ☆ ☆

Silva et al
[31]

Internet of things: A
comprehensive review of

2017 ☆ ★4 ☆ ☆ ☆

1 : Aspect is not existed in the survey

2 ✔: Aspect is covered to the core in the survey

3 ☆: Aspect is shallow covered in the survey
4 ★: Aspect is sufficiently covered in the survey

enabling technologies,

architecture, and challenges

Burhan et al

[32]

IoT elements, layered

architectures and security
issues: a comprehensive survey

2018 ☆ ✔
 ☆ ☆ ✔ ☆

Atlam et al
[33]

Internet of things: State-of-the-
art, challenges, applications, and

open issues

2018 ☆ ☆ ☆ ☆ ☆

Colakovi ´c
et al [34]

Internet of Things (IoT): A
review of enabling technologies,

challenges, and open research

issues

2018 ☆ ☆ ☆
✔ ☆

Dizdarević
et al [35]

A Survey of communication
protocols for internet of things

and related challenges of fog and

cloud computing integration

2019 ★ ☆ ☆

Balaji et al
[36]

IoT technology, applications and
challenges: A contemporary

survey

2019 ☆ ☆ ☆

Yaqoob et al
[37]

Internet of things forensics:
Recent advances, taxonomy,

requirements, and open

challenges

2019 ☆ ☆ ☆

Sharma et al

[38]

The History, present and future

with IoT

2019 ☆ ★ ☆ ☆ ☆

Kassab and

Darabkh

This paper - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

 The taxonomy of IoT architecture (IoT layers, Fog layers, cloud computing) (section 3).

 Distinct spread-spectrum telecommunications techniques such as (DSSS, FHSS, CSS, THSS) (section 4).

 IoT layers’ protocols (origin, recent, future enhancements) (section 5).

 Middleware’s definition, uses, types and open research challenges (section 6).

 Different simulation tools of IoT networks (section 7).

 Various types of IoT sensors with recent application areas in IoT (Section 8).

 Broad and open IoT research challenges (section 9)

 Conclusions and recommendations (Section 10).

2. Overview of the IoT Paradigm

IoT paradigm has opened the doors to new inventions, discoveries and interactions among things and people, which will,

in turn, improve the exploitation of scarce resources and human quality of life. To comprehend the full picture of the IoT model,

the following sections will address different IoT definitions, functional blocks, and smart devices' basic components.

2.1 Internet of Things Definition

During the previous decade, the IoT field has acquired a considerable interest in the industry as well as in the academic

domains, the primary reason for this interest comes from the abilities that IoT provides [1]. It also guarantees to establish a world

wherein all smart objects and devices are connected to the internet and can communicate with each other with minimum human

interference [19]. The supreme purpose of IoT technology is to enhance people's life, wherein all smart objects around us realize

what we require, what we want, what we like and behalf accordingly without explicit orders [19] [39]. IoT includes an enormous

amount of technologies that form its vision but researches this field is still in its early stages. Thus, there is not a unified definition

for IoT term, the subsequent definitions have been provided from distinctive researchers.

 Definition 1: Objects have virtual personalities and identities, where they are embedded with smart interfaces that allow

them to communicate and connect with user contexts and social environments [40].

 Definition 2: Interconnected things that have active roles in what could be called the internet of the future [41].

 Definition 3: This expression consists of two words: Internet which is defined as the worldwide network of an enormous

number of networks depending on communication protocols standards, whereas the word Things refers to all objects that

are connected to that network based on the same standards [41].

 Definition 4: The environment of IoT network composes of physical and virtual entities, where these entities turn into

virtual things inside a cyber-world. These things are embedded with different abilities as sensing, analyzing and processing

and self-management based on interoperable communication protocols and specific criteria, these smart things should have

unique identities and virtual personalities [6].

 Definition 5: IoT notion is anything that can be accessed from anywhere at any time by anybody for any service through

any network. Thus, IoT can be called as 6Anys [27].

2.2 IoT Functional Blocks

An IoT paradigm is composed of a number of functional blocks, which ease different functionalities of smart objects like

sensing, actuation, identification, management, and communication. Figure 1 shows these blocks with brief explanations in the

following bullet points [27]:

 Device: Smart devices are the main units of the IoT system, where they are able to perform many operations such as

sensing, monitoring, control, and actuation activities. They are also capable of exchanging data with applications and

other smart servers. Each IoT device must be prepared with many interfaces to enable it to connect with other smart

devices, where it consists of interfaces for Internet connectivity, I/O for sensors, audio/video, memory, and storage. IoT

devices are varied according to the application they are utilized for. These applications could be smartwatches, wearable

sensors, automobiles, industrial machines, LED lights, etc. [27].

 Services: There is an enormous number of applications that utilize IoT techniques from office automation and home

appliances to manufacturing lines and goods tracking etc. Thus, it is required to apply specific IoT services in order to

enhance IoT application development and to speed up its implementation. These services can be classified into identity-

related services, services for device modeling, information aggregation services, devices discovery, devices control,

collaborative aware services, ubiquitous services, data analytics and data publishing [27] [42].

 Management: The main feature of the IoT device, which distinguishes it from traditional devices that can be managed and

controlled using mechanical buttons or switches, is remote management with or without human intervention. Furthermore,

these devices can exchange data between each other to take a suitable decision later on [27] [40].

 Security: The data of networks, specifically data of wireless networks, is vulnerable to a massive number of attacks as a

denial of service, spoofing, and eavesdropping, etc. Thus, IoT system tries to mitigate these attacks via the implementation

of many security functions like privacy, authorization, authentication, data security, content integrity and message integrity

[27] [39].

 Application: The application layer provides IoT users with interfaces that enable them to monitor and control diverse

aspects of IoT applications. Furthermore, they permit users to analyze and visualize the status of IoT system at any time

and from anywhere to take suitable action [27].

Figure 1: IoT device components

2.3 Basic Components of IoT Devices

IoT systems as mentioned before consisting of devices and applications, in order to allow them to communicate with each

other they must have basic components, as will be illustrated below:

1. Identification (ID): Each object in IoT system must have a unique identification; an ID is assigned to an entity based on

conventional parameters like universal product code, Media Access Control (MAC) ID, IPv6 ID or another custom method

[27].

2. Meta information: Metadata consists of information about each device in IoT system such as device model, ID, revision,

hardware, serial number and manufactured date.

3. Security controls: It resembles the “friend list” of Facebook, as the device owner can place restrictions on the devices

types that can connect to his device [28].

4. Service discovery: This feature enables each IoT device to store details of all other smart devices that belong to the network

in a specific directory. It is very important to keep these directories updated in order to get information about new devices

that recently have joined the IoT network [28].

5. Relationship management: It allows each IoT device to start, update and terminate the relation between itself and other

devices. Furthermore, it stores a list of the devices types that it should be connected with, according to the service type

they are provided and based on human settings [27] [43]. For instance, a light sensor can create a relationship with a light

controller device.

6. Service composition: This component enables interaction between smart objects and aims to provide users with the best-

integrated service. To achieve such goals, the discovery service tries to find the required service that is provided by the

smart object, to get benefit from it later on. It is also in charge of processing the data obtained from different objects to

provide the user with the best solution [43].

3. Architecture of IoT

IoT connects millions of smart objects, which leads to more data traffic and the need for large data processors and storages

[19]. Based on the above, IoT will face challenges regarding QoS, privacy, and security [44]. Thus, IoT architecture must take into

consideration many issues such as interoperability, scalability, QoS, reliability, etc. [45]. In the literature, various IoT architectures

have been suggested [46] [47] [48]. Nevertheless, each proposed architecture brings many shared drawbacks and fails to cover all

of the IoT characteristics, which are summarized as follows [49]:

a. Distributive: IoT model is probably developed in an enormously distributed environment, where data can be collected

from various sources and consequently can be processed via distinctive smart entities in a distributed procedure.

b. Interoperability: IoT devices that belong to distinct vendors have to communicate with each other to obtain mutual goals.

Protocols and systems must be also designed in a manner that permits smart devices from numerous manufacturers to

exchange their sensed data in an interoperable manner.

c. Scalability: Billions of objects are expected to join the network of any IoT environment. Thus, applications and systems

that run on these environments must be able to manage and process a tremendous amount of data.

d. Resources scarcity: Both of computation units and energy are considered to be highly scarce resources.

e. Security: Users' feelings of being helpless and exposed under the control and dominant of an unknown external device

could sorely handicap IoT deployment.

To overcome these issues, many researchers follow a specific-layered architecture for IoT infrastructure. In every proposed

IoT architecture, similar techniques, functionalities, and services will be grouped into the same layer, which will facilitate the

I/O interfaces

(Sensors, actuators,

etc.)

Audio/ Video

interfaces

Storage Interfaces

Connectivity

Memory interfaces Graphics

UART

SPI

12C

CAN

HDMI

3.5 mm audio

RAC video

SD

MMC

SDIO

USB host

RJ45/ Ethernet

NAND/NOR

DDR1/DDR2/

DDR3

CPU

GPU

development and enhancement of the architecture of each layer in the future [50]. There is no global consensus on the architecture

of IoT, so different IoT architectures have been suggested by many researchers [49]. To the best of our knowledge and after an

extensive search on IoT architecture models, we found that the superior model with respect to the elements that compose this

environment is the “Three Based Architecture” model that is described in [51]. This architecture composes of the following three

layers:

a. IoT layer: This layer contains all smart devices, entities, and end-users that are located in the IoT system.

b. Fog layer: All fog nodes are placed in this layer.

c. Cloud layer: All distributed cloud servers exist in this layer, where these servers consist of multiple processing units like

a rack of high capabilities servers or it could be a huge server with multiple processing cores.

In every layer a set of nodes are grouped into domains, wherein a single IoT domain, that is composed of Nodes-Fog-Cloud

agents, an application can be performed as depicted in Figure 2. The basic method that permits any IoT node, fog computing node

and cloud server of communicating and interacting with each other is demonstrated as follows; firstly, an IoT node transmits its

sensed data directly to a fog node that belongs to its domain application. As a result, the fog node processes the received data directly

or sends it to another fog node or cloud server belongs to the same domain in order to send the reply back to the related IoT node.

This step will reduce the service delay5 of IoT node in receiving a response for any request, this comes from the location of the fog

layer which allows its nodes to handle most of the requests come from the IoT layer [51]. The following sections demonstrate the

architecture of each layer in the three-based architecture model.

Figure 2: IoT three-based architecture layered

3.1 IoT Stack Architecture

Based on our thorough readings of a massive number of prior relevant surveys and books, we propose that the division

of IoT stack consists of five layers which include perception, data link, network, transport, as well as application layers as

shown in Figure 3, where all are discussed as follows:

i. Perception Layer: The primary mission of this layer is to sense the physical attributes of the entities that surround us and

within the dominant of IoT network, where it depends on many sensing technologies such as RFID, WSN, Global

Positioning System (GPS), etc. [49] [52]. Moreover, it is responsible for converting the sensed data to digital signals to be

appropriate for network transmission. As a matter of fact, embedding intelligence and nanotechnology play an important

role in this layer, as it enhances the processing capabilities of any object through inserting small chips (microcontroller)

into smart devices that are used in everyday life [49].

ii. Data Link Layer: The IoT data link layer includes various communication protocols, which primarily provide services to

the network layer. In fact, there are different standard technologies and protocols indicated by organizations for data link

protocols out of which, Bluetooth, ZigBee, RFID, low power wide-area-networks, Z-wave, cellular [28].

iii. Network Layer: It is in charge of providing data with routing paths to be transmitted in packets form over the network

area. The network layer establishes logical connections, delivers error reporting, manages and selects the routing path for

data transmission. Moreover, this layer contains all network devices such as switches, firewalls, bridges, and routers, which

are required to work along with suitable communication and routing protocols, such as 3G, 4G, 5G, Wi-Fi, infrared

technology, ZigBee, fiber-to-the-x [49].

iv. Transport Layer: It works transitionally with the application layer to transmit and receive data without errors. The

transmitting side of this layer is responsible for breaking messages that are received from the application layer into

segments, and then send them to the network layer. In turn, the received segments will be reassembled into messages to be

directly passed into the application layer by the receiving side. The transport layer provides features, such as packet delivery

order, congestion avoidance, multiplexing, byte orientation, data integrity and reliability over the transmitted data.

5 Service delay: Is the time period between the moment that IoT node transmits a service request and the time it receives the reply for its request [51].

v. Application Layer: This layer represents the front end of IoT architecture, where most of IoT potential will be exploited,

because it provides IoT developers with interfaces, platforms, and tools that are required to implement IoT applications

such as smart homes, intelligent transportation, smart health, and smart cities [49]. Moreover, it is responsible for receiving

the processed data from the network layer.

Application Layer

Network Layer

IP Network

Perception Layer

ID Tag
Service

ID TagUser

 Interface

Devices

Objects

Transport Layer

Delivers segments across network

Transmitting side Receiving side

Error recovery Support retransmission

Different transport protocols may support a range of

optional capabilities including:

Data Link Layer

ZigBee

RFID Cellular

Bluetooth Z-wave

SigFox

Figure 3: Five layers IoT architecture

3.2 Fog and Cloud Computing Layers

Big data that are generated by different IoT applications presents a new characteristic called Geo-distribution [53]. This

new dimension requires that the sensed information has to be processed at the edge of the network area close to the smart devices

instead of processing it by remote servers of cloud computing [54]. It is worth mentioning that it is indispensable to offer low latency

response in order to allow smart objects to take the right action at the suitable time and to protect the integrity of sensitive

infrastructure components. As a result, fog computing paradigm was suggested to extend cloud-computing services to the edge of

IoT networks, to provide a highly virtualized platform that supplies many networking, storage and computational services between

smart devices and cloud computing services [55]. Fog architecture comprises of four layers as depicted in Figure 4, which are

monitoring, pre-processing, storage, and security layers [56].

3.2.1 Fog Layers Architecture

i. Monitoring layer: This layer is responsible for observing the activities of smart devices and networks. For example, it

detects which sensor node performs some task, what task the node performs and at what time it is executed. Besides, this

layer is in charge of monitoring the energy level of different network devices [28] [56].

ii. Pre-Processing layer: Performs data management, analyzing, filtering and trimming processes to generate useful and

meaningful data.

iii. Temporary storage layer: After the pre-processing layer processes sensed data, it will be stored temporarily in the

resources of this layer. The temporary storage layer offers many storage functionalities such as data storing, distribution,

and replication [28].

iv. Security layer: It implements encryption and decryption techniques to protect the privacy and integrity of data.

Security Layer

Encryption/decryption,

privacy and integrity

measures

Temporary Storage Layer

Data distribution, replication

de-duplication, storage space,

virtualization storage devices

(NAS, FC, iSCSI, etc.)

Preprocessing Layer

Data analysis, filtering,

reconstruction and trimming

Monitoring Layer

Monitoring activities, power,

resources, responses and

services

Figure 4: Layered architecture of fog computing

3.2.2 Why to Use Fog Computing Nodes

Fog computing nodes act as a bridge between smart objects, storage services, and large-scale cloud computing servers.

This model extends network resources and services to the underlying network [56], so it has the capability of providing end-users

with better delay performance services. Despite that, there is an important difference between the cloud and fog computing

paradigms, where the cloud has enormous computational, communication and storage capabilities compared with fog computing

[57], Figure 5 shows the roles of cloud computing and fog computing in the delivery of IoT services [58].

Connecting a massive number of smart objects to the internet such as smartphones, PCs, animals, and humans tracking,

creates what is called the “Big Data” term that needs high capabilities to be stored, processed and analyzed. Fog computing nodes

provide end-users with such abilities and are the best choice for many applications rather than farthest cloud computing for the

following reasons:

1. Edge location, low latency, location awareness: According to that, fog computing provides its clients with rich applications

and services with low latency requirements [57].

2. Geographical distribution: Applications and services that are hosted and processed by the fog nodes require widely

distributed deployment of these nodes closer to the end-user. Fog, for instance, plays an essential role in delivering quality

streaming to vehicles via access points and proxies that are positioned along tracks and highways.

3. Mobility supporting: It is common that fog applications communicate directly with mobile smart entities. Thus, fog

computing is able to support mobility standards such as locator identifier separation protocol [28] [59] [60].

4. Real-time interactions: It has the ability to implement real-time interaction services since it can give an instantaneous

response.

5. Dominance of wireless access.

6. Supporting online analytic and interaction with the cloud, as it plays a significant role in the ingestion and processing of

a massive amount of data that are received from close smart devices.

7. Scalability: Fog permits IoT environments to grow, so as the number of smart devices increased, as a result, the number

of fog nodes will be increased too to handle the new load. Such resource expansion cannot be achieved from the cloud

side since the deployment of new servers is highly cost.

8. On the fly analysis: Fog resources aggregate data to transmit it partially processed to the cloud servers for additional

processing.

9. Power constraints: Since most of the smart devices are battery-powered, long-distance communication toward the cloud

will deplete their energy faster.

Figure 5: The role of the cloud and fog computing in the delivery of IoT services

3.2.3 Cloud Computing Architecture

In the IoT model, communication and information systems are embedded in a smart environment that surrounds us. This

will lead to the generation of a massive amount of data that needs to be presented, processed and stored in an efficient, seamless and

easy interpreting manner. According to [12], cloud-computing technology is the latest paradigm that proves its efficiency,

scalability, autonomy, and reliability, as it provides high capabilities in dynamic resources discovery, ubiquitous access and

composability6, which are important for the prosperity of the future of IoT applications [49]. This platform plays several roles such

as a data receiver from smart devices, a computer that analyzes and interprets distinct types of data, and as a supplier of web-based

visualizations [61]. Many researchers try to construct a compatible architecture that can describe the function of the cloud computing

paradigm as shown in Figure 6. This model consists of three layers, which are; the base layer that includes a database to keep details

of all smart devices in the IoT network. The next layer is the component layer, which includes the codes that are required to interact

with all IoT entities and employ a subset of these entities to execute a service or to query their status, where the last layer in this

model is the application layer, which is in charge of providing users with the needed services [28].

6 Composability: A system design principle that deals with the inter-relations among components, highly composable system supplies components that can be
nominated and assembled in innumerable combinations to satisfy particular user requirements [252].

Base Layer

Component Layer

Application Layer

Figure 6: Cloud computing architecture

4. Spread-Spectrum Telecommunications Protocols
In 1941, spread spectrum communications technology was first described by Hollywood actress Hedy Lamarr and pianist

George Antheil as the following; to achieve a secure communication in any radio communication system, both transmitter and

receiver that are forming this system must be tuned to the same plurality of frequencies. According to their innovation, they were

granted U.S. patent #2.292.387.

In 1978, the federal communications commission in the USA assigned specific frequency bands for the systems that utilize

SS techniques in their communications, specifically these bands were devoted to Industrial, Scientific, and Medical (ISM)

applications. The great success of SS technologies comes from their reliability, immunity against jamming impacts, ability to

guarantee privacy and security, low sensitivity to signals interferences and low power exhaustion. SS techniques are implemented

in police and military applications to attain a high degree of security and privacy because the signal bandwidth is distributed over

enormous frequency ranges, which makes it impossible to track transmissions patterns [62]. It is worth stating that the SS techniques

enable numerous users to transmit their data at the same channel simultaneously since they use different spreading frequencies.

Figure 7 below describes the main characteristics of any spread spectrum system [63]. Firstly, the digital signal is fed into channel

encoder to be converted into analog form with a narrow bandwidth around a specific frequency. Then the digital signal will be

modulated with a concatenation of digits known as a spreading sequence or a spreading code that is produced by a pseudorandom

number or a Pseudo-Noise (PN) generator in order to increase the bandwidth of the transmitted signal [64]. On the other hand, the

received signal will be demodulated on the receiver’s side by the same spreading code, to be fed later on into a channel decoder to

retrieve the original data. The main pros of employing spreading spectrum techniques in communication systems are summarized

below:

1. The signal gains resistance against multipath distortion and different sorts of noise.

2. Spread spectrum techniques can be utilized for encrypting and hiding signals, where the recipient who knows the spreading

code can only recover the encrypted signal.

3. The communication channel can simultaneously be shared by multiple signals without any interference, which enables this

technique to be utilized in cellular applications.

 Pseudorandom numbers are generated by a deterministic algorithm that is fed by an initial value called a seed, so these

numbers are not considered to be random. The vital point is that unless you know both the seed and the algorithm, it is unpractical

to anticipate SS sequence. Thus, when the recipient gets pseudocode and algorithm from a transmitter, it will be possible to decode

the signal effectively. There are four types of SS techniques, which are:

 Direct Spread Spectrum.

 Frequency Hopping Spread Spectrum.

 Chirp Spread Spectrum.

 Time Hopping Spread Spectrum.

4.1 Direct-Sequence Spread Spectrum

In this technique, every bit in the original signal will be represented by numerous bits that compose the transmitted signal

using a spreading code [63]. In other words, every bit of the original signal will be multiplied by a sequence of n bits that is called

a chip, where its rate is equal to n times of the original signal bit rate [64]. The multiplied signal will be then spread across a wider

frequency band that is proportional to the chip’s PN, size as shown in Figure 8. One procedure of implementing the DSSS technique

is to combine the digital signal stream with spreading code bits sequence by utilizing an exclusive-or operation. The spread signal

can give security if the intruder does not know the spreading code; also, it can give immunity against signals interferences if each

user utilizes a distinctive spreading code.

Pseudonoise

generator

De-modulatorModulator Channel

Pseudonoise

generator

Channel

decoder

Channel

encoder

Output

signal

Input

signal

Figure 7: General model of SS digital communication system

 -1/Ʈ 0 1/Ʈ

 -1/Ʈc 0 1/Ʈc

 - (1/Ʈ + 1/Ʈc) 0 (1/Ʈ + 1/Ʈc)

(a) Spectrum of data signal

(b) Spectrum of pseudo-noise signal

(c) Spectrum of combined signal

Signal energy

Figure 8: Spectrum of DSSS

4.2 Frequency-Hopping Spread Spectrum

With this technique, the signal is broadcast over arbitrary series of radio frequencies jumping from frequency to another at

specific interims. The recipient also hops between the same frequencies in synchronization with the transmitter to retrieve the

original message as indicated in Figure 9 [63]. In FHSS method, channel bandwidth is partitioned into a large number of non-

overlapping frequencies slots, specifically 2𝑘 frequencies will form 2𝑘 channels (frequencies slots). In any signal interval, the

transmitted signal will occupy one or more of the accessible frequency slots using a PN generator. Spaces between the frequencies

of the signal and the width of each channel commonly correspond to the bandwidth of the input signal. The sender transmits through

one channel at a time for a specific period. For example, the IEEE 802.11 protocol utilizes a 300ms interim to transmit a number of

bits using a specific encoding technique. A spreading code determines the sequence of the utilized channels, where both the sender

and the recipient must utilize the same FHSS code in order to tune the sequence of channels in synchronization.

In the transmitter side, binary data pass into a modulator that converts it from a digital form to an analog form, this

modulator could be binary-phase-shift keying or Frequency Shift Keying (FSK). The converted signal will be then centered on a

specific frequency based on a pseudorandom number or a PN code that serves as an index for the table of frequencies as shown in

Table 2, where k bits of PN forms 2𝑘 frequencies and each k bits of PN refer to a specific frequency [65]. At each consecutive

interval, new k PN bits are generated in order to select a new carrier frequency that will be modulated with the signal to create a

new one with the same shape but centered on the selected frequency. In turn, the received signal will be demodulated with the same

sequence of pseudo-noise codes to derive the frequencies that are required to retrieve the original signal. For a data rate of ρ, the

time period needed to transmit one bit equal to Т= 1 ρ⁄ , while the required time to transmit any signal consists of (𝐿) bits is Т𝑠 =
𝐿Т. Furthermore, the needed time to change the frequency of a signal utilizing the FHSS technique is T𝑐, if T𝑐 equal or more than

Т𝑠then, the FHSS is considered to be a slow-FHSS, else it is known as a fast-FHSS. Typically using a large number of frequencies

in the FHSS technique will improve the resistance to signal jamming and interferences.

f1

f2

f3

f4

f5

f6

f7

f8

Frequency

1

2

3

4

5

6

7

8

Energy

1 3 5 2 7 4 8 6

f1 f2 f3 f4 f5 f6 f7 f8 Frequency Time

(a) Channel assignment (b) Channel use

Figure 9: Frequency-hopping example

Table 2: Frequency hopping values based on PN code indices

4.3 Chirp Spread Spectrum

This technique is considered to be a good modulation choice for wireless communication systems since it has many

capabilities, such as low power data transmission, strong rejection against signals interferences, and its simplicity to be implemented

[66]. Unlike DSSS or FHSS, which employ coding techniques in the spread spectrum of a data signal, CSS does not demand any

code in order to spread the spectrum. The frequency of a sinusoidal signal that is modulated via CSS is increased and decreased in

a specific time duration . It also uses a pulse compression method to decode the information.

CSS technique is classified into two types; which are Direct Modulation (DM) and Binary Orthogonal Keying (BOK) [67].

DM technique relies on using chirps when it performs spreading and dispreading processes in the signal, while the data is modulated

via a non-coherent modulation scheme, as it needs a digital modulator to send data. The second type of CSS, which is BOK, uses

two distinctive chirps with the same duration and bandwidth, but with opposite polarity, which are, up-chirp and down-chirp, based

on 0’s and 1’s bits. Both up and down chirps are used to represent data symbols, for instance, a bit ‘1’ is used to represent the

positive chirps while ‘0’ bit is used to represent the negative instantaneous frequency change. At the receiver side, there is a matched

filter to decode received signals [68].

 4.4 Time Hopping Spread Spectrum

This technique is based on splitting the signal transmission period into ‘N’ short time slots as shown in Figure 10, where

N=2𝑛7 [69] [70]. Through each frame, only a single time slot will be selected by the pseudorandom code generator to transmit a

modulated data packet. Once the signal reaches the receiver side, it will be passed through electronically controllable switch, to be

demodulated later on with the help of a bit synchronizer that is responsible for controlling the PN code generator to keep up

synchronization with the received signal. Finally, the processed signal will be sent out through the storage and relocked unit.

7 ‘n’ symbol represents the number of the transmitted bits per time slot in one frame.

K-bit Frequency

000 100 kHz

001 150 kHz

010 200 kHz

011 250 kHz

100 300 kHz

101 350 kHz

110 400 kHz

111 450 kHz

100 011 110 010 000 001 111 101

K-bit patterns

First hop frequency

One frame

Transmitted

bursts

t

Figure 10: Time hopping spread spectrum system

5. IoT Stack Protocols (Origin, Recent, Future Enhancements)

Communication protocols are the proper descriptions of transmission, design, and rules of any digital message [71]. These

protocols form the backbone of IoT networks as they enable them to be coupled and connected to smart services and applications.

In addition, they allow smart things and devices to exchange their sensed data through these networks. The major functions of

communication protocols are defining the following features; different addressing schemes of smart devices, transmitted data

formats, data encoding, flow control, retransmission of lost packets ways, and routing process of IoT packets from source nodes

toward destination nodes [27] [72].

 IoT field is widely and swiftly spreading, where it comprises of a massive number of heterogeneous smart objects and

power-constrained devices that are connected to IoT network with minimal storage and computing resources [73]. Based on that,

IoT communication protocols face many challenges that should be taken into consideration while designing an IoT application,

which are indicated as follows [74]:

 Identification and addressing: As billions of smart devices will be connected to the internet, each device must be

identified via a unique address that permits it to communicate with other objects. Based on that, a large addressing space

is required.

 Low power communication: Data exchanging process through devices is a power-consuming operation, especially in a

wireless medium. Hence, a solution that facilitates communication among smart things with minimal power consumption

is required.

 Routing protocol with minimum memory requirements and efficacious communication patterns.

 Non-Lossy and high-speed communication.

 The mobility of the smart objects.

Many classifications have been proposed to overcome the aforementioned challenges of IoT protocols. In this article, we

follow the well-known classification that refers to the OSI model to describe the original, recent and future enhancements of each

IoT layer protocols as given below:

5.1 Application Layer IoT Protocols

The application layer of IoT is in charge of determining suitable protocols and providing services that are required for

message passing at the application level. Many factors should be taken into consideration when selecting proper communication

protocol for a specific application, which are power consumption, required bandwidth, transfer and connection time, delivery

guarantee, data security, and packet size. The following sections discuss IoT application layer protocols along with their recent and

future enhancements, where Table 3 compares these protocols from different aspects and clarifies their advantages and

disadvantages.

5.1.1 Original Application Layer IoT Protocols

(1) Message Queue Telemetry Transport: It is a lightweight protocol that was developed by Andy Stanford-Clark and Arlen

Nipper in 1990. It enables the communication process between IoT devices and the network with middleware and applications

in many forms such as M2M, server to server and machine to the server, and it works over the top of Transmission Control

Protocol/Internet Protocol (TCP/IP) [75]. It supports also the communication over limited bandwidth and unreliable links. Hence,

MQTT is used for publishing and subscribing operations to exchange lightweight messages, with a packet size that does not

exceed 256MB, between clients and servers [76] [77]. Moreover, MQTT is suitable for operation in constrained devices with

limited power and processing capabilities.

(2) HyperText Transfer Protocol: It is a web messaging and text-based protocol that was designed by Tim Berners-Lee in 1997,

it also supports request/response Representational State Transfer Protocol (RESTful) functions, where the client transmits HTTP

request message to the server [78]. HTTP depends on TCP as a transport protocol and Transport Layer Security/ Secure Sockets

Layer (TLS/SSL) as a security protocol, which makes the communication between the server and the client connection-oriented.

However, IoT communication over HTTP protocol causes the consumption of network resources and serious overhead as it

requires transferring a lot of small packets [79].

(3) Extensible Messaging and Presence Protocol: It was developed by Homonym open source community in 1999 and was

standardized by the Internet Engineering Task Force (IETF). XMPP supports low latency communication and small message

transmission, which makes it suitable for many services such as video and voice calls, instant messaging, chats, publish-subscribe

systems, gaming, and IoT applications. This protocol permits communication among heterogeneous applications due to its

simplicity and flexibility. Nevertheless, it consumes the network bandwidth, needs high CPU capabilities, allows only the

transmission of simple data type and there is no guarantee on the QoS [80] [81].

(4) Representational State Transfer Protocol: REST protocol is a set of best practices, rules, and constraints, where it was

designed by Roy Fielding to provide web services that permit data exchange and communication among different devices and

to build distributed hypermedia systems and provide them with desirable features such as modifiability and scalability. RESTful

is based on HTTP protocol to support request-response and client-server models, which will allow the client to access server

resources on IoT environments. However, RESTful Application Programming Interfaces (APIs) are considered to be a good

choice for multiple IoT applications because they are lightweight and simple protocols [81] [82].

(5) Constrained Application Protocol: This protocol was proposed by IETF [83], to suit the communication among resource-

constrained and unsynchronized devices, provide flow control, reliable delivery, and simple congestion control for IoT

applications. It supports also the publish/subscribe communication model that is based on multicast and unicast requests. CoAP

runs over User Datagram Protocol (UDP) because of its simplicity, having a small message size and a low code footprint, to

manage resources, to reduce bandwidth requirements, and eliminate the cost of TCP handshake overhead before the beginning

of transmission [84]. However, this protocol has many shortcomings as it increases communication latency, packet delivery

corruption and it fails to transmit complex data [81].

(6) Advanced Message Queuing Protocol: It was developed by John O'Hara in 2003 to support a publish/subscribe architecture

based on an efficient and reliable messaging queue. AMQP is widely used in commercial and business fields, as it supports

reliable and secure communication between heterogeneous devices. Also, it runs over TCP protocol to guarantee more reliability.

The process of transmitting data over AMQP consists of two steps which are; message queue and exchange queue. In the message

queue model, the messages will be stored until they are transmitted to the receiver, while in exchange queue form the message

will be routed in a suitable order [85].

(7) Data Distribution Service: It was developed by Object Management Group (OMG) and run over TCP/UDP transport protocols

to achieve high performance, real-time, interoperable, scalable and dependable data communication based on publish/subscribe

model. DSS is based on Peer-to-Peer (P2P) and decentralized communication, by a data-bus to enable asynchronous data

transmission, which makes it a significant solution for IoT applications.

5.1.2 Recent Enhancements of Application Layer IoT Protocols

 Novel enhancements were applied on MQTT to launch MQTT v5.0, which has considerable amendments compared with the

previous versions as the following [86]:

 Allowing discovery functions: Inform the client with the maximum packet size and the maximum number of packets it can

transmit at the beginning of the connection.

 Better error reporting: Reason code has the responsibility of warning users if data is not transmitted successfully.

 Shared subscriptions: By distributing messages evenly among the receivers for the sake of load balancing purposes, when

the message rate of subscription is high.

 Message properties: Define packets' properties and features through metadata at the header of the message.

 Message expiry: It is an option to discard a message if it cannot be received within a predefined time.

 Session expiry: Terminate client session, if it cannot be connected after a period of time.

 Appropriate delay: Publish a message to the client, if it is disconnected more than predefined time. Also, notify clients

about disconnections of their applications.

 Topic alias: Representing messages topics by a single number, which will reduce message sizes.

 Designing RESTful IoT systems have many commonalities with other web applications, even though the primary characteristics

that should be considered when building these systems are:

 Interaction patterns, data formats and other approaches that avoid or reduce the need for human intervention.

 Preferring simple and compact data formats to ease the transmission and processing over constrained networks.

 However, many aspects of RESTful protocol need to be improved to enhance its capabilities as follows [87] :

 3-way commit, because of robust and unreliable communication in high packet loss networks.

 Sharing knowledge methods between system components, such as media types, well-known locations, uniform resource

identifiers schemes, and relation types.

 Further information on choosing what is modeled as a resource and how to select resources.

 The main objectives behind enhancing CoAP capabilities to run over TLS and TCP, are that some enterprise networks face

connectivity issues compelling them to block UDP packets, while the second target is to gain many desirable features of TCP

protocol such as [88]:

 Nating over TCP lasts for a long period compared with UDP, as it provides additional information regarding session

lifecycle. Thus, timeout binding for TCP is 386 minutes, while it does not exceed 160 seconds for UDP protocol. Generally,

the shorter timeout of UDP requires to transmit the keepalive messages more frequently compared with TCP protocol.

 TCP uses techniques for flow control and congestion control that are more advanced than those provided by UDP, which

allow CoAP to transmit larger payloads.

However, there are numerous hindrances of using CoAP over TCP, as it requires more round trips, large code and

packet sizes, and more RAM requirements.

 AMQP v2.5.0 has added a new platform to the previous version of the protocol, dropped Python 3.4, and fixed numerous bugs.

In addition to the above, the motivation behind launching a novel AMQP v.2.5.0 protocol is the need of scaling hundreds to

thousands of subscribers and publishers in a reliable and flexible manner [89].

 DDS protocol specifies the communication semantics (QoS and behavior) and APIs that permit robust and efficient data

transmission to the right place at the right time. Therefore, it is important to design the interfaces in a way that meet the above

requirements as follows [90]:

 Permitting the middleware to dynamic pre-allocate resources to be at the minimum.

 Evading features that require using of hard-to-predict or unbounded resources.

 Reducing the need for making copies of data.

5.1.3 Future Research Directions of Application Layer IoT Protocols

 HTTP protocol supports a wide range of internet services. A novel version (HTTP/3) is proposed to suit running over

Quick UDP Internet Connections (QUIC) protocol. QUIC tries to enhance HTTP performance by incorporating TLS v1.3

security procedure. HTTP/1.1 runs over TCP protocol and utilizes whitespace-delimited fields to transmit HTTP texts,

where multiple TCP connections are required since one HTTP response or request can be transferred at a time in each

direction. HTTP/2 presents a new layer multiplexing and binary framing layer in order to enhance network latency without

any modification in the transport layer. Nevertheless, the parallel multiplexing nature of HTTP/2 makes it prone to packet

reordering or loss. HTTP/3 is intended to support transporting over QUIC protocol and internal framing layer to benefit

from their features [91].

 XEP-0128 is a service discovery extension for XEP-0030 protocol which does not have an option that allows users to add

a service description attribute. Adding an additional attribute to service discovery schema does not solve this issue, so it is

better to include additional information that provides a method to resiliently specify data structured formats [92].

Table 3: Comparison between application layer IoT protocols

Protocol MQTT HTTP XMPP RESTful

Year 1999 1997 1999 2000

Standard OASIS8, Eclipse Foundations IETF, W3C9 (RFC 3920-RFC 3923)

RFC 4622, RFC 4854,
RFC 4979, RFC 6122

IETF

Latest

Version/year

MQTT version 5.0 (2018) [93] HTTP version 3.0 (2018) [91] XMPP v 1.0.1

XEP-0128 (2019) [92]

RESTFUL (2018) [87]

UDP/TCP TCP TCP TCP TCP

Architecture Publish/Subscribe Request/Response Publish/Subscribe

Request/Response

Request/Response

Semantics/

Methods

Connect, Disconnect, Publish, Subscribe,

Unsubscribe, Close

Get, Post, Head, Put, Patch,

Options, Connect, Delete

Get, Post, Put, Set, Result Post, Put, Delete, Get

Security TLS/SSL TLS/SSL TLS/SASL10 TLS/SSL

QoS options Yes Limited No Yes

Caching Yes Yes Yes API calls can be cached

Performance Needs low power requirements High latency Traffic overhead Requires fewer resources

Message format Plain-text Plain-text, Textual information
encoded in ASCII

Chatting, message exchanging. Plain-text , XML11, HTML
YAML12, JSON

Merits Suitable for resource-constrained

devices

 Suitable for high latency and low

bandwidth networks

 Simplicity

 Very small message header

 Persistent connections

 Request pipelining

 Chunked transfer encoding

 High interpretability on the
web

 Decentralization can be run

by anyone on any server and
there is no central master

server

 Open standards
Flexibility (Custom

functionality can be built on

top of XMPP)

 Scalability

 Easy implementation and
interaction

 Browser-friendliness

 Flexibility

 Independence of
programming language and

platforms

Demerits It does not support encryption

 Needs more efforts in security

 Requires high power and
resources

 Increases communication
latency

 Consumes network
bandwidth

 Does not include reliability

 Does not support QoS

 High network overhead

 In-band binary data transfer is
limited

 Less security

 Not suitable for distributed

environments

References [75] [76] [77] [94] [95] [96] [78] [79] [81] [92] [35] [81] [82] [97] [98] [99]

Table 3: Comparison between application layer IoT protocols (Cont.)

Protocol AMQP DDS CoAP

Year 2003 2001 2010

8 OASIS: Organization for the Advancement of Structured Information Standards
9 W3C: World Wide Web Consortium
10 SASL: Simple Authentication and Security Layer
11 XML: Extensible Markup Language
12 YAML: Yet Another Markup Language

Standard
OASIS, ISO/IEC13 OMG IETF, Eclipse Foundation

Latest Version/year AMQP v 2.5.0 (2019) [89] DDS v.1.4 (2015) [90] RFC 8323 (2018) [88]

UDP/TCP TCP TCP/UDP UDP

Architecture Publish/Subscribe Publish/Subscribe
Request/Response

Publish/Subscribe

Semantics/

Methods

Consume, Deliver, Publish, Get, Select, Ack,

Delete, Nack, Recover, Reject, Open, Close

Write, Read, Take, Dispose, Wait Post, Put, Delete, Get CON(Confirmable),

NON (non-confirmable), ACK

(Acknowledgement), RST (reset)

Security
TLS/SSL, IPSec14, SASL TLS/ DTLS DTLS15, IPSec

QoS options Yes Yes QoS by 4 types of messages: Confirmable,

Non-Confirmable,

Acknowledge, Reset

Caching Yes Yes Yes

Performance Efficient in the environment that does not have
any restriction in network bandwidth, power,

latency, and processing capabilities

Efficient in the application that requires
low latency and high bandwidth

Sufficient for constrained environment and
networks

Message format Binary encoded ASCII characters, Binary encoded Binary encoded

Merits Scalable

 Supports the communication between
heterogeneous devices

 Supports reliability, security, and performance

 Supports durability, security, and

priority QoS standards

 Achieves high performance, real-

time, interoperable, scalable and
dependable data communication

 Reliability

 Retransmitting lost packets

 Multicast support

 Resources monitoring

 Low overhead

 Simplicity for constrained environments

Demerits It is not suitable for real-time and resource-
constrained environments

 It does not support automation discovery

procedure

 Heavy protocol as it requires memory and

power resources

 Consumes high bandwidth Multicast communications are less secure,
as there are no suitable key management

procedures

 An end to end security is not supported

 It does not contain built-in security

characteristics

References [35] [84] [85] [94] [100] [35] [94] [101] [35] [83] [84] [94] [100] [102]

5.2 Transport Layer IoT Protocols

This layer is also known as routing layer since it is responsible for routing data packets through the network area, where

its protocols are in charge of ordering packets, error detection, and correction [103]. The following sections describe the main

transport protocols that are utilized in IoT environments with their enhancements and future works, where Table 4 provides a

comparison among these protocols from different characteristics.

5.2.1 Original Transport Layer IoT Protocols:

(1) Transmission Control Protocol (TCP): It is a heavyweight and connection-oriented protocol, which means that the connection

must be established until all the required data have finished exchanged between each end device. This makes TCP suitable for

reliable communications, as it needs acknowledgment message to guarantee each sending and receiving process, supports

retransmission of lost or corrupted packets and provides a flow-control mechanism. Consequently, the packet overhead will be

very large in this protocol, which will lead to more power consumption from devices and hence, making it not suitable to operate

in power-constrained devices. TCP breaks down the data packet into multiple packets, where each packet has an ordering number

with source and destination IPs [104].

(2) User Datagram Protocol (UDP): It is a connectionless protocol that aims to provide unreliable, minimal message queueing,

message passing and best-effort transport to protocols and applications which operate over IP. There is no need to establish end

to end connection between the communicating entities, which in turn will offer a very efficient communication for some

applications that require real-time performance with low latency such as video and voice [105]. Moreover, there is no guarantee

on data packets ordering, duplicate, delivery or protection. On the other hand, UDP provides a port number attribute to address

functions of source and destination, as well it provides a checksum for data integrity.

(3) Datagram Congestion Control Protocol (DCCP): It provides unicast bidirectional connections of unreliable dynamic

congestion-controlled datagram. These features make DCCP suitable for the applications that transmit massive amounts of data

and the applications that tradeoff between reliability and timeliness, such as Voice over Internet Protocol (VoIP) and media

streaming [106]. The flow rate in DCCP can be adjusted gradually since it is unreliable and lacks a receiving window [107].

(4) Stream Control Transmission Protocol (SCTP): It is a connectionless, message-oriented and IP transport layer protocol like

UDP that was designed and launched in 2007 by Stewart [108].On the other hand, SCTP provides connection-oriented P2P,

reliable transmitting for the applications that are communicating over an IP. Thus, it inherits most of the TCP features including

the recovery of the lost packets and congestion control [109].

(5) Transport Layer Security: It runs on the top of many transport layer protocols, as it was designed to provide secure channels

among the communicating peers and to provide authentication, data confidentiality, data integrity and encryption to the

13 ISO/IEC: International Organization for Standardization/International Electrotechnical Commission
14 IPSec: Internet Protocol Security
15 DTLS: Datagram Transport Layer Security

applications, by preventing eavesdropping, message forgery, and tampering. It consists of two components, where the first

component is the handshaking protocol that has the responsibility of authenticating the communication ends, agreeing on shared

keys and negotiating the cryptographic parameters and modes, where the second component is the record protocol that splits the

traffic into many records and protects them by utilizing the traffic keys [110] [111].

(6) Datagram Transport Layer Security: It was designed to provide security for datagram applications that do not require or

provide in-order or reliable data delivery such as datagram online gaming, internet telephony and media streaming, which are

considered to be delay-sensitive applications. DTLS is an extension of TLS protocol, where it provides the same security

functionalities but for data stream transmission by preventing message forgery, tampering, and eavesdropping. Thus, it should

deal with and solve many datagram issues, such as loss of datagram packets, packet reordering and delay [112].

(7) Resource Reservation Protocol (RSVP): It is multicast and unicast control transmission protocol that was designed to provide

flexible, robust, scalable and heterogeneous resources reservation setup at each router for data stream transmission. RSVP

organizes message formats, hosts and routers mechanisms, also it can operate over IPv4 or IPv6 [113]. It also supports many

functionalities such as resource reservations in each node along the data path, multipoint to multipoint communication paradigm,

cache (state) management routers and receiver-initiated reservation [114] [115].

(8) Quick UDP Internet Connections: It is a general-purpose, secure and multiplexed transport protocol. Quick was built on the

top of UDP protocol by google to provide reliability, security, multiplexing, flow control per-stream, congestion control per

connection, low latency for data stream transmission, and connection migration to NAT rebinding [116]. This protocol aims to

improve the performance of connection applications, which are based on TCP protocol through established multiplexed

connections over UDP [117].

(9) Aeron: It is an open-source connection-oriented communication protocol that was proposed by Martin Thompson to run over

unreliable media such as InfiniBand and UDP, as well to provide in order transmission with optional reliability through

retransmission of dropped packets. Aeron tries to provide the highest throughput with the lowest latency, which makes it ideal

for the communication of real-time applications, VoIP, fast-paced networked multiplayer games, video streaming, and high-

frequency financial trading. However, implementing this protocol by java language will reflect on reducing resource

requirements such as memory and CPU [118] [119].

5.2.2 Recent Enhancements of Transport Layer IoT Protocols

 TLS v1.3 has improved the major specifications of the original protocol (TLS) as the following [120] :

 New encryption techniques were proposed and work only with the newest versions of TLS.

 A zero round trip mode was proposed, so the data transfer session cannot be started until the handshaking process is

completed.

 After receiving the ServerHello packet all of the handshaking messages have to be encrypted.

 The handshake state machine was reconstructed to eliminate unnecessary messages and to be more consistent.

 Prevent renegotiation when the connection in TLS v1.3 has been established.

 Using RSA16 probabilistic signature scheme instead of RSA padding, besides removing DH crypto groups and digital

signature algorithms.

 RSVP protocol was proposed to transform unidirectional Label Switch Path (LSP) connection into a bidirectional connection,

either by single-sided or by double-sided method, by following the same path. RSVP-Extended (RFC 8537) amends single-

sided and double-sided methods to support fast reroute and co-routed procedures. Fast reroute methods make sure that the traffic

of LSP flows smoothly via co-routed paths in both directions after it transmits through the fast route. However, to implement

RFC 8537 standard successfully, all the nodes on the LSP path should support this protocol [121].

5.2.3 Future Research Directions of Transport Layer IoT Protocols

 TCP is a significant transport protocol that has been continuously improved since 1981. Over this time, many piecemeal changes

have been done to suit tremendous numbers of internet applications and to fix many errors and hindrances in many aspects such

as performance and security. TCP provides byte stream service, in-order and reliable delivery of data segments over the network

as IP datagram. Achieving data reliability is done by detecting packets errors through segment checksum, or detecting packet

loses through sequence number. Also, it supports a connection-oriented unicast or anycast transmissions. Many issues should

be considered to be solved in the future, such as IP security precedence and compartment, validation of sequence number, Nagle

algorithm (small packets buffering) modification and low watermark function usage.

 Many transport protocols extend their capabilities by dedicating an area for header options, which will adapt the protocol to be

used in particular environments or in unexpected conditions that have not been seen by the developers. UDP is one of the

popular transport layer protocols that lack this feature. Thus, UDP-Options-07 comes to extend UDP header to locate a trailer

space for options after the data payload field [122].

 Transmission over SCTP has faced many issues and hindrances from the first launching till now. RFC 8540 presented the

improvements that have been made to handle these issues, such as path error, counter threshold, shutdown request of the upper-

layer protocols, new chunk types registration, detection of endpoint failure, identifying the rules of data transmission,

miscellaneous typos, etc [123].

16 RSA: Ron Rivest, Adi Shamir and Leonard Adleman

 Communication through DCCP is currently limited on one path per connection, even though multipath connection only exists

among peers. Improves DCCP capabilities to support the use of simultaneous multipath communications, will reflect positively

on enhancing network resources usage through applying load balancing techniques, providing flexibility to face the network

failure and improving the network throughput [124].

 DTLS v1.3 has been evolved to allow a secure client/server communication over the internet by implementing the following

[125]:

 A new handshaking form has to be proposed to support short message exchange.

 Legacy and weaker cryptographic algorithms ought to be removed.

 Supporting authenticated encryption with associated data ciphers.

 Encrypting sequence numbers.

 Adding connection ID functionality.

 Optimizing sizing and encoding of the record layer.

 Providing elastic cryptography method negotiation.

 Redefining a new method for phase-shift keying authentication.

 Proposing a new session resumption procedure.

 QUIC v.1 is an enhanced version of QUIC protocol that aims to be utilized over UDP, which will evade the need to change the

middleboxes and the operating systems of clients by applying data encryption and headers authentication techniques [126].

Table 4: Comparison between transport layer protocols considering different aspects

 Protocols DTLS RSVP QUIC Aeron

Standard RFC4347 RFC 2205 gQUIC Aeron

Latest version of

protocol\ Year

DTLS v.1.3 (2019) [125] RFC 8537 (2019) [121] QUIC v.1 (2019) [126] *

Flow control * Yes Yes Yes

Congestion control * Yes Yes Yes

Packet size 224-1 bytes (handshake message) 16 bits header 2- and 19-bytes header for wire
connection

32 bytes

Transport packet

entity

 Datagram Datagram QUIC packet Frame

Error detection Yes Yes Yes Yes

Reordering and

sequence

numbering

Yes Yes Yes Yes

Reliability Yes Yes Yes Yes

Port Numbering * Yes Yes *

Merits Provides security for datagram

transmission

 Provides reliability for handshake

 uses retransmission timer to reduce
the probability of packet loss

 Queues unordered messages

 Data Integrity

 Error reporting

 Permits multicast

communications among
heterogeneous devices

 QoS routing can be deployed
separately from data

 Built-in performance and

security, as it has many

security functions such as

encryption and authentication

 Processing many requests and
transmission concurrently with

one handshaking

 Low packet loss

 Minimize bandwidth
consumption

 Tries to attain high

throughput with low

latency for both unicast

and multicast

communications

 Affords reliable

multicast operation

 Provides different QoS

degree based on data

stream type

Demerits Cannot provide protection for

SCTP control chunks

 DTLS over SCTP is slower

 When the collision occurs, DTLS
will process only the packets from

the first source and discards the
others

 Requires a lot of work on the

router's side to manage resources
reservations

 Puts heavy processing load on
routers especially in a heavy

traffic case, which will degrade

their performance

 Soft state requires many

refreshments

 Scalability issue

 Performance problem of the

data transmitting and receiving

 Information exposure when

using long header

This protocol on its

infancy stages

References [112] [127] [128] [114] [129] [130] [131] [117] [116] [132] [133] [118] [119] [134]

Table 4: Comparison between transport layer protocols considering different aspects (Cont.)

Protocols TCP UDP DCCP SCTP TLS

Standard RFC793 RFC768 RFC4340 RFC4960 TLS 1.0 (RFC2246)

Latest version of

protocol\ Year

RFC793bis-14 (2019) [135] Transport Options for

UDP (2019) [122]

Multipath DCCP (2019)

[124]

RFC8540 (2019) [123]

TLS v1.3 (RFC8446)

(2018) [120]

Flow control Yes No No Yes *

Congestion control Yes No Yes Yes *

Packet size 20-40 bytes header

8-bytes header 12 or 16-bytes header 12-bytes header 5-byte header

Transport packet

entity

Segment Datagram Datagram Datagram Runs over Segment

Error detection Yes No Yes Yes Yes

Reordering and

sequence

numbering

Yes No Yes/No yes Yes, by MAC

Reliability Yes No No Yes Yes

Port numbering Yes Yes Yes Yes Yes

Merits Supports most of the
applications that run over

the internet

 Improves the

performance and
robustness of varying

quality and capacity

networks

 There is no
guarantee on

packets delivery

 Packets may arrive

out of order

 No flow-control

 High packet loss

 There is no startup

latency

 Eliminates the delay
that can occur when

waiting packets arrive
out of order

 Supports various
delivery modes such as

strict, partial and

unordered delivery

 Multi-homing support

as it can send a message

to the same destination,
but it can reroute it to

another IP, if the

previous IP is
unreachable

 Enables congestion
control techniques

 Provides flexibility for
VoIP applications that

need reliable message
data transmission

 Supports Multihoming
method

 Supports additional

security features,
which minimize denial

of service attacks

 Prevent tampering by
intruders

 Prohibit passively
listening by attackers

Demerits It is not suitable for real-

time and synchronous

applications

 It gives strict order of the
data that is delivered

between hosts

 It cannot continue a
transmission if a specific

sequenced packet has not
been received and

acknowledged yet

 All broadcast and

multicast

transmissions are

unreliable in UDP

 Retransmission is
required when there

is a corrupted data

 Unreliable transport

protocol, which affects

visual quality of the

video streaming and

QoS performance

 It lacks receiving

window

 Network address

translation problem

when using multi-

homing function

 Dynamic IP
addressing issue,

especially in multi-
homing function

 The transmission
process of the line will

be blocked until the

head of the stream is
received and

acknowledged

 Adding more latency

 Handshaking process

consumes resources

 Complicates the
configuration

managements

References [109] [136] [137] [107] [138] [109] [136] [139] [140]

[141]

[110] [142] [143]

5.3 Network Layer IoT Protocols

This layer has the responsibility of forming, addressing and routing data packets, as it receives the datagram packets from

the transport layer and transfers them into data packets form to be then transmitted to the destination side. The following subsections

discuss the common routing protocols that are broadly utilized in data packets transmission along with their future improvements,

where Table 5 compares these protocols from distinctive aspects.

5.3.1 Original Network Layer IoT Protocols

(1) Routing Protocol for Low-Power and Lossy Network (RPL): It is a tree-based, IPv6 proactive, distance vector routing

protocol that was designed by routing-over-low-power-and-lossy-networks working group in 2012 to run over lossy and low

power commercial appliances networks, where their interconnections are characterized by instability, low data rates, and high

loss rates [144]. RPL structs the network topology into Destination Oriented Graph (DAG) that consists of Destination-Oriented

Directed Acyclic Graph (DODAG). Every DODAG represents a routing tree that is constructed by a root (sink) node. To create

optimal routes of DODAG, RPL utilizes an Objective Function (OF), which is calculated based on routing metrics [145]. The

first step of creating DODAG begins by transmitting the DODAG Information Object (DIO) message, which consists of node

rank, OF, mode of operation and metric, by the root node to all other neighbors. Consequently, nodes that receive DIO messages

will decide to join DODAG or not based on OF. The joining nodes will compute their rank, determine the upward route toward

the root node, opt their preferred parents and refresh their neighbor tables. If the node sends a DIO message it will become a

router, else it will be a leaf [146] [147] [148] [149].

(2) Cognitive Routing Protocol for Low-Power and Lossy Network (CORPL): It is an extension of the RPL protocol, where it

was designed to suit cognitive network and is based on DODAG topology in routing generation with novel modifications.

CORPL uses an opportunistic forwarding mechanism allowing it to select the optimal forwarder from a set of eligible neighbors

to be the next hop for data transmission. In this approach, each node maintains a set of forwarders instead of one parent and

updates its set based on the receiving DIO messages [150].

(3) Channel-Aware Routing Protocol (CARP): It is a distributed protocol that was designed for underwater and IoT applications

because of its lightweight data packet. CARP considers link quality to opt the forwarder nodes, according to the successful data

transmission that occurred by neighboring sensors. The routing operation of CARP consists of network initialization step and

data forwarding step. In the first step, the sink node broadcasts hello messages containing its ID along with the hop count to

enable the receiving node from updating its distance toward the sink node. In the data transmission step, the sender broadcasts a

ping message to its neighbors to choose the optimal relaying node based on the link quality and the information that it receives

from pong messages by them, in order to forward data through the optimal node [151].

(4) Collection Tree Protocol (CTP): It is a tree-based routing protocol that was designed to provide the best effort for anycast

communication in low energy demands networks. In the beginning, some nodes advertise themselves as root nodes (sink nodes),

where data is delivered to the root with minimum cost. Other nodes will connect to the root tree through beacon advertisements,

then send their collected data to the next hop toward the sink node based on the minimum Expected Transmission Count (ETX)

cost of their neighbors. However, CTP does not support reverse routing from the sink node to sensors [152] [153].

(5) Lightweight On-Demand Ad Hoc Distance-Vector Routing Protocol-Next Generation LOADng: It is a lightweight

distance-vector and reactive protocol that is derived from On-demand Distance vector (AODV) protocol to enable secure,

scalable and efficient routing in lossy and low power networks. As a reactive protocol, there is no routing table for the routes to

all destinations. Thus, LOADng generates on-demand route requests to discover a path to the destination node, when there is

generated data required to be sent, until receiving unicast reply hop by hop from the destination node back to the sender node. If

broken is detected in the route, then attempts to repair is applied or an error message will be directed to the requested node [154].

(6) An Efficient Routing Protocol for Emergency Response Internet (ERGID): It aims to provide reliable data transmission and

efficient emergency response for IoT applications. ERGID selects the optimal route toward destination considering global

latency estimation and the residual energy of the candidate route nodes. The first procedure is called delay iterative method, and

it tries to alleviate the problem of disregarding valid routes, update routing tables periodically and ensure real-time

communication for the emergency-response-applications. Whereas, the second procedure is called residual energy probability

choice [148] [155].

(7) Parent Aware Objective Function (PAOF): It is an objective function proactive protocol that tries to achieve load balancing

by employing parent count and ETX metrics in route selection for data transmission. To select the desired route, PAOF first

computes the difference between the ETX of the candidate nodes, in case if it is smaller than predefined value called

MinHopRankIncrease17, then it will compare between the parents count and consequently select the least value as the preferable

route [148] [156].

(8) Geographic Routing Approach for The Ipv6-Enabled Large-Scale Low-Power and Lossy Networks (GeoRank): It is a

hybrid approach that integrates the rank-based behavior of RPL protocol with geometric-based behavior of greedy other adaptive

face routing protocol, to be implemented in large-scale networks that have a non-uniform link density, in order to enhance P2P

communication over 6LowPAN and to minimize the number of control packets. In this protocol, each node in the network area

is declared by its position and must be aware of other nodes' positions. Initially, GeoRank computes the distance between the

source node and the destination according to the list of DODAG root, to choose the anchor root that gains the lowest absolute

angle difference between the source and destination path. Then, the protocol tries to forward the data to the neighbor that is

located one hop from the destination based on a greedy forwarding algorithm. If there is no node achieves this condition, then

GeoRank mode will be applied to forward the data to the preferred parent in the path to be sent then to the anchor node until it

reaches its destination. The proposed algorithm is only applied for down routes, where RPL is performed to discover and reach

upward routes [148] [157].

(9) Ad-Hoc On-Demand Multipath Distance Vector for IoT (AOMDV-IoT): It aims to discover and create a connection among

nodes and the internet. AOMDV-IoT creates two routing tables for each node, which are Internet Connecting Table (ICT) and

routing table. Also, it transforms IP address into Internet Linking Address (ILA). Once a node requests to be connected to the

internet, the required IP will be converted into ILA in order to facilitate searching through ICT, which provides the source node

with a suitable internet node. In case, if there is no internet node in ICT, then the source node will broadcast a requested packet

to update both tables until it finds the optimal route toward an internet node [158].

5.3.2 Recent Enhancements of Network Layer IoT Protocols

 RPL routing protocol is not applicable for Mobile Nodes (MNs) of dynamic networks, as it cannot deal efficiently with MNs

disconnections, data losses, routes reliability and real-time applications. Applying mobility detection using RPL is based on the

absence/reception of DIO messages and that means more control overhead, which will consequently lead to more delay, more

power consumption, more collisions, and data losses. Energy and Mobility Aware Routing protocol (EMA-RPL) was proposed

by Bouaziz et al to deal with the aforementioned issues of real-time IoT applications, wherein the data is transmitted via MNs.

In EMA-RPL protocol MNs must join the DODAG tree by choosing the Preferred Parent (PP) depending on specific OF, while

static nodes are connected to PP using a proactive process. This will reflect on reducing or avoiding the data loss and the

disconnection time during the network recovery process. To avoid route interruption, EMA-RPL excludes MNs from the route

path selection and prevents them from sending periodic DIO messages to preserve their energy. A new node role is proposed

by EMA-RPL protocol to preserve network resources and to achieve load balancing among nodes, called Associated Node

(AN) to be connected with MN. AN is in charge of detecting any movement of a MN using the Received Signal Strength

Indicator (RSSI), data transmission from or to the MN and looking for a new AN for the MN. Future refinements are required

because using RSSI in the prediction process is not efficient especially in the presence of obstacles or in closed environments

[159].

 Zhou et al proposed an enhanced version of CARP (E-CARP) protocol, which aims to provide an efficient energy routing

protocol in the underwater wireless sensor networks. To achieve this end, E-CARP employs many techniques as follows:

 Instead of transmitting the sensed data toward the sink node by the same sensor each timepoint, E-CARP just permits

caching the received data to reuse it by the sink when needed. Precisely, if the bias in data is within a certain range, the

sensor node transmits only small (INFORM) control packets rather than large data packets, which consequently improves

the network capacity and reduces the energy consumption.

 There is no need to periodically select a relay node for each source node if the network topology is stable, this will improve

the network lifetime by reducing the number of control overheads.

17 MinHopRankIncrease: It is a parameter defined in the DIO control message of RPL protocol [144].

However, E-CARP distinguishes and prioritizes data based on its importance, as the data with the high priority should

firstly be routed to the base station. Moreover, sensed data may change based on temporal or/and spatial discipline. The sensed

data that are gathered at earlier time points by some nodes might be used in some applications, instead of fetching instantaneous

data [160].

 Extend Collection Tree Protocol (XCTP) was proposed as an extension of CTP. CTP maintains a routing tree that affords paths

in one direction from sensor nodes toward root (base station) node only, while XCTP solves this issue through allowing

communication in both ways from node to root and root to node requiring low overhead and few memory storages. Finding

routes to the reverse path (from root to nodes) requires transmitting acknowledgment packets and feedback commands to

guarantee reliable data delivery [152].

 Expected Life Time of Energy-Aware Parent Routing (ELT-EAPR) protocol tries to select the optimal route to the base station

node based on parent event rate and residual energy through utilizing a sigmoid neural network predictor, which will enhance

the network lifetime [161].

 LOADng protocol requires many enhancements as it faces many issues such as determining all the nodes that are responsible

for providing internet connections to other network nodes, also the creation of the on-demand routes leads to a massive number

of control overheads. As a result, LOADng-IoT protocol tries to improve the route discovery process, enhance the network QoS,

and minimize the number of control overheads by employing the following amendments [162]:

 Finding Internet Connected Nodes (INs) without any prior knowledge of their addresses in the local network, by

broadcasting a special RREQ-IoT, so any intermediate node knows an IN will send unicast RREP message to the originator

node. However, the prior knowledge of INs causes several issues such as the INs can be overloaded by the messages from

other network nodes, network nodes may be configured in long paths toward INs, and packets may be lost if INs are

disconnected from the internet.

 Internet route cache is responsible for storing information about the routes toward INs, which will reduce both delay time

and control overhead packets. It is worth mentioning that this procedure is optional and based on device capabilities.

 A novel error code to evade the loss of data by informing the other nodes about any internet connection loss, which will

allow them to find a new IN they can relay their data through in order to increase the successful delivery ratio.

Table 5: Comparison between network layer protocols considering distinctive aspects

Protocol RPL CORPL CARP CTP LOADng

Standard RFC6550 * * * *

Recent protocol (year) EM-ARPL (2019) [159] [163]/ 2019 E-CARP (2015)

[160]

XCTP (2016) [152] LOADng-IoT (2019) [162]

Network topology Mesh, hierarchical based on

DAG

Cognitive M2M

networks, mesh

* Tree-based topology,

Mesh

Grid

Scalability Yes Yes Yes Yes, by beacon

message

Yes

Applications Building automation, home,

industrial, Smart Grid, Smart

Cities

Smart grid Underwater WSNs

applications

Commercial products,

industrial WSNs,

teaching, research

Home applications, industrial

applications

Routing metrics Bandwidth, reliability, hop
count, number of

transmissions, connectivity,

link quality

Expected Transmission
(ETX) value, reliability,

collision risk, delay

End-to-end packet
latency, energy

consumption per

bit, buffer spaces,
packet delivery

ratio

ETX Hop-count

Multi-hop routing Yes Yes Yes Yes Yes

Consider link quality No Yes Yes Yes Yes

Traffic flows MP2P18, P2MP19 or P2P MP2P, P2P, P2MP MP2P, P2MP, P2P MP2P, P2MP P2P

Algorithm Distance vector Distance vector Link state Distance vector Distance vector

Data rates Low data rates Low data rate low data rate Low traffic rates

Mobility of Network No No Supported Yes Yes

Proactive 20 or Reactive
21

Proactive Proactive Reactive Both Reactive

Security Not supported Not supported Not supported Not supported It uses integrity check value,
timestamp

Buffering Limited buffer size Yes Yes Yes Limited buffer size

Latency High latency Supports the delay of

sensitive applications

Low latency High latency High latency

Simulation tool Contiki/Cooja Cooja Real-Time Test-

bed, NS2

nesC C, Java, C++,

TOSSIM

NS2, Tmote Sk, Cooja

OS to implement a

protocol

Contiki, LiteOS, TinyOS, T-

Kernel, EyeOS, RIOT

Contiki OS SUNSET TinyOS, Mantis OS,

Sun SPOTs, Contiki
OS, Linux/Click

Linux kernel, Contiki

18 MP2P: Multipoint-to-Point communication
19 P2MP: Point-to-Multipoint communication
20proactive protocol: Each node builds its routing table based on the entire topology of the network, and updates it regularly to get up-to-date routing paths to other

nodes.
21 Reactive protocol: The routes are created when source node wants to communicate with a destination, it recalls route discovery technique to look for a path
toward destination.

Merits Supports routing in limited
resources environments

 Supports storing and non-
storing mode to reduce

memory requirements

 Avoids loops

 Achieves good packet
delivery ratio

 Minimum collisions

 Improves the

performance in
spectrum sensing state

 Considers
residual energy,

link quality and

buffer space

when choosing

relaying node

 Achieves high
delivery data ratio

when transmitting

from sensors to sink

node

 Generates control traffic to
construct a route, when

there is data transmission

only

 Finds a bi-directional path

for any destination in the
network

Demerits Susceptible to high packet
loss due to congestions

 High delay

 Susceptible to attacks as it

does not support end-to-
end encryption

 Floods the network with

control over had packets

 Takes a long time for
DAG convergence in

high node density

networks

 Retransmissions of

duplicate data packets

 No security

 No reusability of

previously
collected data

 Control packets
increase

communication

cost, which will
consequently

increase the

consumed
energy of the

network

 Adaptive beacons
consume more

bandwidth and

energy

 Does not support

routing from sink
toward sensors

 There is no
guarantee on data

delivery

 Routing changes
could lead to loops

 Prone to data packets loss
due to collisions

 There is no policy to
protect the network

confidentiality

 Data transmissions
consume a lot of energy,

which will reduce the
lifetime of nodes

 Route discovery delay

 It does not consider the
constraints of the nodes,

which will reduce the
network's lifetime.

References [144] [148] [164] [165] [166]

[167]

[168] [169] [170] [151] [171] [172] [173] [174] [175] [176] [177]

Table 5: Comparison between network layer protocols considering distinctive aspects (Cont.)

Protocol ERGID PAOF GeoRank AOMDV-IoT

Standard * * *

Recent protocol (year) * ELT-EAPR (2018) [161] * EAOMDV (2018) [178]

Network topology Mesh, hierarchical based on
DAG

Mesh, hierarchical based on
DAG

Geographical greedy networks Dynamic IoT network

Scalability Yes Yes Yes Yes

Applications Emergency response

applications

* Smart street lights application and

urban IoT applications

Mobile IoT applications

Routing metrics Residual energy, transmission
delay

ETX, the number of candidate
parents

Distance from node to root (rank) Lifetime hop count

Multi-hop routing Yes Yes Yes Yes

Consider link quality No No No No

Traffic flows MP2P, P2P, P2MP MP2P, P2P, P2MP P2P P2P, P2MP

Algorithm Dijkstra algorithm Distance vector Distance vector, greedy-

forwarding

Distance vector

Data rates High * Low data rate

Mobility of Network No No Yes, but restricting the mobility

of node to be one hop from the

static node

Yes

Proactive or Reactive Proactive Proactive Reactive Reactive

Security No No No No

Buffering Yes Limited buffer size Yes Yes

Latency Low latency Low latency * Low latency

Simulation tool NS2 Cooja Simulation supports the

implementation of open street
map data set

NS2

OS to implement

protocol

Linux Contiki OS * Linux

Merits Achieves load balancing

among routes

 Minimizes delay, packet
loss, and energy

consumption

 Achieves load balancing

among routes

 Reduces end to end delay

 Minimizes collision rates

 Increases network lifetime

 Reduces control overhead in

P2P communication

 Improves scalability routing
performance

 Reduces memory utilization

 Adaptive protocol that supports

varying link densities

 Avoids using DAO control

messages

 Decreases end to end delay

 Reduces packet loss rate

Demerits On large scale networks,
energy consumption is not

validated

 High transmission rate will

increase network
congestion, which will lead

to the increase of data loss

rate

 Uses a high number of

control overheads

 Requires a frequent update

of routing tables

 It does not consider parents
node energy

 Large number of control
packets

 It suits static network or
requires embedding GPS into

mobile nodes that should be
one hop away from static nodes

 In data routing, there is no
security technique applied

 Requires more memory size to
maintain ICT

 It does not consider the
residual energy of the node in

selecting data route

 It chooses the path with

minimum hop count, but it may

not be an optimal path

 High latency and failure data

delivery when link failure, as it
stores information of one route

only

References [148] [155] [179] [148] [156] [179] [148] [157] [179] [158] [180]

5.4 Data Link Layer IoT Protocols

This section handles the most popular IoT protocols in the data link layer and gives a brief description of their main

specifications and future improvements as displayed in Figure 11, whereas Table 6 compares between them from different features.

5.4.1 Original Data Link Layer IoT Protocols

 NFC protocol: The range of this protocol is very short, so mobile objects that utilize it can communicate with each other

over a few centimeters. All varieties of data can be transmitted in seconds between NFC devices if they are very close to

each other. This protocol depends on RFID, as it utilizes the alteration in the magnetic field to allow devices to

communicate with each other. NFC devices can operate in two modes, active and passive. In the active mode, all the

communicating devices should create magnetic fields, wherein the passive mode one of these devices creates a magnetic

field and the others utilize load modulation to transmit their data. The passive mode is very useful when power-constrained

devices communicate with each other as it conserves the energy, which makes it widely used in all smartphones today

[181] [182] [183].

 Low-power Wireless Personal Area Network (6LowPAN) protocol: 6LowPAN permits smart devices to connect to the

internet using IPV6 protocol, takes into consideration the nature of wireless IoT networks through constructing very

compact header message format [184]. Moreover, it breaks down hindrances to utilize IPV6 addressing protocol in limited

processing capabilities, low data-rate, and restricted power IoT objects over the limited bandwidth of wireless networks

[28] [185] [186].

 Bluetooth Low Energy (BLE) protocol: This communication technology was developed by Bluetooth Special Interest

Group, as a low-power solution for short-range communication between controlling and monitoring applications [187].

Moreover, it supports quick transmission process of data packets with data rates up to 2Mbps in the ISM band. Devices

that implement BLE protocol are classified into two types; master and slave where master devices act as a prime device

that can connect to several slaves. To comprehend that, let us assume an IoT scenario in which a PC or a phone act as a

master, where other devices as smartwatch, fitness tracker and thermostat are considered to be slaves. In such a scenario,

slaves ought to be in a sleep mode until they receive packets from the master device to preserve their energy [28].

 ZigBee: It was designed in order to provide a scalable, low cost and low power wireless connectivity for a wide variety of

controlling and monitoring applications. This protocol builds over IEEE 802.15.4 and extends its features through

providing expandable and flexible wireless network topologies by employing intelligent routing and setup procedures to

enable high resilience for failure and easy installation. Moreover, it is very efficient when working with other wireless

communication technologies, as it incorporates rigorous security and listening techniques [188]. Based on the above,

ZigBee will be utilized in a vast range of applications and products across commercial, government, consumer and

industrial markets in the near future [189].

 Radio Frequency Identification protocol: RFID is a low cost and low power wireless communication protocol that is

implemented on totally passive chips or battery-assisted passive (BAP) chips, which are embedded with antennas named

tags [28]. These tags can send data only when they are powered through an electromagnetic field created by a reader [190].

The lifetime of RFID tags can be measured in decades, as they do not depend on an internal source of energy to operate,

which makes this technology suitable in many IoT applications [191]. Nonetheless, the primary hurdle of this technology

is that RFID tags operate only under a reader coverage domain, which is not more than 10 m in fully passive tags, while

its range reaches up to 50 m in BAP tags [192].

 Low Power Wide-Area-Networks (LPWAN) protocols: LPWAN protocols are low-power, low-bandwidth, and low-

cost protocols, especially in the communications over long distances areas. Moreover, the devices that implement these

protocols transmit over sub-GHz radio frequencies from 433MHz to 868 MHz in Europe and up to 915 MHz in the USA,

with transmission ranges from 1m up to 50Km [193]. Since many industrial, civil and other IoT applications operate over

2.4GHz or 5GHz ISM frequency bands, a number of low power wide-domain networking protocols have arisen. The

following are the general characteristics of LPWAN protocols, followed by a brief discussion about the characteristics of

each protocol:

 The devices that implement these protocols have very low power consumption.

 These protocols support the transmission process of small packets only, commonly 100 bytes or less.

 The devices that implement LPWAN protocols consist of very low-cost units, so they usually cost less than a few

dollars.

 These devices are designed to have good coverage inside and outside their domains.

i. Long Range Wide-Area-Networks (LoRaWAN) protocol: It is a physical layer communication protocol, with

low power consumption and long battery lifetime that reaches up to 10 years. LoRaWAN is employed in wide Area

Network (WAN) services and applications, such as M2M, industrial applications and smart cities [193], that require

long communication distances ranging from (2-5) Km in urban territories and up to 15 km in suburban areas [194].

It also supports the communication process over large networks that contain billions of smart devices, thus the data

rate of this protocol varies from 0.3 kbps to 50 kbps in the full-duplex wireless medium.

ii. Low Power WiFi (WiFi HaLow) protocol: It is a wireless communication MAC and physical layers protocol.

WiFi HaLow was developed to enable wireless sensors to communicate with each other over long distances with

low power consumption.

iii. WiSUN protocol: This protocol operates in both sub-GHz bands and 2.4GHz bands and it also supports data

transmitting rates within (40 -1000) kbps for data packet size starts from1500 bytes and above. Furthermore, WiSUN

enables IP packets to be delivered without fragmentation [195].

iv. Narrowband Internet of Things (NB-IoT): It is a narrowband radio technology that was standardized and

developed by the 3rd Generation Partnership Project (3GPP) in June 2016 to support low data rates and complexity

IoT applications. It introduces a novel radio access technology based on Long-Term Evolution (LTE) standards but

with minimal features in order to reduce the power consumption of resource-constrained IoT devices. It operates on

(180-200) kHz and also employs QPSK modulation.

v. SigFox protocol: A narrowband or ultra-narrowband technology was developed to connect a massive number of

power-constrained devices. This protocol operates on an 868MHz frequency band, where the spectrum is divided

into 400 channels of 100Hz. IoT devices can transmit up to140 packets each a day with a data rate of up to 100 bps

and its signal can reach distances from (30-50) km in rural territories wherein urban territories it reaches from (3-

10) km [196].

 Z-Wave: A low power wireless communication technology is designed for domestic automation products like smart light

controller and other sensors inside home devices. This technology aims to provide reliable communication of small data

packets with low latency transmissions and small data rates that reach up to 200kbps and operate over 900MHz ISM bands.

Moreover, the Z-Wave protocol enables controlling of up to 232 smart devices [197].

 Cellular: Any IoT service that demands to operate over long distances can benefit from deploying Global System for

Mobile Communication (GSM) technologies such as 3G, 4G, and 5G cellular communication protocols, as they have

abilities to transmit large quantities of data packets, particularly in 4G and 5G technologies. Based on that, communication

through cellular protocols is very expensive and extremely power-consuming for many applications [198].

 Telensa: This communication protocol transmits over Ultra Narrowband technology and sub 1GHz unlicensed ISM bands.

Besides, it completely supports bi-directional communications (full-duplex technology). Consequently, it is convenient for

monitoring and controlling the operations of IoT applications. A Telensa sink node could connect up to 5000 devices and

its communication range can reach up to 2km in urban territories and 4 km in rural environments. The lifetime of A Telensa

node can reach up to 20 years [199], which makes is applicable for many applications such as smart lighting, smart parking,

and other smart city applications that are required long lifetime sensors [200] [201].

5.4.2 Recent Enhancements of Data Link Layer IoT Protocols

 Considering the exponential expansion in the number of heterogeneous air interface technologies that have their different

characteristics and require to communicate with each other, NFC is deemed to be one of the most used air interfaces

technologies for short distances. NFC has many properties such as protecting the privacy and the security of communication

from attacks, low power consumption, and acceptable overhead. IPv6 considers to be an ideal internet protocol solution,

as it provides large address space for a huge amount of network devices. Thus, it is necessary to enhance the characteristics

of NFC protocol to support transmission over IPV6 protocol utilizing 6LowPAN techniques to produce a novel version of

the NFC protocol called IPv6-over-NFC. However, this new technology is not suitable to transmit large data size or

multimedia streaming over long-lived distances [202].

 Given the essential role of BLE technology in IoT fields, many communities such as IETF and Bluetooth adapt 6LoWPAN

technology to enable IPV6 over BLE mesh networks (6Lo-BLEMesh). Nevertheless, 6Lo-BLEMesh technology finds the

desired route by using a routing protocol, which makes the network prone to many threats and attacks [203].

1. Leonardi et al proposed a connection Multi-hop Real-Time BLE (MRT-BLE) protocol to provide higher throughput and

bounded packet delays compared with the connectionless origin version of BLE [204]. Moreover, it permits data to hop

over 37 channels instead of 3 connectionless channels. The basic idea of MRT-BLE is to divide the WSN into many sub-

networks, where each one of them is managed by a master node and two sub-networks are connected through a master\slave

device or a slave device that acts as a bridge between them. However, MRT-BLE does not suit mobile networks.

 ZigBee 3.0 is built over Zigbee PRO to support monitoring and controlling of heterogeneous networks that connect IP

based devices from different vendors and markets such as smartphones, tablets or computers by adding security layer and

mesh networking to the application framework. This will make heterogeneous IoT networks certifiable, green low-power,

more reliable and robust, interoperable and full-stack solutions [205].

 LoRaWAN technology is developed to support fixed battery-powered or mobile star networks, where the gateway node

has the responsibility of relaying data between the central server and end devices. Gateways are connected to the central

servers via IP connection standards, while the end devices communicate with one or more gateways through FSK

communication or single-hop LoRa. All the communications between the gateways and devices are bidirectional and spread

over different data rates and channels. An adaptive data rate technique is utilized by LoRaWAN to maximize the network

lifetime. LoRaWAN technology is classified into three categories, which are (class A) bi-directional end-devices, (class B)

bi-directional end-devices with scheduled receive slots, and (class C) bi-directional end-devices with maximal receive slots.

LoRaWAN v1.0.3 supports both unicast and multicast transmissions over class B end devices, whereas

(DeviceTimeRequest) a new MAC command is utilized to synchronize the time clock of both class A and class B end

devices [206].

 IEEE 802.11ah-2016 technology was proposed by the IEEE standards association to extend the transmission range of

Wireless Local Area Network (WLAN) to sub 1 GHz band, providing alternative bands rather than heavily overcrowded

2.4GHz and 5GHz bands. 1 GHz band used nowadays to minimize the propagation loss through obstructions, walls, and

free spaces. Moreover, IEEE 802.11ah-2016 provides multiple data rate modes, based on the application's requirements

starting from 150kbps up to 347Mbps. Low data rates options are appropriate for IoT applications, as it can provide full

home coverage for the transmission of battery-powered devices, whereas the high data rates modes are suitable for power

amplifier devices. Briefly, IEEE 802.11ah-2016 aims to improve WLAN lifetime, provide more network scalability, and

support single-hop and multi-hop operations [207].

 Z-Wave Plus is a novel version of Z-Wave protocol, where it was designed to enhance smart home users' experience and

make installation and setup of this protocol easier and faster. It extends Z-Wave capabilities by increasing battery life 50%,

allowing devices to communicate with each other up to 60m, and permitting automatic installation of new devices.

Moreover, Z-Wave plus improves network bandwidth to be more than 250%, as it offers 3 new radio frequency channels,

which will improve IoT devices connections, noise immunity, and increase bandwidth. Lastly, it enables devices to address

issues with the explorer frame feature in order to enhance fault tolerance and self-healing [208].

5.4.3 Future Research Directions of Data Link Layer IoT Protocols

 5G is the latest cellular communication protocol that replaces the current 4G technology by providing a number of

enhancements in scalability, reliability, connectivity, speed, energy, and efficiency of the network. The main reason for

developing a new communication technology is to support the tremendous growth of devices connected to the internet and

controlled the operations of critical commercial machines and appliances, which creates the need for zero delays, more

bandwidth, and less energy consumption communication. 5G supports the connection of 1 million devices per square km

their speeds may reach up to 500km/h, allowing them to communicate with uplink speeds at least 10Gbps and 20Gbps for

downlink, while it reaches 100Mbps for download and 50Mbps for upload per user. This cutting-edge technology is very

efficient in energy conservation as it alternates between sleep mode with zero energy consumption and applies energy

efficiency mode in loaded circumstances. Moreover, the maximum latency caused by utilizing 5G technology should reach

4ms compared with 20ms by the 4G network. 5G supports multi-layer spectrums to meet different requirements, through

utilizing large-scale antenna, which are sub 1GHz for low-band spectrum, 1GHz and 6GHz for mid-band spectrum and 24-

40 GHz for high-band spectrum [209] [210].

 3GPP-Release17 technology concentrates on enhancing 5G system capabilities to be launched in 2021. This release will

enhance and cover many aspects, such as 5G IoT, high precision positioning, improving low latency and ultra-reliable

communications, asset tracking, application layer support for 5G factories, unmanned aerial communication systems,

audio/visual service production, communication services for critical medical applications, and architectural enhancements

for 5G multicast-broadcast services [211].

 Telensa 5th generation has released “urban data project” with the partnership of Qualcomm, Kainos, and Microsoft Azure

to protect the data generated from street light sensors by applying city-data guardian method in the cloud with safeguard

in data usage and privacy, which will improve and leverage city services [212].

Table 6: Comparison between data link layer protocols considering different aspects

Wireless

communication

Protocol

NFC 6LowPAN Bluetooth

Low Energy

(BLE)

Zigbee RFID LoRaWAN Low Power Wi-Fi

WiFi HaLow

Network

standard

ISO/IEC 13157,

ISO/IEC 18000-3

IEEE 802.15.4 802.15.1 IEEE

802.15.4

ISO 18000 v1 –

ISO 18000 v7 ISO
10536, ISO 11784,

ISO 11785, etc.

* IEEE 802.11ah

Recent version of

the protocol

(year)

IPv6-over-NFC

(2019) [202]

6Lo-BLEMesh

(2019) [203]

6Lo-BLEMesh

(2019) [203]

MRT-BLE

(2018) [204]

Zigbee 3.0

(2018)
[213]

RFC 8371 (2018)

[214]

LoRaWAN

v1.0.3 (2018)
[206]

IEEE 802.11ah-2016

(2017) [207]

Network type P2P Star, mesh Star Star, tree
cluster,

mesh, hybrid

P2P network, mesh Star-of-stars,
mesh

Mesh, star, tree

Frequency Band 13.56MHz 2.4GHz (2.402 – 2.481)
GHz

2.4GHz,
915Mhz,

868Mhz

(125–134) KHz
(13.56, 865-60)

MHz (902-928)

MHz

(100Hz, 869
MHz) for Europe

915 MHz for

North America

(1, 2, 4, 8, 16) MHz
(902 -928) MHz

USA (863- 868)

MHz Europe (775-
787) MHz China.

1 GHz

Transmission

range

10 cm (10-100) m up to 100 m (10-100) m
Sub-GHz up

to 1km

(1-10) cm
(1 -30) m

(2-5) km urban
environment,

15km suburban

environment

1 km

Power

consumption

15 mA * 15 mA 30 mA * up to ~50mW 2 µA- 8 mA

Number of nodes

per network

2 nodes 65000 nodes 65535 nodes 65000 * Thousands of

nodes

8191

Applications Service initiation
applications,

payment, and

ticketing

applications, P2P

data transferring

Smart home,
smart

agriculture,

industrial IoT,

structural

monitoring,

healthcare
applications

Mobile phones,
gaming, smart

homes,

wearables,

PCs, security,

proximity,

healthcare,
sports and

fitness,

Industrial, etc.

Smart home,
medical

monitoring,

environment

AI sensors,

consumer

electronics

Retail sector,
warehouse

management,

inventory

management,

supply chain

management and
logistics, library

systems, traceability

management
medicine smart

spaces, smart

parking,
environmental

monitoring

Smart city,
industrial

applications,

real-time

monitoring,

metering, smart

logistics and
transportation,

video

surveillance.

Smart home, digital
healthcare, smart

city, agriculture,

retail

Data rate 106 kbit/s -424

kbit/s

(20, 40, 250)

kbps

125 Kbps, (1,

2) Mbps

250kbps 700 kbps - 4 Mbps 250 bps– (5.5,

11, 50) kbps

347 Mbps

Spreading

technique

* DSSS FHSS DSSS DSSS, FHSS FHSS, CSS DSSS, FHSS

Applicable

routing protocols

NFC includes

routing features

RPL, AODV RPL,

6LoWPAN

Zigbee,

RPL,

AODV,
ZBR22,

ZBR-M

OLCMR23

OLSR24

AODV, HWMP25 AODV, OLSR,

DSDV26

Mobility Yes Yes Yes Yes Yes Yes Yes

Cryptography No AES27-128 bit AES-128 bit AES-128
bit, ACLs28

Present,
Hummingbird,

Photon, DES, Hight

AES-128 bit WPA3,29 Morse
micro, OTA30

References [215] [216] [217] [24] [28] [186]
[218] [219]

[24] [220]
[221]

[222] [223]
[224]

[225] [226] [227]
[228] [229]

[230] [231] [207] [232] [233]
[234]

Table 6: Comparison between data link layer protocols considering different aspects (Cont.)

Wireless

communication

Protocol

Wi-SUN NB-IoT SigFox Z-Wave Cellular

1G, 2G, 3G, 4G

Telensa

Network standard

IEEE 802.15.4g 3GPP
ETSI EN 31300 220-

1,

ETSI EN 300 220-2

IEEE 802.11
IEEE 802.15

IEEE 802.16

MTS 32, AMTS 33, PTT34 (1G)
GSM, iDEN35, GPRS, HSCSD36 (2G)

UTMS37, IMT38-2000 (3G)

LTE, LTE -A 39, IMT-Advanced (4G)

*

Recent version of

the protocol (year)

* 3GPP-Release
17 (2019) [211]

Sigfox v. 2.6.0
(2018) [235]

Z-Wave plus
(5th Generation

Z-Wave) (2015)

[208]

5G (2018)

Telensa 5G
(2019-2028)

[212]

Network type Mesh, star, hybrid

star/mesh

Star Star Mesh Mobile network or cellular network Mesh, star

Frequency Band 920 MH

863–870 MHz

3.75 kHz,

15 kHz,
 180-200 kHz,

 850-900 MHz

200 kHz

868 - 869 MHz
 902 -928 MHz

868 MHz

(Europe)
 908 MHz

(United States)

900MHz (ISM)

30 KHz (1G)

200 kHz (2G)
(1800‐ 2400 MHz)3G

(2-8 GHz) 4G

60MHz,

200MHz,
433Mhz,

470MHz,

868Mhz,
915MHz

22 ZBR: ZigBee Network Routing
23 OLCMR: Optimal Link Cost Multipath Routing
24 OLSR: Optimum Link State Routing
25 HWMP : Hybrid Wireless Mesh Protocol
26 DSDV: Destination Sequenced Distance Vector
27 AES: Advanced Encryption Standard
28 ACLs: Access Control Lists
29 WPA3: Wi-Fi Protected Access 3
30 OTA :Over-the-Air
31 ETSI EN: European Telecommunications Standards Institute, European Standard
32 MTS: Mobile Telephone System
33 AMTS: Advanced Mobile Telephone System
34 PTT: Push to Talk
35 iDEN : integrated Digital Enhanced Network
36 HSCSD: High-Speed Circuit-Switched Data
37 UTMS: Universal Mobile Telecommunications System
38 IMT: International Mobile Telecommunications
39 LTE-A: Long Term Evolution Advanced

Transmission

range

500m -1 km 1 km (urban)
10 km (rural)

(30–50) km (rural)
(3–10) km (urban)

30 m (2- 20) km 1G
(35-200) km 2G

Rural: 500 km/h *t, suburban: 120

km/h *t, 10 km/h *t (3G)

500 km/h *t (4G)

20km (rural)
 3km (urban)

Power\ current

consumption

2 µA- 8 mA (3-50) µA 500 mW - 4W/ (19-

49) mA
∼5mW 1800mA (2G)

800mA (3G)

(1,000–3,500) mW 4G

100µW

Number of nodes

per network

5000 55000, 100 K

devices per cell

* 232 nodes 4,000 devices /km2 (4G) 5000 lights

per base

station

Applications Smart meters,

smart city, smart

agriculture

Electric

metering

manufacturing
automation,

retail point of
sale terminals,

smart city

Smart farming,

status monitoring,

asset tracking, smart
building, pallet

tracking for logistics

Smart home Voice Calls (1G)

Voice calls, browsing and short

messages (2G)
Video conferencing, GPS and mobile

TV (3G)
Wearable devices, high-speed

applications and mobile TV (4G)

Street lighting,

smart city, air

quality, traffic
monitoring,

smart waste
bin

management,

and smart
meter

Data rate 50 kbps- 1 Mbps (30-60) kbps

 200 kbps

(10-100) bps (9.6, 40, 200)

kbps

2.4 kbps (1G)

64 Kbps (2G)

144 kbps-2 Mbps (3G)
100 Mbps - 1 Gbps (4G)

500bps

downlink 62.5

bps uplink

Spreading

technique

DSSS DSSS FHSS DSSS FHSS, DSSS, CDMA40 *

Applicable routing

protocols

RPL * * AODV, DSR41 AODV, DSR, GPSR42 RPL

Mobility Yes Yes Yes Yes Yes Yes

Cryptography AES, certificates,

HMAC43

AES, LTE

encryption

AES-128 AES-128 Voice scrambling (1G) Authentication

and 128-bit key per subscriber (2G)
SNOW3G cipher, Rijndael cipher,

KASUMI cipher and AES-128 (3G)

 EPS integrity algorithm (4G)

City-data

guardian

References [236] [237] [238] [239] [238] [240] [24] [241] [242] [243] [244] [245] [212] [246]

6. Middleware

It is anticipated that the number of IoT devices will reach around 50 billion in 2020 [247]. This massive number of smart

things that are connected to the internet, represents the so-called IoTs, aims to make the surrounding environment more intelligent

[248]. Based on the above, the amount of the collected data in the IoT environment will be immense and will create considerable

defiance for both industries and researches domains. One of the major challenges that IoT paradigm confronts is machine-to-machine

communication, where this challenge forms a big concern in IoT systems because of an abundant number of the existing smart

devices that do not follow the same protocols, as most vendors do not care about the compatibility of their products with other

competitors’ brands. One of the proposed solutions to solve this issue is to enforce universal standards, which is very hard to be

applied, while another proposed solution is to implement middleware software to facilitate the communication process among these

devices. Middleware can be defined as a software that offers interoperability between incompatible applications and devices, also

it hides all the details of smart objects [249] [250]. Hence, it acts as a software bridge between the applications and the things, as it

enables IoT systems to work efficiently with each other [12] [20] [24] [251]. There are numerous middleware solutions, either a

proprietary or an open-source provided through companies, where most of these solutions are similar to each other. However, there

are no guidelines or performance metrics that enable us to compare these solutions to each other [249]. According to that, many

challenges face IoTs middleware as described below [28]:

i. Programming abstractions and interoperability: To facilitate collaboration and data exchange among heterogeneous

devices, IoT middleware aids to permit distinct sorts of smart devices to interact easily with each other.

ii. Device management and discovery: This property allows IoT devices to discover all other devices and services that are

located in their network domain. The infrastructure of the IoT environment is mostly dynamic since all newly joined devices

must announce their existence and the services they provide. Therefore, IoT middleware requires being scalable and

provides APIs in order to list all IoT devices, their capabilities, and their services. In addition, APIs have to provide the

users with abilities to categorize the devices based on their capabilities, manage devices depending on their remaining

energy, report problems in IoT devices to the users and perform load-balancing procedures among them.

iii. Big data and analytics: IoT sensors collect an enormous amount of data that requires to be analyzed by specific algorithms

based on a data type. Also, some of the sensed data may be incomplete because of the flimsy nature of wireless sensor

networks. Thus, middleware should consider this issue and extrapolate incomplete data by using a suitable machine-

learning algorithm.

40 CDMA: Code Division Multiple Access
41 DSR: Dynamic Source Routing
42 GPSR: General Packet Radio Service
43 HMAC: Hash based Message Authentication Code

Figure 11: Wireless IoT connectivity technologies

iv. Privacy: Most data that comes from IoT applications and services are related to human personal life. Thus, security and

privacy issues have to be considered when transferring and processing them, which is required to build mechanisms that

address these issues by middleware.

v. Cloud services: Cloud computing part is the most important layer of any IoT system because all of the sensed data will be

stored and analyzed in a centralized cloud. Therefore, IoT middleware should be run smoothly in distinctive types of clouds

and enables IoT users to gain the most benefits from the data collected through smart sensors.

vi. Context detection: IoT applications are classified into two types, which are ambient data collection applications and real-

time reactive applications. In the first type, sensors collect data that will be processed later on offline to get reasonable

information that will be used for the same scenarios in the future, while in the second type systems should make a real-

time decision based on the sensed data.

6.1 Architecture of IoT Middleware

The current architecture of IoT middleware is classified into three types based on the services they provide as follows [252]:

1. Service-Oriented Architecture (SOA) or Service-Based Solution: In SOA users and developers are allowed to employ

or add different types of IoT devices to be utilized as services [30] [253]. Figure 12 represents the architecture of SOA

middleware, which consists of three layers: The Physical layer that contains actuators and sensors, the Virtualized layer,

which consists of cloud and infrastructure servers that are responsible for performing different computational operations,

and the Application layer that composes of all services and utilities. SOA is deemed to be a heavyweight and a very high

performing middleware, where it can be implemented on the nodes that communicate with the cloud servers or on a

powerful gateway that is placed between the cloud layer and IoT devices layer. Based on that, this type of middleware is

not suitable to be implemented on resource-constrained devices and it does not permit device-to-device communication.

Physical sensors/embedded devices (e.g. smart watch, Fibit, Mica mote, Philips Hue,

cameras, Phidget sensors)

Virtual sensor

manager
Query manger

Event processing

engine

Access control Storage
Web service

interfaces

Application and services (browser- based app, smart health, smart cities)

Io
T

 D
ev

ic
es

S
er

v
ic

e
S

er
v
er

s
A

p
p
li

ca
ti

o
n
s

C
lo

u
d
 S

er
v
ic

e

Figure 12: Service-based IoT Middleware

2. Cloud-Based Solution: In this type, users are constrained by the number and types of smart devices that can be connected

to IoT applications. In addition, the sensed data can be easily collected and interpreted, because different used cases can

be programmed and then determined in advance [30]. The resources of the cloud-computing environment restrict the

operational components of this middleware. These functions such as storage system or computation engine are represented

and managed by APIs, where IoT services are controlled and accessed by either cloud bolster RESTful APIs or by the

applications provided by vendors as shown in Figure 13.

3. Actor-Based Framework: It is a lightweight middleware that can be implemented in Sensory, Gateway and Cloud

Computing layers. The computational operations of this middleware are distributed in both sensory layer and mobile access

layer as shown in Figure 14 [24].

4. Event-Based Framework: This type of middleware aims to improve the development of distributed systems by supporting

the implementation of the publish\subscribe paradigm as shown in Figure 15. This paradigm is considered to be a

communication infrastructure that aims to provides clients with general-purpose services, as it helps them to cope with the

heterogeneity and complexity of large-scale and distributed environments. In event-based middleware, distributed

application complexity is partially hidden from the programmer, which will, in turn, simplify the development and

programming of many functionalities.

Cloud system APIs

Vendor provided mobile App

Physical sensors/ embedded devices (e.g. smart watch, Fibit,

Micamote, Philips Hue, Phidget sensors)

C
lo

u
d

 s
er

v
ic

e
s

Middleware/ Application layer

 Vendor provided web App

Figure 13: Cloud-Based IoT middleware

Physical sensors/ embedded devices (e.g. smart watch, Fibit, Micamote,

Philips Hue, Phidget sensors)

Cloud services

Actor Host

Actor Host

Ptolemy s Swarmlet/Node-Red/Calyin host

Applications and services (Accessors Nodes, Actors, composition engine)

S
en

so
ry

 S
w

ar
m

M
o

b
il

e
A

cc
es

s
L

ay
er

Figure 14: Actor-based IoT Middleware

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

Publish

Publish

Publish

Subscribe

Subscribe

Subscribe

Event Service

(event- broker

network)

Notify

Notify

Notify

Figure 15: Event-Based IoT Middleware

6.2 Existing IoT Middleware Platforms

The following subsections summarize different solutions of IoT middleware based on its type, where Table 7 compares

between IoT middleware platforms from different aspects.

6.2.1 Cloud-Based IoT Middleware

1. AWS IoT: This platform was developed by Amazon to manage cloud services, such as permitting millions of connected devices

to interact securely and easily with other devices and cloud applications. AWS IoT allows customers to build their IoT

applications in order to collect, process and analyze the sensed data to take a suitable decision without any need to manage

infrastructure by using AWS services like Amazon Kinesis and Amazon CloudWatch. Also, AWS IoT customers can keep

track of all the devices that are communicating with their applications all the time [254].

2. Azure IoT Hub: It is a central platform that was released by Microsoft to manage bidirectional communication between IoT

applications and their connected devices. Due to the high capabilities of Azure, it allows clients to construct full-featured,

scalable IoT solutions with secure and reliable communications among the hosted cloud and a massive number of IoT devices.

Azure IoT Hub supports various messaging patterns to control IoT connected devices, such as request-reply, file upload from

devices and device-to-cloud telemetry [255].

3. IBM Watson IoT: This platform is built on the top of IBM Cloud to connect and control different IoT appliances, sensors

industries, and home applications. IBM Watson provides its clients with an enormous set of adds-on, built-in tools, and

Blockchain service that enable them to build their own IoT applications, manage their appliances, extract key performance

indicators from their data, connect their tools and applications and process their collected data using historical and real-time

analytics.

4. Google Cloud IoT: It is a fully managed service, which consists of a set of tools that provide a complete solution to securely

and easily connect, process, manage, store, analyze, and visualize the generated data from dispersed devices, both in the cloud

and at the edge of the network. Google Cloud IoT aims to have the ability to build models that can efficiently optimize and

describe a client’s business, anticipate problems, and improve operational efficiency [256].

5. Xively: It is a public cloud-based IoT middleware that provides a Platform as a Service (PaaS) [257]. This software aims to

help companies and developers to connect, monitor and control distinctive types of IoT sensors [258]. Furthermore, it offers a

web-based application that allows IoT devices to quickly connect and transmit data to its cloud servers. Also, it allows clients

to retrieve their data from the cloud easily at any time and from anywhere, as it provides a time-series database that enables

swift storage and retrieval of data [30].

6. Oracle IoT: It is a cloud-based service platform that enables users to build a real-time IoT solution, which can be integrated

with enterprise applications, using robust security cloud capabilities, innovative and powerful edge analytics. Moreover, it

processes the streaming of IoT data to merge insights into customer business easily and quickly. Oracle IoT permits clients to

connect their devices to the cloud, which will help them in taking critical strategies and decisions [259].

6.2.2 Service-Based IoT Middleware
1. LinkSmart (Hydra): It is a web service platform that aims to eliminate the heterogeneity of distinctive devices and entities in

the IoT environment [260] [261]. Furthermore, it enables controlling all types of smart devices regardless of their

communication protocols, such as ZigBee, RF, RFID, Wi-Fi, Bluetooth, etc. LinkSmart distributes social trust computation and

security units through middleware to make IoT devices and services more secure and trustworthy. A prime novelty of this

middleware is supporting the utilization of IoT devices as services by embedding the required services in these devices.

LinkSmart can also be used to manage specific IoT applications such as healthcare, agriculture and home automation. Also, it

supports the self-configuration of devices and service discovery [262]. There are no local aggregation or processing units for

the sensed data on IoT devices that implement LinkSmart, so it will be sent to the cloud to be processed and archived [263].

2. Kaa: It is an open-source platform that is managed by Cybervision Inc and KaaIoT technologies to enable building IoT

solutions. Using web page Graphical User Interface (GUI), based on the Apache platform, enables the creation of data delivery

schema, supporting multi-tenancy on servers and generation of endpoint Software Development Kit (SDK). Kaa enables

interaction with endpoint devices directly or via gateways, while it secures their data by AES and RSA encryption methods.

3. Global Sensor Networks (GSN): It aims to provide a uniform platform that supports adaptable deployment, sharing, and

integration of heterogeneous IoT objects [20] [264]. This platform is built to meet the requirements of smart objects whether

they are physical or virtual sensors or actuators. GSN is a Java platform that is deployed either on IoT cloud or servers, where

a set of wrappers are permitted to feed the system with a collected live data, which will be processed later on based on XML

specification files.

4. ThingSpeak IoT: It is an analytical open-source platform service that is developed by Matlab to enable communications

between people and things. ThingSpeak provides users with tools that permit them to collect, visualize and analyze real-data

streams in the cloud. Developers can easily store and retrieve data from devices and sensors by utilizing HTTP protocol over

the internet [265].

5. Aura: This middleware is designed to ease the development of pervasive mobile IoT applications, by abstracting the differences

among heterogeneous devices and permitting them to communicate with each other without any hindrances. Aura tries to

optimize screen backlight and CPU to improve the performance level and reduce power consumption. Aura applies two

concepts in interacting with events, where system layers reply directly to the upper layer in a proactive concept, while in a

reactive concept all layers adjust their resources and performance based on demand [266].

6.2.3 Actor-Based IoT Middleware

1. Calvin: It is an open-source IoT platform that was developed by Ericsson to be implemented on the energy-constrained smart

devices since it provides a portable and light-weight unified programming model, where its interfaces are defined via its input

and output ports [267]. In Calvin, all low-level communication protocols of IoT devices are hidden as the communication

between devices is performed through smart things’ ports [30]. Moreover, Calvin can be implemented at the edge of IoT

environments to reduce long-distance communications, which will minimize the latency and power consumption of IoT devices.

The major merit of this middleware is its ability to migrate from one environment to another.

2. Node-RED: It is an open-source IoT platform that was developed by IBM and is based on node.js44 [268]. This platform can

be implemented at the edge of IoT network, because of its light footprint, whereas on the server-side, a JavaScript platform

based on an event-driven module and a non-blocking I/O is implemented. The node-red interface permits users to build their

IoT applications easily through dragging and dropping the connected blocks that represent IoT components. The disadvantages

of this platform are that it does not support service discovery and enables security by password authentication only [30].

3. Ptolemy Accessor Host: This open-source platform was developed by Professor Edward Lee in 1996 to design, simulate, and

model embedded and real-time devices [269]. The main concept of this platform is that an IoT system is built based on the

software components that interact and communicate with each other via messages sent through interconnected ports [30].

4. Akka: It is a set of open-source libraries and free actor-based platform that was designed to build distributed and run-time

applications using Java or Scala language. It permits users to meet business requirements without the need for writing large

low-level codes, which will provide them with high performance, fault tolerance, and reliable behavior. Akka also supports

multi-threading behavior, abstracts the communication among applications and their devices and provides high-availability and

clustered architecture [270] [271].

6.2.4 Event-based IoT Middleware:

1. Hermes: It is an event-based and scalable middleware that aims to ease the construction of distributed and large-scale

applications. Hermes creates self-managed event brokers based on P2P routing layer, to handle large scale and dynamic

environments. It introduces a resilient solution against failures via automatic adaptation of event brokers routing states and

overlay broker network. Hermes middleware released two versions that share most of the codebase, which are the

implementation in distributed and large-scale applications and communications, besides the implementation among event

brokers [272].

2. Gryphon: It is a patronizable publish\subscribe and highly scalable middleware that aims to distribute a large amount of real-

time data over the network. Gryphon is developed by Java interface to support web applications and to build a robust, redundant,

publish\subscribe, and content-based multi-broker. This middleware contains robust security features, scalable routing

algorithms, and an effective event matching engine. Also, it is based on an information flow paradigm for messaging (BKS+99)

to specify the communication between the publisher and the subscriber.

3. Rebeca: This middleware is based on publish\subscribe technology to implement largescale business applications, by

emphasizing on the design of efficient routing algorithms and employing professional software engineering methodologies.

Rebeca aims to prevent and reduce flooding the network by events by utilizing advanced routing techniques. It integrates

interoperability and subscription merging features with its services to support location mobility and to reduce routing table size.

Event scope function hides the details of service implementation, as transmission policies, security, data transmission methods,

interfaces among external and internal, and notification representation [272].

4. FiWare: It enables efficient, flexible, secure and scalable communications among distributed IoT devices and applications. It

was designed to support the control and monitoring of many IoT applications such as logistics, shopping floor and smart city

[28]. This platform consists of many components such as APIs, reusable modules and huge codes, which allow an IoT user to

build his IoT application. A set of sensed data collected by IoT sensors (context) is captured through REST API, to be sent later

on to a specific server called the broker. FiWare has developed API to query and store different IoT contexts, so any application

is registered as a context consumer can retrieve the required data from the broker. There is a specific component in this platform

called an adapter, where it is responsible for transmitting a particular type of context to the subscriber applications [273].

6.3 Open Research challenges of IoT Middleware:

 Even though the IoT middleware field has handled many requirements and issues that face the development of IoT

applications, there are still some open challenges that require to be covered and solved. The following bullet points summarize some

of these issues:

 Non-autonomous or semi-autonomous devices and services registration and discovery: Human intervention in IoT

components through registration and discovery, makes these applications non-scalable and prone to error. This issue makes

middleware unsuitable for self-adaptive applications, as M2M communication systems.

 Unscalable device and services registrations and discovery: The time consumed on devices and services registration or

discovery may make middleware an improper solution even in small IoT systems.

 Heterogeneous environments: This issue is considered to be a key challenge that needs to be addressed since most of the

middlewares support only one or two types of heterogeneous IoT components. Non-autonomous and inflexible services

and devices registration and discovery limit the support of IoT applications. Subsequently, it is highly recommended that

new approaches should handle and resolve the heterogeneity of IoT environments, especially in large-scale networks.

 Leakage of device interpretability: An abstraction layer is required between middleware and resources to solve this

challenge. Also, extensive researches to abstract the heterogeneity of the resources of IoT systems should attract more

attention from the researchers.

 Service Level Agreement (SLA): To afford an agreed level of service to customers, three components should be taken

into consideration: A model that precisely defines all functional and non-functional services that are required by consumers,

automatic service to guarantee a high level of QoS and adaptation, and monitoring tool for SLA services. Human

intervention in current SLA middleware should be replaced and considered by middleware development.

 QoS level: There is no mechanism that guarantees a specific level of QoS for non-functional services of IoT. So,

middleware researches should find procedures for optimizing and monitoring QoS levels.

44 Node.js : It is an open-source, cross-platform and run-time environment for executing JavaScript code on the server-side.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Server-side

Table 7: Comparison between IoT middleware considering different aspects

IoT

middleware

AWS IoT Azure IoT Hub IBM Watson

IoT

Google Cloud

IoT

Xively Oracle IoT LinkSmart

(Hydra)

Kaa GSN ThingSpeak

Middleware

architecture

Cloud-Based Cloud-Based Cloud-Based Cloud-Based Cloud-Based Cloud-Based Service-Based Service-Based Service-Based Service-Based

Open source

SDK\ open API

Open source SDK Open Source
API

Open source
SDK

Open API Open API Open source
SDK

Open API Open source SDK * Open source

Device

abstraction\

Interoperability

Web services Azure IoT SDK

for C

Through MQTT gRPC, REST

APIs

Web services,

MQTT, board

support package

Oracle

service bus

Web services Apache NiFi,

Apache

ZooKeeper

XML-RPC, protothreads,

token machine language

Libelium, AllJoyn, Beckhoff,

Senet

Deployment

type

IaaS, PaaS IaaS IaaS, PaaS IaaS, PaaS PaaS PaaS PaaS, SaaS IaaS PaaS PaaS

Network

connectivity

MQTT, HTTP,

WebSocket

HTTP, AMQP,
AMQP over
WebSocket,

MQTT, MQTT

over WebSocket

MQTT, HTTP,

TLS

MQTT, HTTP HTTP, MQTT,

WebSockets
MQTT

MQTT,

HTTPS

HTTP, REST,

MQTT

MQTT, CoAP HTTP MQTT, REST API

Data format

supported

JSON JSON CSV, JSON JSON CSV, JSON,

REST API

CSV, REST

API

JSON REST, JSON, API JSON, SenML XML, CSV, ThingSpeak

API, JSON

Programming

languages

supported

SDK for Arduino,
Java, NodeJS, C,

JavaScript,

Python, iOS,
Android

Node.js, Python,
Java, Android,

iOS, C, C#

NodeJS, Java,
Python, C#, C

Java, Node.js,
.NET, Python,

Ruby, PHP

SDK for
Arduino, Python,

Clojure Android,

Arm mbed,
Ruby, C,

JavaScript

Android,
Java,

JavaScript,

iOS, C

PHP, Java,
C#,

Python, .NET,

JavaScript,

C, C++, Java Ruby, Java, C Matlab

Application

development

functionalities

Real-time
analytics,

analytics,
artificial

intelligence,

machine learning,

event reporting,
visualization

Real-time
analytics,

analytics,

machine
learning, event

reporting,

visualization

Real-time
analytics,

analytics,

machine
learning, event

reporting,

visualization

Real-time
analytics,

analytics,

machine
learning, event

reporting,

visualization

Real-time
messaging, file

and firmware

deployments,
device

provisioning,

device logs,
rules and

orchestrations

Real-time
analytics,

analytics,

event
reporting,

visualization

Device
abstraction,

stream

mining, live
data

management,

data storage,
online

machine

learning

Analytics,
machine learning,

event reporting,

visualization

visualizing the network
structure, data stream

processing, plotting data

Real-time analytics, analytics,
event reporting, visualization

Technologies

used for

application

development

AWS Cloud-

Trail, AWS

Lambda, Kenisis,
Amazon, Amazon

Dynamo DB,

Amazon

CloudWatch

Amazon machine

learning

SQL database,

Azure tables,

Azur
CosmosDB,

Cloudant,

NOSQL DB

Firebase,

Google's

BigData tool,
BigQuery, Go,

Riptide IO,

PubSub

Connected

Product

Management

NoSQL

Database

Semantic

model-driven

architecture,
Symfony2,

URSA, hydra-

py, Hydrus,

Levanzo,

Argolis,

hydra-core,
Go

Hadoop, goDB

Cassandra NoSQ

GSN-WRAPPERS, Generic

serial wrapper, Generic UDP

wrapper, TI-RFID wrapper,
USB camera wrapper,

TinyOS wrapper, HTTP

generic wrapper

MATLAB dashboard

Service

discovery

Discovery API,

ECS Event

Stream, AWS
Lambda, Amazon

Route 53, Netflix
Heureka, etcd,

Azure container

service with

kubernetes,
Zookeeper

Netflix Eureka,
Consul, Eureka

Discovery

Knowledge

Graph, Watson
Discovery

Consul, etcd,

ZooKeeper

Cloudera

Navigator

Java WSDP REST API MQTT with Kaa

protocol v1

REST HTTP query, sbt 0.13+,

Java JDK 1.7, Scala 2.11

*

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

HashiCorp

Consul, AWS

App Mesh

Security and

privacy

Auditing,

encryption,
authorization,

authentication

Encryption,

authorization,
authentication

Authorization,

authentication

Authentication Encryption,

authorization

Authenticati

on,
authorization

Authentication

authorization,
encryption

Encryption Authentication, access control

mode

Encryption

Pricing Executing

customers
functions requires

payment

Payment based

on messages
per day and

number of

devices

Payment based

on data storage,
data traffic and

number of

connected

devices

Per MB Per device Based

subscription

Free Per device * Free or based on standard

license

Persistency

(Session

Persistence)

Persistent

sessions based on
MQTT 3.1.1

features

CmdKey, Azure

Storage
Persistence

Persistent iSCSI,
JPA 2.0

persistence,

WSJPA,

OpenJPA,
EclipseLink

MQTT v3.1.1

brokers,
CloudMQTT,

DIoTY, IBM

Bluemix,
ThingStudio

MQTT 3.1.1

broker

Load

balancer

Machine

learning
algorithms

* * Using MQTT

Stream

processing

AWS Lambda SQL query

language,
JavaScript, C#

IBM Streams

toolkits

Semios, GCP

Console,
Firebase SDK,

ImageMagick

Semios, GCP

Console,
Firebase SDK,

ImageMagick

Oracle event

processing,
oracle

continuous

query
language

CEP queries,

Esper EPL

* SQL queries. MATLAB

References [254] [255] [256] [274] [275] [259] [263] [276] [277] [265]

Table 7: Comparison between IoT middleware considering different aspects (Cont.)

IoT middleware Aura

Calvin NODE-RED Ptolemy Accessor Host Akka Hermes Gryphon Rebeca Fiware

Middleware

architecture

Service-Based Actor-Based Actor-Based Actor-Based Actor-Based Event-Based Event-Based Event-Based Context-Aware Event-

Based

Open source \

open API

Open source Open source Open source JS Open source Open source Open source Open source Open source Open source

Device

abstraction\

Interoperability

Connectors, Task

abstraction

Actor model

(event-driven)

Web services Accessor Aggregate

programming

Active message

abstraction, 5-layers

architecture by
Fenix, Pegasus

Information flow

graph between

devices, broker

HTTP, SNMP,

RMI

IoT Agent framework

library

Deployment

type

IaaS, SaaS IaaS PaaS, SaaS * * PaaS SaaS PaaS PaaS

Network

connectivity

MQTT, HTML MQTT HTTP, MQTT HTTP, HTML HTTP, HTML KQML, Fipa ACL,
HTML, XML

HTML, HTTP HTTP, SNMP,
Java RMI

MQTT, WebSocket,
HTTP

Data format

supported

RESTful API, JSON JSON JSON JSON, XML JSON JSON, Hermes
XML

NASDAQ, NYSE,
JSON

XML HTTP, JSON-LD

Programming

languages

supported

JavaScript, PHP, C++,

python
C, python JavaScript, Node.js JavaScript, C++, C Java, Scala Java, Python, C,

UML

Python, Java .NET, C#, Java C++, Java

Application

development

functionalities

Real-time applications,
connecting GUI to a

real-time application,

online video services,
billing systems,

consoles, and mobile

devices, smart TVs

Distributed
applications,

runtime

applications

For connecting to IoT,
connecting and

binding to databases,

collecting and storing
IoT data for

processing and in

event-driven
applications

Finite state machine
applications, web

applications

Real-Time streaming
applications, building

powerful and

concurrent, web
applications

Internet-based
distributed

applications, large-

scale ubiquitous
applications, web

service

Exchange
connections, ledger

accuracy guarantees,

state tracking, fault
tolerance, monitoring,

machine learning,

quantitative analysis

Monitoring and
management,

fault Tolerance,

publishing
methods

Collecting and processing
data, visualization, and

analysis of data, data

access control,
monetization or

publication, publisher-

subscriber
communications

Technologies

used for

application

development

OWL, ZMQ, SPARQL,

MongoDB

MicroPython Bluemix, MongoDB CapeCode, Nashorn,
TDL, AJAX, Vert.x,

XMLHttpRequest,
Simulink/Stateflow,

LabVIEW, SCADE

Spray, play

framework, apache-

spark, socko web

server, event-sourced

library, Gatling stress
test tool, Scalatra,

Vaadin, apache flink

Type-based routing

algorithm, type, and

attribute-based

routing algorithm,
service agents,
AIXO, WS2A,

OMSA, lightTS-SA

Heartbeats,

RabbitMQ, Java

Message Service

(JMS), BKS+99,

information flow
graph, publisher-

hosting broker,

Java

management

extensions,

object-oriented

API, IMyPub,
SetCurrency,

FIWARE Context Broker,

eProsima Fast-RTPS

Service

discovery

Environment manager Calvin control
APIs

Bonjour / Avahi Discovery.js
discovery function

Akka discovery
method, Kubernetes

API, AWS, Consul,

Marathon API

Service agents,
yellow page service,

discovery

component,
matchmaker service

agent

* Publish\subscribe
mechanism

selection component,
FIWARE NGSI RESTful

API, eProsima Fast-

RTPS, eProsima Micro-
RTPS

Security and

privacy

Authentication,

authorization

Authorization,

authentication

Authentication,

encryption

Authentication,

encryption.

Authentication,

authorization
encryption

Authentication,

encryption

Authentication,

auditing

Authentication,

authorization,
encryption

Authentication,

authorization,

Pricing Free Free Per hour or one

invoice per month

Free Free Free * * Free

Persistency

(Session

Persistence)

Aura-session Distributed

hash table

MQTT Local file system Akka persistence

library

Java Persistence Buffered stream, JMS

persistent events

Fault tolerance

plugins, sliding
window scheme

Apache flume, MySQL,

MongoDB, PostgreSQL

Stream

processing

Aura library Data flow

processing

node-red-contrib-cep Discrete event director Akka HTTP, Akka

stream library and
Apache Flink, Lagom

Open RTSP Relational

subscriptions service

* FIWARE Kurento,

WebRTC

References [266] [278] [279] [280] [281] [270] [271] [282] [272] [272] [283] [284] [272] [285]

 Privacy and security: Most of the middleware solutions restrict the application of security mechanisms in authentication

and authorization, this is due to the resource-constrained devices in the IoT environment. Thus, privacy and security issues

need to be end-to-end and lightweight to suit the communication between cloud, gateway, and sensors.

7. Simulation tools of IoT Networks

Simulations are utilized to model system behavior at a certain time, where the simulation environment mimics and evaluates

a realistic scenario before building or implementing it in a real-life environment. Simulations are commonly used to estimate easily

the performance and cost effects on complicated systems. Using simulation tools to emulate IoT context is indispensable as it

supports assessing efficiently the performance of any application, because of the accuracy and the reliability of the results that are

provided. Diverse simulators have been built and proposed to mimic the behavior of mobile and distributed applications with several

approaches, by making them compatible with many operating systems as Linux and Windows. However, every simulator has its

particular configuration requirements, which permits distinctive application aspects to be simulated. In general, any IoTs simulator

should offer high reliability when it simulates the scenarios that include heterogeneous sensors, provides computation or energy

efficiency estimation, supports scalability, and be able to support new requirements such as any new protocol [286]. Specifying a

suitable tool to simulate the IoTs environment is a challenging task since there are only a few simulation tools that have been

designed for IoT applications. IoT simulators are classified according to the level of architectural layer and to the scope, they cover

into three categories [287]:

1. Full Stack Simulators: These simulators have been developed as a consequence of IoT revolution to provide users with the

ability to simulate IoT elements and devices. The main simulators in this category are Devices Profile for Web Services

Simulator (DPWSim) and iFogSim [288] [289].

 DPWSim: It is a cross-platform simulator that enables the development and the simulation of different IoT applications,

where the essential role of this platform is to create virtual IoT devices that can be discovered on IoT networks and can

also communicate with each other through DPWS protocols [288]. Besides that, this simulator has a management tool that

allows users to create, load, store, and manage their applications with high flexibility. The graphical user interface of

DPWSim is designed by Java language, which permits IoT users of interacting with their virtual environments smoothly.

Finally, this toolkit helps in developing, prototyping and testing the DPWSim functionalities, but the main drawback of

this simulator that it has no support for new technologies and protocols [286].

 IFogSim: This platform was emerged through upgrading and extending the capabilities of the CloudSim simulator [290].

It allows the simulation of different IoT applications and the management of diverse resources that are distributed across

the cloud and the edge of the network under various conditions and scenarios [289]. IFogSim permits users to evaluate

different resources management that is applicable in Fog environments according to their influence on energy consumption,

latency, operational cost, and network congestion. Furthermore, it supports the simulation process of different types of

actuators and sensors by enabling the developer to build realistic network topologies.

2. Big Data Processing Simulators: These simulators concentrate on processing big data and evaluating the performance of

cloud resources, where the main simulators in this category are CloudSim [291], SimIoT [292], and IoTSim [293].

Cloudsim: It is a toolbox utilized for modeling, experimenting, and simulating a cloud-computing environment.

Developers and researchers can design a particular cloud system via this toolkit without any concern about low-level

details of the cloud environments and the services they provide [291]. The library functions of the cloudsim is written

using Java programming language and it consists of the main classes that are needed to mimic virtual machines, servers,

and clients to perform computational assets and to build applications. Furthermore, in order to set up a cloud environment,

designers must utilize many simulation components such as virtual machines, data-centers, cloudlets, cloud coordinators,

and data center brokers [294].

 SimIoT: It is derived from SimIC simulator and has been developed to mimic large-scale resources management [292]

[295]. SimIoT is used to estimate the time needed for processing data that is submitted either by IoT users or sensors to a

particular cloud, which is done by using numerous methods to simulate the communication between the cloud and IoT

sensors [296].

 IoTSim: This simulator was developed by [297] to simulate the behavior of IoT applications that are responsible for

processing big data that is produced from various devices using the MapReduce framework. The vital contributions of

this simulator lie in allowing simulation and modeling of a network using virtual machines, permitting the processing of

IoT data through using big data framework (MapReduce), and supporting the IoT applications model.

3. Network Simulators: The growing of interest toward the field of WSNs has led to the booming of current simulators [298].

The election process of a suitable simulator is a critical and time-consuming mission, particularly in the WSNs domain, since

there are many complicated scenarios and numerous protocols utilized in this domain that need specific features to exist in a

network simulator. Particular requirements of WSNs and the availability of a vast number of simulators make it difficult to

select a suitable simulator. Numerous WSNs simulators have been adapted to suit the simulation process of IoT environments

such as Cooja [299], QualNet [300], CupCarbon [301], OMNeT++ [302], and NS-3 [303].

 Cooja: It is a discrete event and a flexible simulator, since several parts of Cooja functions can be extended or replaced

by new functionalities such as OS, sensor node platforms, radio transmission models, and radio transceivers [298] [299].

Cooja is developed and written in java language and runs over the Contiki operating system. However, this simulator is

not very efficient for many reasons as it requires a lot of calculations to deal with cross-level simulations, there is no GUI

interface, and the simulation process supports up to 10000 nodes only.

 QualNet: It is a tool that allows network designers to create a virtual scenario of all forms of video, data and voice networks.

Any network scenario consists of nodes that represent WSNs elements and endpoints (switches, routers, ground stations,

access points, mobile phones, satellites, firewalls, radios, servers, sensors, and other security equipment) and links that

connect these nodes (Wi-Fi signals, internet circuits, LAN segments, LTE connections radio transmissions, etc.) [300]. The

graphical user interface permits network designers to build their projects in 2D and 3D environments. Also, it allows the

analysis of statistical data and packet tracing for debugging purposes [298].

 CupCarbon: It is an IoTs WSN and smart city simulator that aims to visualize, design, compile and validate the algorithms

that are required for monitoring and collecting environmental data [304]. Furthermore, this simulator helps the researchers

to test their wireless models and protocols. CupCarbon provides two simulation environments; the first one permits the

generation of natural events like fires and it also supports the simulation of mobile entities such as flying objects and

vehicles. On the other hand, the second simulation environment allows designers to represent discrete event scenarios of

WSNs. Also, it grants WSNs designers the ability to simulate scenarios and algorithms in many steps as the following; a

step for specifying designated nodes, another step to determine the communication types between these nodes, and finally

determining routing to the base station. This simulator supports many IoTs communication protocols such as Lora, ZigBee,

and WiFi.

 OMNeT++: It is a discrete event network simulator that is developed using C++ language by OpenSim company [302].

This simulator consists of GUI libraries for tracing, debugging and animating any network scenario. It also has graphical

tools that enable building simulations and performing results computations. OMNet++ permits the hierarchical

organization of any simulation scenario, because the number of layers is not restricted. The processes inside the virtual

network such as drawing data flow charts, illustrating network graphics and displaying variables or objects during

simulation are visualized through a graphical user interface [305]. The structure of the scenario is defined by using network

description files (NED) that can be modified by the user via a graphical interface or a text file, where NED files are

separated from the simulator to efficiently support the simulation of large topologies. Further, OMNeT++ is distinguished

from other simulators in its ability to modify topologies in run time.

 NS-3: It is a discrete event simulator that is developed by C++ and Python language [286]. NS-3 permits researchers to

analyze large-scale systems and different internet protocols in a controlled environment. This simulator has been improved

to provide an open-source and an enormous network simulation platform, for the sake of supporting the education and the

research in wireless networks. Concisely, NS-3 provides users with a simulation engine to conduct their simulation

experiments and provide them with models that show how data packets perform and work. Furthermore, this simulator

supports having multiple radio interfaces and channels for the same node [306]. Many wireless communication protocols

can be implemented via NS-3 such as 802.15.4 and 6LoWPAN, but it does not support the protocols of the application

layer [287].

To the best of our knowledge, there is no simulator that can be used to build a fully detailed representation of any IoT

project until now. Consequently, to simulate a complete IoT project, multiple simulators should be used together such as data

generation, big data processing, and packet tracing simulators. Table 8 shows a comparison between different IoT simulators based

on popular IoT criteria and features, where the justification for each selected criterion is explained as follows:

 Scope: This criterion specifies the level of coverage for different architectural layers of IoT, where (IoT) means that

the simulator has full coverage.

 Last update: It represents the time of the last maintenance or upgrading that is performed on the simulator.

 Language: It refers to the programming language of the simulator and reflects the portability degree of the simulated

primitives to be used in subsequent hardware models.

 Type: It illustrates basic assumptions regarding the simulated entities and the relationships among them.

 Layer of IoT architecture: Represents the architectural layer(s) components, standards, and parameters that are

supported by a specific simulator.

 Evaluated scale: The maximum network scale that can be simulated and provided through performing simulator

evaluations.

 Mobility: Determines whether the simulator supports objects mobility or not.

 Built-in IoT standards: Specifies different protocols that are supported by a simulator.

 Overall practicality: It is a specific measure to indicate the utility behind simulating all components and services in

the IoT environment.

 Target domain: Indicates specialization degree.

 Cyberattack simulation: It indicates if the simulator supports security simulations.

Table 8: Comparison between different IoT simulators

Simulator Scope Last

Update

Language Type Layer(s) of

IoT

Architecture

Evaluated

Scale

Mobility Built-in

IoT

Standards

Overall

Practicality

Target

Domain

Cyber

Attack

Simulation

DPWSim

[288]

IoT 2016 Java Event-driven

scenarios,

resource-
constrained

environments|

Application

Small

scale

No Devices

Profile for

Web
Services

(DPWS)

Medium Generic No

and service-
oriented

[307]

iFogSim

[289]
IoT 2018 Java Discrete

event
Perceptual
Network/

Application

Large
scale

No No Medium Generic No

Cloudsim

[291]

Data

analysis

2016 Java Discrete

event

Application large scale Yes Yes High Cloud

Analyst

Yes

SimIoT

[292]

Data

analysis

2014 Java Discrete

event

Application Small

scale

No No Medium Generic No

IoTSim

[297]

Data

analysis

2017 Java MapReduce

model

Application Large

scale

No No Medium Generic No

Cooja

[298]

Network 2018 C /C++ Discrete

event

Perceptual

Network

Small

scale

Yes Supports all

IoT

protocols

High Generic

with

Focus on
power

constrained

sensors

Using

custom

extension-
ns

QualNet

[300]

Network 2017 C /C++ Discrete

event

Perceptual

Network

Large

scale

Yes Zigbee

/802.15.4

Medium Smart

city

Yes

CupCarbon

[304]
Network 2017 Sen Script Discrete

event and

agent-based

Perceptual
Network

Large
scale

Yes LoRaWAN/
802.15.4

High Generic No

OMNeT++

[302]

Network 2018 C++ Discrete

event

Perceptual

Network

Large

scale

Yes Manual

extension

Medium Generic Using

custom

extension-
ns

NS-3

[286]

Network 2018 C++/

Python

Discrete

event

Perceptual

Network

Large

scale

Yes LoRaWAN

802.15.4

6LoWPAN

High Generic No

8. IoT Applications

The Internet of Things is a modern communication model that envisions a close future, where devices of everyday life will

be equipped with transceivers, microcontrollers, sensors, actuators, and appropriate communication protocols that will allow them

to communicate with each other and with other clients [308] [309] [310] [311]. IoT aims to make the internet immersive and

pervasive through enabling easy access and interaction with a wide diversity of IoT devices as surveillance cameras, monitoring

sensors, and home appliances. IoT will promote the development of several applications that utilize the gigantic and diverse amount

of data, which is generated by smart devices to provide modern services for companies, citizens and organizations [312] [313].

8.1 Sensors in IoT Applications

An IoT network can commonly be described as an area that is occupied by smart sensors, which sense and control the IoT

environment [314] [315] [316] [317]. A sensor node is defined from an engineering point of view as an object that converts

chemical, biological, physical or mechanical parameters into an electrical signal. These sensors are used to measure differen t

parameters like wind speed (an anemometer), solar radiation or temperature (thermometer), where an IoT application requires

to include at least one type of sensors to collect data from the IoT environment [314]. Sensor technology is continually

improving, accordingly these devices become cheaper, smaller, more energy-efficient, and more intelligent. This will enable

more applications to be implemented and disseminated such as; environmental monitoring, disaster management, domestic,

human health, public security and early warning systems. Van Laerhoven and Schmidt provided an overview of diverse types

of sensors that can be utilized in constructing IoT applications. The following section provides a concise preview of these

sensors:

1. Light sensor: It is an electronic device used to detect light. The main function of these sensors is to provide information

about the light density, intensity, type (artificial, sunlight), color temperature (wavelength), and light reflection. There are

many types of light sensors like photodiode, UV-sensors, color sensors, IR sensors, etc. The light sensor is considered to

be a rich source of data at a very low cost, as it has low energy consumption.

2. Audio and microphone sensor: It provides information about various sound types (noise, music, speaking) with minimum

processing capabilities.

3. Accelerometer sensor: It provides information about the motion, the acceleration or the inclination of any mobile device,

where angular sensors, accelerometers, and mercury switches are examples of this type of sensors.

4. Location sensors: These sensors provide important information about collocation, location, proximity, and position of

devices, users or environment. Many applications can be applied using this type of sensors such as GPS, GSM, and active

badge systems [4] [318] [319].

5. Touch sensors: Smart devices, which are handled by users, could profit from this type of sensors, as it can be implemented

directly with a specific conductive surface, such as skin conductance or indirectly via temperature sensors or light sensors.

These sensors tend to reduce energy consumption significantly, particularly for devices that operate in the user’s hand.

6. Temperature sensors: These sensors are distinctive as they are easy to use and very cheap. Thus, they can be implemented

in many applications such as temperature measurement, fumes and flue gases, body heat detection, and applications of

rubber and plastic manufacturing processes, etc.

7. Pressure sensor: It is utilized to measure many parameters such as the pressure of liquids or gases, altitude or water level.

8. Medical Sensors: Improving the efficiency of biomedical systems and the healthcare infrastructure is one of the most

challenging objectives in this era, due to the need of offering quality care to patients with low costs, as well as tackling the

shortage problem in nursing staff. IoT sensors can be utilized to resolve the aforementioned issues through monitoring and

measuring several medical parameters like blood glucose levels, heart rate, blood pressure, respiration rate, pulse rate and

body temperature in the patient’s body without any human interference. Medical applications aim to remotely monitor a

patient’s health and consequently, transfer the sensed data directly to the doctors to take a proper decision [28].

9. Neural Sensors: Nowadays, it is easy to comprehend neural signals that come from the human brain, deduce the brain

state and train it for a better focus and attention. These operations are known as neuron feedback, while the technology

utilized in this operation is called Electroencephalography or also known as a brain-computer interface and totally depends

on the electromagnetic field that surrounds humans’ brains. This field is generated as a result of the communication between

the neurons of the human brain and it is measured in terms of frequencies. Human brain signals can be classified according

to their frequencies into gamma, theta, beta, delta, and alpha. Depending on the signal type, it can be concluded whether

the brain is wandering in thoughts, calm, etc. in order to train the brain later on to be more focused, have better mental

well-being, manage stress and to pay better attention towards things [27] [28].

10. Environmental and Chemical Sensors: These sensors are utilized to detect physical, biological, and chemical

environmental parameters such as pressure, temperature, humidity, air pollution, and water pollution [320]. A barometer

and a thermometer measure the pressure and the temperature parameters, while the air quality is measured through sensors

that detect the presence of gases and other polluters in the air. Chemical sensors comprise of transducer and recognition

part, where electronic tongue (e-tongue) and electronic nose (e-nose) are examples of applications that are developed

depending on this technology [321]. Both of e-nose and e-tongue applications are based on the data generated by chemical

sensors, which will be then analyzed by different pattern recognition to identify the stimulus. Furthermore, environmental

and chemical sensors play a major role in monitoring the level of pollution in smart city applications [28].

11. Mobile Phone-Based Sensors: Today smartphones not only serve as a means of communications and computing

operations, but they also provide a valuable set of embedded sensors [322]. These sensors enable the deployment of many

applications in various domains, such as accelerometer, camera and microphone, magnetometer, GPS and light sensor.

8.2 Recent IoT Applications

This paradigm finds applications in many distinctive aspects such as medical aids, home automation, mobile healthcare,

industrial automation, elderly assistance, smart city, smart grid and many other applications [42]. In this section, some of these

applications will be summarized as follows:

8.2.1 Smart Cities

The application of the IoT field toward urban domains is of particular interest. This is coming from a strong motivation of

numerous national governments to adopt information and communication technology (ICT) in the management of public affairs,

hence realizing the so-called Smart City concept [323]. Smart city aims to make superior utilization of public resources as shown in

Figure 16 and to decrease operational costs of public management on many traditional public services such as lighting, transporting

and parking. Also, it supports the surveillance of public areas and garbage collection, while it increases the QoS that is offered to

the citizens. Furthermore, the collected information from urban environments could be used to improve the awareness of the citizens

about the status of their city. Despite the aforementioned benefits, the smart city market has not truly taken off yet, for a number of

technical, political, and budgetary obstacles.

Table 9 shows different types of services with their appropriate communication protocols, expected traffic, maximum

acceptable delay, source of energy for each service and finally an estimation on the feasibility of each service based on the

technology it implements. The following subsections explain different services that can be deployed in a smart city.

Table 9: Services specification for the smart city project [323]

Service Network types(S) Traffic rate Tolerable delay Energy Source Feasibility

Structural health 802.15.4; Wi-Fi and

Ethernet

1 packet every 10 min per

device

30 min for data;10 sec

for alarms

Mostly battery

powered

Easy to achieve but seismograph

could be difficult to integrate

Waste management Wi-Fi;3G and 4G 1 packet every hour per

device

30 min for data Battery-powered or

energy harvesters

Possible to achieve but needs smart

bins

Air quality

monitoring

802.15.4; Bluetooth

and Wi-Fi

1 packet t every 30 min per

device

5 min for data Photovoltaic panels

for each device

Easy to realize however greenhouse

sensors may be from the cost wise
expensive

Noise monitoring 802.15.4 and

Ethernet

1 packet every 10 min per

device

5 min for data;10 sec

for alarms

Battery-powered or

energy harvesters

Sound pattern recognition is difficult

to be implemented on resource-
constrained devices

Traffic congestion 802.15.4; Bluetooth;

Wi-Fi and Ethernet

1 packet every 10 min per

device

5 min for data Battery-powered or

energy harvesters

Needs the realization of both noise

monitoring and air quality

City energy

consumption

PLC and Ethernet 1 packet every 10 min per

device

5 min for data; tighter

requirements for

control

Mains powered Simple to achieve, but requires the

permission of power operators

Smart parking 802.15.4 and
Ethernet

On-demand 1 min energy harvester Smart car parking systems are
available on the markets, so these

projects are easy to be implemented

Smart lighting 802.15.4; Wi-Fi and

Ethernet

On-demand 1 min Mains powered Requires upgrading the existing

infrastructure

Automation and
salubrity of public

buildings

802.15.4; Bluetooth;
Wi-Fi and Ethernet

1 packet every 10 min for
remote monitoring,1 packet

kt every 30 min for local

control

5 min for remote
monitoring, few

seconds for local

control

Mains powered, and
battery-powered

Needs intervention on the existing
infrastructure

Intelligent City

Intelligent Hospital
Intelligent Highway

Intelligent Manufacturing

Cloud and Services

Municipal Command and Control

Center

Responsive

 Store

Hospital Optimization

Traffic Flow Optimization

Factory Optimization

Smart Grid

Logistics Optimization

Figure 16: Smart city applications

8.2.1.1 Structural Health of Buildings

This service requires continual monitoring of the specifications of the areas that are prone to the effects of outside agents

and the conditions of every building. IoT sensors that are deployed in these buildings should construct a database containing

information about the measurement of building structural integrity [324]. There are many types of IoT sensors that can be deployed

in this area such as distortion and vibration, which are responsible for measuring buildings stress, atmospheric sensors for sensing

pollution level of the surrounding area and the sensors that are responsible for measuring the temperature and the humidity of the

environment [323]. Employing IoT technology in this field reduces the cost of human periodic checking on building health through

deploying a number of wireless sensors on the building and the surrounding area.

8.2.1.2 Waste Management

Waste disposal is an essential problem in many modern cities, because of both the storage constraints of garbage in landfills

and the cost of this service. Applying IoT in this domain will lead to significant ecological advantages and significant cost savings.

For example, the utilization of smart garbage collection to detect waste level and to optimize the garbage truck route will decrease

the cost of the garbage collection process and will enhance the quality of recycling. To attain these objectives, IoT must connect the

smart garbage collectors with a control center that processes the sensed data by an optimization software and then determine the

best management of this operation [323].

8.2.1.3 Air Quality and Noise Monitoring

Sound and air pollution are escalating problems nowadays. It is important to monitor air quality and keep it within

acceptable limits for a healthy living and a better future for all organisms. Air quality monitoring gives estimations of gases and

toxic concentrations to be then analyzed and interpreted, allowing authorities to monitor air pollution in distinctive zones,

consequently taking action against any pollution. In such a way, individuals can find the healthiest places to practice outdoor

exercises, also they can access their favoured training applications that are connected to IoT infrastructure [325] [326].

8.2.1.4 Traffic Congestion

Traffic management is an issue that most cities confront today. Investing in smart traffic solutions makes sense, as more

than half of the world’s population were reported living in cities in 2012 [28]. Hence, many cities try to improve transportation by

deploying smart services like smart traffic signals and developing applications for smart parking. Furthermore, improving smart

transportation systems will increase transportation capacity and make traveling safer, efficient, and secure [327].

 Embedding IoT sensors in smart traffic areas will alleviate congestion, respond rapidly to any accident or incident, and manage the

daily traffic in smart transportation environments. The major objectives of smart transportation systems are to minimize traffic

congestion and provide the individual with hassle-free and easy parking. Furthermore, it will help to avoid accidents by properly

routing the traffic and informing the drivers about other bad drivers [28]. Sensors technologies that control these applications are

accelerometers for speed, RFIDs for vehicle identification, GPS sensors for location, gyroscopes for direction, and cameras for

recording traffic and vehicle movements. The aforementioned sensors are utilized in the following applications:

1. Traffic monitoring and management applications: Each vehicle in a smart city that is connected to other vehicles and a

cloud in a wireless network must be occupied with at least one IoT sensor such as RFID, GPS, cameras to assess traffic

conditions in distinctive areas. Traffic congestion is detected using smartphone sensors like GPS and accelerometers, where

these sensors are used to detect vehicle movement patterns while the individual is driving. The sensed data then will be

sent to map applications in order to be analyzed and subsequently guides the drivers to select the best-uncrowded paths

[28] [328].

2. Applications to ensure safety: Several IoT applications have been created to help drivers become safer through monitoring

their driving behavior and subsequently guiding them to drive safely, this is done through determining when they are

feeling tired or drowsy and aiding them to deal with such situations or suggesting taking a rest. There are many IoT

applications that monitor drivers’ behaviors such as eye movement recognition, face detection, and pressure detection on

the steering wheel [329] [330]. Such applications can be deployed on a smartphone that is occupied by a gyroscope, GPS

and accelerometer sensors, which allow analyzing the sensed data to take a suitable decision for safer driving.

3. Parking Guidance and Information (PGI) systems: In order to solve vehicle parking issues, different kinds of PGI

applications have been proposed. These systems supply vehicle drivers with the data that help them in finding available

parking places in their controlled zones, via virtual message signs on the street or via web applications [331] [332]. PGI

systems try to reduce traffic congestion by helping drivers find free parking places without squandering time in looking for

a vehicle park. The parking application consists of four primary components, which are parking space information

distribution, parking surveillance instrument, control center, and communications network. Also, it uses bar-code machines

and barriers to count the number of vehicles that are entering and departing specific park region. Thus, by using PGI

applications neither parking supervisor nor drivers are required to know the occupancy status of a particular parking space.

Furthermore, PGI systems set up cameras and sensors near the parking zone for vehicle detection and monitoring. These

sensors are classified into two types; the on-Roadway and the off-Roadway sensors, where on-Roadway sensors are

implemented on the road surface, while the other type sensors are distributed above the road as shown in Figure 17 [333].

4. Smart traffic lights: These sensors are prepared with sensing, processing, and communication abilities, which allow them

to sense the traffic jam and the amount of activity going on a specific way. The sensed data will be analyzed and then will

be transmitted to a contiguous traffic light or a central controller in order to take suitable action, for instance in an

emergency circumstance the traffic lights allocate a lane to an ambulance. Briefly, technologies that are required to build

smart traffic lights applications are communication protocols, cameras, and data analysis systems [28].

5. Accident detection applications: Smartphone applications can detect the occurrence of any road incident with the assistance

of acoustic information and accelerometer sensors. It instantly transmits the data with additional circumstantial data, such

as onsite and area images to the closest hospital. Subsequently, the first responder will know about the whole situation and

the degree of medical assistance that is required to present an appropriate degree of help.

Figure 17: PGI system architecture

8.2.1 5 Smart Grid

It is an electrical network that smartly connects and integrates the activities of many users, whether they are producers or

consumers or those that do both, to effectively afford economic, sustainable and secure power resources. A Smart Grid employs

inventive services and products with intelligent surveillance, self-healing technologies, communication, and control to accomplish

the following purposes [334]:

1. Permitting customers to optimize the operations of the smart grid system.

2. Providing customers with more data and choices of power supply.

3. Significantly diminishing the environmental effect on the entire power supply systems.

4. Providing enhanced levels of security and reliability on power supply systems.

5. Enabling distribution of the generation and utilization processes of renewable energy resources.

8.2.1.6 Automation and Salubrity of Public Buildings

This significant application aims to achieve salubrity of the environment and to alleviate energy consumption problem in

public buildings such as museums, administration offices and schools [323], which improves the level of comfort for the individuals,

enhances the efficiency, while it decreases the costs of heating and cooling [335]. This is accomplished by utilizing appropriate

types of actuators and sensors that control humidity, temperature, and lights.

8.2.1.7 Smart Water Systems

It develops a modern approach that promotes water security from significant future risks such as rapid urbanization,

population growth, weak policies, aging infrastructure and climate changes, where these factors will increase the burdens on water

resources. Water is delivered to consumers through complex distribution systems. Thus, these systems should supply potable and

safe water with adequate pressure. Nevertheless, any failure that infects these systems will lead to waste and declination of the

quality of water. Hence, a novel water management procedure is robustly required to carefully control water distribution network

and to detect any deficiencies promptly. The primary objectives of Smart Water Networks (SWNS) are to construct a complete

surveillance system, data acquisition, integrating sensors technology, securing the gathered information, information analysis, and

take decisions in real-time [336]. SWN operation comprises of many steps, where the first step is to have a schematic visualization

to collect full information of water network, like pipes, tanks, air valves, pumps, and stabilizers, in order to group them in the next

step in geographic information framework. After that, a set of sensors will be deployed to continuously sense many water parameters

such as pressure, quality, and flow. Finally, the sensed data will be transmitted through communication channels to be analyzed by

an information system to take a suitable action [337].

8.2.2 Medical and Healthcare Applications

Wireless body area networks and WSNs that are utilized in both healthcare and medical applications have received an

important interest, as they have major roles in remote monitoring of a patient's situation in real-time, life quality enhancement of

the elderly via smart environment, drugs and medical database administrator, avoidance of critical patient situations, welfare

services, etc. According to that, it is clear that applying IoT in medical applications will improve radically medical environments

[313]. For example, smart health applications allow elderly and patients who are suffering from serious health conditions to live

independently apart from hospital restrictions, through utilizing IoT sensors, which continually monitor and record different

parameters of their health conditions. Subsequently, delivering warnings in case of finding any unusual indicator. Smart sensors,

which are dedicated, for healthcare can measure, monitor and analyze different health status conditions such as heart rate, blood

pressure, oxygen saturation in the blood and glucose levels. After measuring the aforementioned parameters, the sensed data will

be transmitted to a specific database in order to be analyzed and accordingly to take a proper action, which will enhance the patient’s

health as shown in Figure 18 [28] [313].

Stress recognition is another healthcare application that is based on sensors of smartphones, which sense the stress level of

an individual. This can be achieved through measuring physiological and behavioral data such as blood pressure, skin conductance,

heart rate, pupil diameter, and cortisol level to identify whether the person is feeling stress or not [338].

8.2.3 Agricultural Applications

Agriculture plays an important role in any country’s economy as it provides extensive employment opportunities for

individuals. However, numerous factors affect this field such as soil moisture, carbon dioxide and changes in temperature, which

affect the crops, yield. Thus, it is vital to have surveillance systems on these factors to manage harvest growth and to raise agricultural

production yield by deploying IoT sensors in agricultural areas [339]. These sensors are able to monitor different environmental

parameters such as humidity, temperature, barometric pressure, and luminosity. Any agricultural smart application comprises of

two sides, the transmitter side and the gateway receiver side. The transmitter side consists of many sensors that are connected to a

wireless network in order to sense different agricultural parameters, while the receiver side monitors and analyzes the sensed

parameters, which will be displayed by a user through a web interface as shown in Figure 19.

8.2.4 Smart Home (SH)

SH technology has changed individual life by providing connectivity between everyone and everything regardless of the

place and the time. This application changes a traditional home into an automated building with installed and controlled smart

devices such as heating, air conditioning, ventilation, security systems and lightings as shown in Figure 20. These systems, which

consist of sensors and switches that are sometimes called gateways, communicate with a central station that can be controlled

through a user interface installed in a mobile phone, tablet or computer and managed by IoT technology [340]. Smart home system

aims to improve domestic comfort, security, leisure, and convenience, while minifying energy consumption through optimizing

domestic energy management techniques [341]. SH applications are characterized by the following features:

1. Compatibility with distinctive communication protocols: It can merge numerous heterogeneous communication

techniques through installing different communication interfaces on a home gateway.

2. Widespread services: With the utilization of widespread access networks, real-time smart home data can be obtained

easily regardless of where the clients are.

3. Comprehensive perception: Real-time surveillance of domestic and comprehensive perception can be attained by

deploying an assortment of physical and logical sensors.

4. Easily to be controlled: Since SH applications can be managed via mobile phones, PCs and other communication

devices.

8.2.5 Smart Manufacturing System (SMS)

Maintainable manufacturing competitiveness relies on its capabilities with respect to quality, cost, delivery, and flexibility

[342]. SMS tries to maximize those capabilities through utilizing advanced technologies, which promote quick flow and widespread

utilization of digital data inside and among manufacturing systems. Also, it integrates information and communication technologies

with smart software applications to:

1. Enhance the utilization of material, energy, and labor to produce high quality and customized items to be delivered on time.

2. Rapidly respond to changes in supply chains and mart demands.

Smart manufacturing model is distinctive from other manufacturing paradigms as it determines a vision of the next

manufacturing generation with improved capabilities [343]. SMS adapts to any new circumstances by utilizing real-time information

for intelligent decision-making and by predicting and preventing any failure proactively.

8.2.6 Internet of Robotics Things (IoRT)

In diverse industries or even in offices or homes, robotics come in all sizes and shapes from greeting robotics in restaurants,

retail stores or hotels to heavy robot arms in factories. The internet of robotics is an emerging technology that integrates robots as

an object into an IoT environment to enable connections through different protocols. IoRT integrates smart robots through the

internet to perform personal activities or different professional operations as monitoring activities and events, controlling objects in

the real-world and manufacturing. In IoRT application, multiple intelligent sensors and smaller robots are connected and

collaborated in an orchestrated manner to achieve the goal of large robotic. There are many applications that are implemented

through IoRT such as a self-driving vehicle, software robots to avoid human errors and save time, Smart Manufacturing (Industry

4.0), adaptive digital factory and automated IT processing applications

Smart devices with sensors

connected to gateway device

 (smartwatch, smartphone etc.)

Monitor user s health

The patient get health

information from the

cloud

Analyze the

 measurements

Datacenter performs data analysis on

measurements of sensors

Send feedback to

 the cloud patient

Figure 18: Smart healthcare system

GPRS

MQTT

Cloud
MQTT

Figure 19: IoT agricultural application

Figure 20: Applications of smart home technology [344]

8.2.7 Oil and Gas

IoT paradigm has found its way through the oil and gas domain. As of now, many IoT companies help factory managers,

field staff and machine operators to improve production, protect the safety of employees in work environments and predict the time

at which machines require maintenance. IoT technology permits machines, devices, and equipment to collaborate and communicate

with each other, which will enable oil and gas companies to create applications, manage and store data and utilize suitable security

protocols based on scientific methodologies.

9. Broad and Open Research Challenges

IoT is a fabulous technology concept that for a long period was merely a dream. Nowadays, IoT has taken the world by the

storm and it is expanding with an unbelievable rate. Morgan Stanley predicted that the number of smart and heterogeneous devices

that will be connected to the internet would exceed 75 billion devices in 2020 [41] [345]. However, IoT services, applications, and

devices face numerous issues and challenges that are deemed to be a primary hindrance in the implementation of IoT from different

aspects, such as coverage and protocols, communication technology, energy-saving, bandwidth efficiency, interoperability and

integration, memory management, signal acquisition and processing, scalability, deployment, security, fog computing, and

computational limitations [346]. Further details are provided below [12] [21] [347]:

1. Building smart environments based on IoT paradigm: The first defiance in creating an intelligent environment is to

embed countless smart devices, sensors and supplementary technologies in that environment and setting up communication

between them. Another issue is to gather and transform massive amounts of data between smart things, which leads to

medium contentions and collisions issues.

2. Privacy and security of IoT applications: The heterogeneity of IoT communication technologies and the diversity of its

applications and services will lead to various sets of security challenges. Protecting the security of IoT architecture from

different attacks and potentially malicious software necessitates utilizing many security measures. Those measures are

relevant to protection laws, privacy enhancement technologies, privacy tools and standards to control individual

information (data privacy), personal physical location movement (location privacy), and various security methodologies.

3. Compatibility: Devices from diverse vendors will be connected and embedded to the IoT network, so issues regarding

monitoring and tagging will arise. These issues can be solved under the condition that all manufacturers agree on the same

standards, which is impossible to be attained [348].

4. Scalability: IoT is expected to face a lot of challenges associated with the probable abundant number of co-operating

entities besides the major differences in the interaction behaviors and patterns. Thus, current IoT architecture requires to

be scaled up in order to accommodate the rising of intelligent devices number.

5. Energy Efficiency: Small smart devices that compose IoT systems, suffer from limited battery power that is impossible to

be replaced, which will lead to ultimately global energy crisis and heavy power consumption, memory and processing

capabilities. Based on that, routing processes and compute-intensive applications cannot run appropriately on these devices.

Keeping in mind the constrained energy of smart devices is not adequate to suit the utilization of WSN routing protocols.

Even though some routing protocols support low-power communication, but they are at the infancy stage of development.

6. Mobility Management: Mobile nodes in IoT environments can create many confrontations in terms of the efficiency of

routing protocols and IoT networks. The existing mobility protocols of sensor networks, mobile ad hoc networks, and

vehicular ad hoc networks cannot cope with different routing issues, due to the limited processing and energy capabilities

of these sensors.

7. Cost of maintenance and services: IoT environments contain an extensive number of connected devices, which will, in

turn, increase the cost required for maintenance and servicing. One solution to mitigate this problem is to produce devices

and sensors in such a way that they require less maintenance.

8. Internet disconnection problem: Since the internet connection is the soul of IoT, thereby the disconnections in internet

services will degrade the performance of IoT devices and lead to poor QoS. Also, a limited number of concurrent devices

that can communicate with the base station will reduce the number of service recipients.

10. Conclusions

The emerging notion of IoTs technology has swiftly disseminated throughout our contemporary life, where it aims to

optimize the quality of our life by embedding smart things, applications, and technologies to automate all things in the environment

that surrounds us. What distinguishes our survey paper from other works is that it covers the most important sides of the IoT

paradigm, with a concentration on what has been done and what has required more research. Specifically, this paper presents an

overview of IoT evolution, its stack’s protocols, technologies, applications, and the research challenges facing the implementation

of this technology. This, in turn, provides a good ground for the researchers who are whether interested in designing realistic IoT

projects or developing novel theoretical approaches in the IoT field by acquiring deep knowledge in different IoT aspects.

Furthermore, some of the prevalent issues and challenges that face the deployment and the design of IoT applications were

discussed. Future research directions have been further described considering IoT stack and middleware architectures. Additionally,

this paper presents the interaction between different IoT network components, which are smart nodes, fog nodes, and cloud

computing nodes. Lastly, details of IoT application domains were demonstrated followed by not only open research issues, but also

rigorous analysis of the research history along with efficient recommendations.

10.1 Research History Analysis and Recommendations

The motivation behind this research is to inform the researcher’s community with depth and breadth of recent and future

works in different IoT domains. A massive number of researches in different IoT fields have been published in different conferences

and journals. The explosive expansion of IoT technology has opened many scientific and engineering opportunities and issues,

which will require huge research efforts from different sectors such as industries, communications, academics, etc. The collaborative

efforts and works of these sectors will create novel services, technologies, architectures and protocols, which are necessary to face

the challenges of IoT. To demonstrate the ongoing research work in IoT stack architecture and middleware, we used Scopus database

to extract the number of publications from 2011 until 2020. Figure 21 displays the distribution of ongoing researches and

developments in various layers of IoT architecture, where it denotes a trend towards research in the network layer as it has the

largest number of researches compared to other layers with 1183 publications. Network layer developments and enhancements have

taken the attention of the researchers’ community since it confronts many focal emerging design challenges that require to be tackled

and ameliorated swiftly, as specifying the optimal route that guarantees the security and accuracy of IoT data transmission. Other

issues that may encounter this layer include finding the best procedures to control network bottlenecks and congestions, appropriate

management for different IoT QoS metrics (i.e. transmit time, throughput and efficiency, delay, availability, jitter, etc.), and

overcoming issues caused by networks heterogeneity such as various routing protocols, distinct identity techniques, etc. In other

words, coping with the network layer security challenges is as important as solving the above issues, where these challenges can be

a denial of service attack, a man in the middle attack, a storage attack, and an exploit attack. The number of researches and

publications of data link layer and communication protocols was 931, where numerous traditional enterprise communication

technologies, such as Ethernet and Wi-Fi, have been adopted or evolved to be utilized in IoT environments. Simultaneously, many

new communication protocols have been developed to face the challenges and requirements of harsh IoT environments, where

devices, distances, and bandwidth challenges have to be considered. They also, find new mechanisms to detect and correct the

corrupted data, control medium access for broadcast networks, and keep both transmitter and receiver synchronous in data

transmission to avoid overwhelming the receiving side with data (i.e. flow control). Similar to a network layer, the data link layer

is prone to many security problems that need to be faced and solved by researchers such as address resolution protocol spoofing that

permits an attacker to masquerade as a legal host and subsequently intercept, alter or stop data, in addition to MAC flooding and

dynamic host configuration protocol attacks. The application layer occupied the third rank in the number of researches with 561

publications. In fact, the bulk of the responsibility for the development and improvement of this layer lies on the programmers and

developers. As they are in charge of ensuring that all IoT devices present a consistent interface that abstracts their internal and

heterogeneous details, which will guarantee to organize and transfer data smoothly among these devices. On the other hand, they

should continually improve and provide users with applications interfaces (i.e. API) that permit them to control, calibrate, and

diagnose their devices, which will promote the integrity of control applications. However, the application layer is exposed to many

attacks, that endeavor to adversely affect the normal operation of the system, such as physical attacks by overwhelming devices

with dummy stimuli, eavesdropping, reprogramming, denial of service attacks and physical capture. Hence, more research efforts

are needed to produce new methods that detect and mitigate such attacks. The transport layer came in last in the number of researches

as it got 231 publications. This layer is responsible for describing the nature and the quality of delivering data, as well ensuring that

messages are transmitted in-order, error-free with no duplications or losses, and establishing an end to end connection. Thus, it

requires more attention to fabricate novel methods and procedures that conquer many transport layer issues such as high packet loss,

low bandwidth requirement, error control, flow control, congestion control, low power, low memory availability alongside the

prevalent security issues.

Figure 21: Number of publications in IoT layers from 2011 until 2020

As previously mentioned in section 6, middleware can be defined as a set of sublayers or a software layer interposed

between the application and the technological layers. Interestingly, the essential role of this model is to hide the different

technologies of IoT assets, which will consequently keep programmers away from problems that are not pertinent to their concern.

It also prevents them from having to be aware of rigorous details related to the heterogeneous technologies in the lower layer.

Middleware acquires more prominence and attention owing to its primary role in simplifying the creation of services and

applications as well as integrating conventional technologies into new ones. However, the nature of the IoT environment makes the

role of middleware challenging and difficult since the services that are provided by smart things are usually device-dependent, less

reliable, mobile and dynamic. Moreover, middleware solutions have to address functional components such as service composition,

registration and discovery and non-functional needs, such as ease of deployment, privacy, security, availability, reliability,

timeliness, and scalability. Furthermore, IoT middleware must include architectural properties that offer programming

distributiveness, autonomy, context awareness, adaptability, interoperability, and abstraction. It can be seen from Figure 22 that a

few contemporary studies have been qualitatively evaluated and surveyed in different architectures of IoT middleware, especially

in actor-based architecture which only has 5 publications regarding it. This model was proposed to cope with parallel programming

and processing (i.e concurrent programming) in high-performance environments. Despite the widespread availability of multi-core

processors with high capabilities, minimal research was found in this field due to the fact that the concurrent programming used in

this model is error-prone, complicated to implement, and exhibits indecisive behaviors that make it difficult to predict and address.

Based on the above, the major issues need to be addressed by the research community are the lack of progress (i.e. deadlocks,

livelocks) and message protocol violations (i.e. message order violation, bad message interleaving, memory inconsistency). Event-

based and cloud-based architectures are not much better in this regard, with the former having 21 publications and the latter having

75. The event-based model, as we stated in section 6, presents interesting features to build highly decoupled and distributed

applications, where each of them assumes a specific structure of notifications, application scalability degree and on the way that

permit consumers to announce their interest regarding some event. In spite of that, this architecture faces many challenges such as

events delivery guarantee, lack of operational tools, and data and transaction management along with processing events in order,

particularly when the same consumer runs over multiple instances. As illustrated previously, cloud-based architecture was proposed

to meet several requirements of complex analytical services. Today, the emergence of new services and applications that implement

time-critical control loops and cannot be performed in the cloud because of insufficient bandwidth or unpredictable delays, creates

new challenges that need to be solved. Furthermore, one of the most critical issues that requires further research efforts is the limited

security support provided by the cloud-based architecture, since it cannot be applied in resource-constrained IoT devices. Service-

based architecture is considered to be one of the most efficient designing styles, as it provides many interesting features for

applications and users such as availability, scalability, reusability, and platform independence, which is why the number of

publications in this field reached a high of 421 published papers as compared to the lesser amount of research done regarding its

brethren subjects. Despite the above features, this architecture endures many open research issues such as delays, service

identification, service discovery, complex service management, and it does not suit GUI applications that require heavy data traffic

besides homogeneous applications.

Figure 22: Number of publications in different middleware architectures from 2011 to 2020

References

[1] L. Yan, Y. Zhang and L. T. Yang, The Internet of Things: From RFID to the Next-Generation Pervasive Networked Systems, New York:

Auerbach publications,Taylor and Francis Group, 2008.

[2] K. Anshton, "That ’internet of things’ thing in the real world, things matter," 26 June 2009. [Online]. Available:

https://www.rfidjournal.com/articles/view?4986&fbclid=IwAR1r5XFF5_2gcuze1fdcPrN6ryzRc68xhR1XyRD2aGulYFYy1QRzr_G4oa

s. [Accessed 17 February 2019].

[3] K. Darabkh, W. Albtoush and I. Jafar, "Improved Clustering Algorithms for Target Tracking in Wireless Sensor Networks," The Journal

of Supercomputing, vol. 73, no. 5, p. 1952–1977, 2017.

[4] K. Darabkh, M. El-Yabroudi and A. El-Mousa, "BPA-CRP: A Balanced Power-Aware Clustering and Routing Protocol for Wireless

Sensor Networks," Ad Hoc Networks, vol. 82, pp. 155-171, 2018.

[5] K. Darabkh, N. Al-Maaitah, I. Jafar and A. Khalifeh, "Energy Efficient Clustering Algorithm for Wireless Sensor Networks," in

International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2017.

[6] H. Steven, "The Internet of Things How the world will be connected in 2025," Master thesis,Utrecht University, 2016.

[7] R. Hamidouche, Z. Aliouat, A. Ari and M. Gueroui, "An efficient clustering strategy avoiding buffer overflow in IoT sensors: a bio-

inspired based approach," IEEE Access, vol. 7, pp. 156733 - 156751, 2019.

[8] K. Darabkh and M. Al-Yabrodi, "A Reliable Relaying Protocol in Wireless Sensor Networks," in European Conference on Electrical

Engineering and Computer Science (EECS), Bern, Switzerland, 2017.

[9] M. Alhasanat, S. Althunibat, K. Darabkh, A. Alhasanat and M. Alsafasfeh, "A Physical-Layer Key Distribution Mechanism for IoT

Networks," Mobile Networks and Applications, p. 1–6, 2019.

[10] K. Darabkh, S. Odetallah, Z. Al-qudah and A. Khalifeh, "A New Density-Based Relaying Protocol for Wireless Sensor Networks," in

14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018.

[11] D. Uckelmann, M. Harrison and F. Michahelles, "An Architectural Approach Towards the Future Internet of Things," in Architecting the

Internet of Things, Berlin, Heidelberg, pringer-Verlag, 2011, pp. 1-24.

[12] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions,"

Future Generation Computer Systems,Elsevier, vol. 29, no. 7, pp. 1645–1660,, 2013.

[13] L. Tan and W. Neng, "Future Internet: The Internet of Things," in International Conference on Advanced Computer Theory and

Engineering(ICACTE), Chengdu, China, 2010.

[14] K. Darabkh, J. Zomot and Z. Al-qudah, "EDB-CHS-BOF: energy and distance-based cluster head selection with balanced objective

function protocol," IET Communications , vol. 13, no. 19, pp. 3168 - 3180, 2019.

[15] K. Darabkh, S. Odetallah, Z. Al-qudah, A. Khalifeh and M. Shurman, "Energy–aware and density-based clustering and relaying protocol

(EA-DB-CRP) for gathering data in wireless sensor networks," Applied Soft Computing, vol. 80, pp. 154-166, 2019.

[16] K. Darabkh, M. Alfawares and S. Althunibat, "MDRMA: Multi-data rate mobility-aware AODV-based protocol for flying ad-hoc

networks," Vehicular Communications, vol. 18, 2019.

[17] K. Darabkh, M. .Judeh, H. BanySalameh and S. Althunibat, "Mobility aware and dual phase AODV protocol with adaptive hello messages

over vehicular ad hoc networks," AEU- International Journal of Electronics and Communications, vol. 2018, pp. 277-292, 2018.

[18] K. Darabkh and O. Alsukour, "Novel Protocols for Improving the Performance of ODMRP and EODMRP over Mobile Ad Hoc

Networks," International Journal of Distributed Sensor Networks (IJDSN) , vol. 11, no. 10, 2015 .

[19] Lu Tan and N. Wang, "Future Internet: The Internet of Things," in International Conference on Advanced Computer Theory and

Engineering(ICACTE), Chengdu, China, 2010.

[20] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey," Computer Networks, Elsevier, vol. 54, no. 15, p. 2787–2805,

2010.

[21] M. Daniele, S. Sabrina, P. Francesco and C. Imrich, "Internet of things: vision, applications and research challenges," Ad Hoc Networks,

Elsevier, vol. 10, no. 7, p. 1497–1516, 2012.

[22] O. Said and M. Masud, "Towards internet of things: survey and future vision," International Journal of Computer Networks (IJCN), vol.

5, no. 1, 2013.

[23] A. Whitmore, A. Agarwal and L. Da Xu, "The Internet of Things-A survey of topics and trends," Information Systems Frontiers, vol. 17,

no. 2, 2015.

[24] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications," IEEE Communications Surveys and Tutorials , vol. 17, no. 4, p. 2347–2376, 2015.

[25] S. Kraijak and P. Tuwanut, "A survey on internet of things architecture, protocols, possible applications, security, privacy, real-world

implementation and future trends," in International Conference on Communication Technology (ICCT), Hangzhou, China, 2016.

[26] P. Masek, J. Hosek, K. Zeman, M. Stusek, D. Kovac, P. Cika, J. Masek, S. Andreev and F. Kröpfl, "International Journal of Distributed

Sensor Networks," Implementation of True IoT Vision: Survey on Enabling Protocols and Hands-On Experience, vol. 2016, 2016.

[27] R. Pratim, "A survey on Internet of Things architectures," Journal of King Saud University - Computer and Information Sciences, vol. 30,

no. 3, pp. 291-319, 2016.

[28] P. Sethi and S. Sarangi, "Internet of Things: Architectures, Protocols, and Applications," Hindawi Journal of Electrical and Computer

Engineering, vol. 2017, pp. 1-25, 2017.

[29] M. Burhanuddin, A. Mohammed, R. Ismail and H. Basiron, "Internet of Things Architecture: Current Challenges and Future Direction,"

International Journal of Applied Engineering Research, vol. 12, no. 21, pp. 11055-11061 , 2017.

[30] A. Ngu, M. Gutierrez, V. Metsis, S. Nepal and M. Sheng, "IoT Middleware: A Survey on Issues and Enabling Technologies," IEEE

Internet of Things Journal , vol. 4, no. 1, pp. 1-20, 2016.

[31] B. N. Silva, M. Khan and K. Han, "Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges,"

IETE Technical Review, vol. 35, no. 2, pp. 205-220, 2017.

[32] M. Burhan, R. Rehman, B. Khan and B.-S. Kim, "IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey,"

Sensors, vol. 18, no. 9, 2018.

[33] H. Atlam, R. Walters and G. Wills, "Internet of Things: State-of-the-art, Challenges, Applications, and Open," International Journal of

Intelligent Computing Research, vol. 9, no. 3, 2018.

[34] A. Čolaković and M. Hadžialić, "Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,"

Computer Networks, vol. 144, pp. 17-39, 2018.

[35] J. Dizdarević, F. Carpio, A. Jukan and X. Masip-Bruin, "A Survey of Communication Protocols for Internet of Things and Related

Challenges of Fog and Cloud Computing Integration," ACM Computing Surveys, vol. 51, no. 6, 2019.

[36] B. Subramanian, K. Nathani and S. Kumar, "IoT Technology, Applications and Challenges: A Contemporary Survey," Wireless Personal

Communications, vol. 108, no. 1, p. 363–388, 2019.

[37] I. Yaqoob, I. Hashem, T. Abaker, A. Ahmed and H. Kazmi, "Internet of things forensics: Recent advances, taxonomy, requirements, and

open challenges," Future Generation Computer Systems, vol. 92, p. 265–275, 2019.

[38] V. Balas, K. Solanki, R. Kumar and M. Khari, "The History, Present and Future with IoT," in Internet of Things and Big Data Analytics

for Smart Generation, Springer, Cham, 2019, pp. 27-51.

[39] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati and M. Rossi, "Secure Communication for Smart IoT Objects:Protocol

Stacks, Use Cases and Practical Examples.," in IEEE Thirteenth International Symposium on "A World of Wireless, Mobile and

Multimedia Networks", San Francisco, 2012.

[40] V. Aleksandrovičs, E. Filičevs and J. Kampars, "Internet of Things: Structure, Features and Management," Information Technology and

Management Science,Walter de Gruyter Gmbh , vol. 19, no. 1, p. 78–84, 2016.

[41] "Internet of Things in 2020 Roadmap for the Future," 27 May 2008. [Online]. Available:

https://docbox.etsi.org/erm/Open/CERP%2020080609-10/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v1-1.pdf.

[Accessed 17 February 2019].

[42] G. Matthew and K. Simon, "Internet of Things: Services and Applications Categorization," Advances in Internet of Things, Scientific

Research, vol. 1, no. 2, pp. 27-31, 2011.

[43] L. Atzori, A. Iera and G. Morabito, "SIoT: Giving a Social Structure to the Internet of Things," IEEE Communications Letters, vol. 15,

no. 11, pp. 1193-1195, 2011.

[44] G. Gan, Z. Lu and J. Jiang, "Internet of Things Security Analysis," in Internet Technology and Applications (iTAP), Wuhan, China, 2011.

[45] R. Khan, U. Khan, R. Zaheer and S. Khan, "Future Internet: The Internet of Things Architecture, Possible Applications and Key

Challenges," in International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2012.

[46] A. Luigi, I. Antonio, M. Giacomo and N. Michele, "The social internet of things (siot) when social networks meet the internet of

things:Concept, architecture and network characterization.," Computer Networks ,Elsevier, vol. 56, no. 16, 2012.

[47] M. Hassan, B. Song and E. Huh, "A framework of sensor-cloud integration opportunities and challenges," in Proceedings of the 3rd

International Conference on Ubiquitous Information Management and Communication - ICUIMC, Suwon, Korea, 2009.

[48] A. Khalifeh, K. Rajendiran, K. Darabkh, A. Khasawneh, O. AlMomani and Z. Zinon, "On the Potential of Fuzzy Logic for Solving the

Challenges of Cooperative Multi-Robotic Wireless Sensor Network," Electronics, vol. 8, no. 12, 2019.

[49] M. R. Abdmeziem and D. Tandjaoui, "Architecting the Internet of Things: State of the art," in Robotics and Sensor Cloud, Springer,

Cham, 2015, pp. 55-75.

[50] S. Chayan, N. A. Uttama, R. P. Venkatesha and R. Abdur, "A scalable distributed architecture towards unifying IoT applications," in 2014

IEEE World Forum on Internet of Things (WF-IoT), Seoul, 2014.

[51] A. Yousefpour, G. Ishigaki, R. Gour and J. Jue, "On Reducing IoT Service Delay via Fog Offloading," IEEE Internet of Things Journal ,

vol. 5, no. 1, 2018.

[52] G. Elena, L. María and P. Víctor, "Interacting with Objects in Games Through RFID Technology," in Radio Frequency Identification

from System to Applications, London , Intech, 2013, pp. 325-340.

[53] F. Bonomi, R. Milito, P. Natarajan and J. Zhu, "Fog computing: A platform for internet of things and analytics.," in Big Data and Internet

of Things: A Roadmap for Smart Environments. Studies in Computational Intelligence, vol. 546, Switzerland, Springer International

Publishing , 2014, pp. 169-186.

[54] B. Tang, Z. Chen and G. Hefferman, "A Hierarchical Distributed Fog Computing Architecture for Big Data Analysis in Smart Cities," in

Proceedings of the ASE BigData & SocialInformatics, Kaohsiung, Taiwan, October 2015.

[55] P. Adams, 18 August 2017. [Online]. Available: https://knect365.com/cloud-enterprise-tech/article/0fa40de2-6596-4060-901d-

8bdddf167cfe/openfog-reference-architecture-for-fog-computing. [Accessed 18 February 2019].

[56] M. Aazam and E. Huh, "Fog Computing and Smart Gateway Based Communication for Cloud of Things," in International Conference on

Future Internet of Things and Cloud, Barcelona, Spain, 2014.

[57] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog Computing and Its Role in the Internet of Things," in Proceedings of the first edition

of the MCC workshop on Mobile cloud computing - MCC '12, Helsinki, Finland, 2012.

[58] OpenFog Consortium Architecture Working Group, "OpenFog Reference Architecture for Fog Computing," OpenFog Consortium, USA,

2017.

[59] R. Hamidouche, Z. Aliouat, M. Gueroui, A. Ari and L. Louail, "Classical and bio-inspired mobility in sensor networks for IoT

applications," Journal of Network and Computer Applications, vol. 121, pp. 70-88, 2018.

[60] R. Hamidouche, Z. Aliouat, A. M. Gueroui, A. A. A. Ari and L. Louail, "Classical and bio-inspired mobility in sensor networks for IoT

applications," Journal of Network and Computer Applications, vol. 121, pp. 70-88, 2018.

[61] A. Munir, P. Kansakar and S. U. Khan, "IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of

Things.," IEEE Consumer Electronics Magazine , vol. 6, no. 3, pp. 74-82, 2017.

[62] P. Miguel, P. Octavian and P. Girão, "Spread Spectrum Techniques in Wireless Communication," IEEE Instrumentation and Measurement

Society , vol. 12, no. 6, pp. 21-24, 2009.

[63] S. William, Data and computer communications eighth edition, New Jersey: Pearson Education., 2007.

[64] A. Behrouz, Data Communications and Networking 5th edition, United States of America: McGraw-Hill, 2013.

[65] F. Behrouz and C. Sophia, Data Communications and Networking 4th Edition, New York: McGraw-Hill, 2007.

[66] R. Dixon, Spread spectrum systems with commercial applications, 3rd edition, India : Wiley India Pvt. Limited, 1976.

[67] W. Quan, "Non-Linear Chirp Spread Spectrum Communication Systems of Binary Orthogonal Keying Mode thesis," Electronic Thesis

and Dissertation Repository, 2015.

[68] P. J and A. Sesay, "Performance of N-ary chirp spread spectrum modulation in the AWGN and broadband multipath channels," Wireless

2004 proceedings, 2004.

[69] C. Quintana, J. Rufo, F. Delgado and R. Jimenez, "Time-Hopping Spread-Spectrum System for Wireless Optical Communications," IEEE

Transactions on Consumer Electronics , vol. 55, no. 3, pp. 1083-1088, 2009.

[70] J. Holmes, Spread Spectrum Systems for GNSS and Wireless Communications, Norwood: Artech House, 2007.

[71] K. Saurabh and S. Poddar, "A Review on Communication Protocols Using Internet of Things," in International conference on

Microelectronic Devices, Circuits and Systems (ICMDCS) , Vellore, India, 2017.

[72] S. Mahmoud and A. Mahmoud, "A Study of Efficient Power Consumption Wireless Communication Techniques/ Modules for Internet

of Things (IoT) Applications," scientific research Advances in Internet of Things, vol. 6, no. 2, pp. 19-29, 2016.

[73] I. Timmins and T. Hazelton, "Self-monitoring cable system". USA Patent US9621262B1, 24 July 2013.

[74] D. Zeng, S. Guo and Z. Cheng, "The web of things: a survey," Journal of Communications, vol. 6, no. 6, pp. 424-438, 2011.

[75] A. A. O. Bahashwan and S. Manickam, "A Brief Review of Messaging Protocol Standards for Internet of Things (IoT)," Journal of Cyber

Security and Mobility, vol. 8, no. 1, 2018.

[76] 8 May 2019. [Online]. Available: http://www.steves-internet-guide.com/mqtt-protocol-messages-overview/. [Accessed 15 June 2019].

[77] [Online]. Available: https://1sheeld.com/mqtt-protocol/. [Accessed 14 June 2019].

[78] N. Han, "Semantic service provisioning for 6LoWPAN: powering internet of things applications on web," Institut National des Tel´

ecommunications, Ph.D. dissertation, 2015.

[79] T. Yokotani and Y. Sasaki, "Comparison with HTTP and MQTT on Required Network Resources for IoT," in International Conference

on Control, Electronics, Renewable Energy and Communications (ICCEREC), Indonesia , 2016.

[80] P. Saint-Andre, K. Smith and R. Tronçon, XMPP: The Definitive Guide Building Real-Time Applications with Jabber Technologies,

United States of America: O’Reilly Media, 2009.

[81] M. Bani Yassein, M. Shatnawi and D. Al-Zoubi, "Application Layer Protocols for the Internet of Things," in IEEE International

Conference on Internet of Things and Pervasive Systems, Morocco, 2016.

[82] H. Nguyen and L. Lacono, "RESTful IoT Authentication Protocols," in Mobile Security and Privacy Advances, Challenges and Future

Research Directions, Cambridge, United States, Todd Green, 2017, pp. 217-234.

[83] S. Solapure and H. Kenchannavar, "RPL and COAP protocols, experimental analysis for IoT: a case study," International Journal of Ad

hoc, Sensor & Ubiquitous Computing (IJASUC), vol. 10, no. 2, 2019.

[84] N. Naik, "Choice of Effective Messaging Protocols for IoT Systems: MQTT, CoAP, AMQP and HTTP," in IEEE International Systems

Engineering Symposium (ISSE), Vienna, Austria, 2017.

[85] T. Salman and R. Jain, "A Survey of Protocols and Standards for Internet of Things," Advanced Computing and Communications, vol. 1,

no. 1, 2017.

[86] A. Banks, E. Briggs, K. Borgendale and R. Gupta, "MQTT Version 5.0," OASIS Standard, 2019.

[87] K. Ari, K. ETH and H. Klaus, "RESTful Design for Internet of Things Systems," IETF, 2018.

[88] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke and B. Silverajan, "CoAP (Constrained Application Protocol) over TCP, TLS, and

WebSockets," Internet Engineering Task Force (IETF), 2018.

[89] 3 March 2019. [Online]. Available: https://amqp.readthedocs.io/en/latest/changelog.html#version-2-4-2. [Accessed 22 June 2019].

[90] March 2015. [Online]. Available: https://www.omg.org/spec/DDS. [Accessed 22 June 2019].

[91] M. Bishop, "Hypertext Transfer Protocol Version 3 (HTTP/3)," Intended status: Standards Track, 2019.

[92] 19 June 2019. [Online]. Available: https://xmpp.org/extensions/index.html. [Accessed 22 June 2019].

[93] "MQTT v5.0 now an official OASIS standard," 3 April 2019. [Online]. Available: http://mqtt.org/. [Accessed 6 August 2019].

[94] K. Saeed, N. Chaki, B. Pati, S. Bakshi and D. Mohapatra, "Internet of Things: A Survey on IoT Protocol Standards," in Advanced

Computing and Intelligent Engineering, Springer, Singapore, 2018.

[95] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner, T. Ruprechter and G. Pregartner, "Securing smart

maintenance services: Hardware-security and TLS for MQTT," in 13th International Conference on Industrial Informatics (INDIN),

Cambridge, 2015.

[96] A. Tamboli, "What We Built and the Takeaways," in Professional and Applied Computing, Berkeley, Apress,Springer, 2019, pp. 199-

209.

[97] L. Silva, "Internet of Things – Pros and cons of CoAP protocol solution for small devices," Master thesis,Mid Sweden University, 2016.

[98] 2 August 2018. [Online]. Available: https://raygun.com/blog/soap-vs-rest-vs-json/. [Accessed 21 June 2019].

[99] [Online]. Available: https://support.kemptechnologies.com/hc/en-us/articles/203863435-RESTful-API. [Accessed 21 June 2019].

[100] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego and J. Alonso-Zarate, "A Survey on Application Layer Protocols for the Internet of

Things," Transaction on IoT and Cloud Computing , 2015.

[101] "DDS Security," An OMG DDS Security, Needham, USA, 2018 .

[102] C. Bormann, A. Castellani and Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing,

vol. 16, no. 2, 2012.

[103] 2019. [Online]. Available: https://www.engineersgarage.com/Articles/Transport-Layer-Protocols. [Accessed 23 June 2019].

[104] June 2019. [Online]. Available: https://www.iotone.com/term/transmission-control-protocol-tcp/t689. [Accessed 23 June 2019].

[105] L. Eggert, G. Fairhurst and G. Shepherd, "UDP Usage Guidelines," Internet Engineering Task Force (IETF), 2018.

[106] E. Kohler, M. Handley and S. Floyd, "Datagram Congestion Control Protocol (DCCP)," Network Working Group, 2006.

[107] A. A. Ahmed and W. Ali, "A lightweight reliability mechanism proposed for datagram congestion control protocol over wireless

multimedia sensor networks," Transactions on Emerging Telecommunications Technologies, vol. 29, no. 3, 2018.

[108] 23 Septemer 2018. [Online]. Available: https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-gprs-sctp.html.

[Accessed 25 June 2019].

[109] R. Stewart and C. Metz, "SCTP: new transport protocol for TCP/IP," IEEE Internet Computing, vol. 5, no. 6, 2001.

[110] E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.3," IETF, 2018.

[111] O'Reilly, "Transport Layer Security (TLS)," [Online]. Available: https://hpbn.co/transport-layer-security-tls/. [Accessed 28 June 2019].

[112] "Datagram Transport Layer Security: Revision history," 18 May 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security. [Accessed 29 June 2019].

[113] F. Baker, A. Weinrib, B. Braden, L. Zhang and S. Bradner, "Resource ReSerVation Protocol (RSVP) Version 1 Applicability Statement

Some Guidelines on Deployment," Network Working Group, 1997.

[114] R. Braden, D. Estrin, S. Berson, S. Herzog and D. Zappala, "The Design of the RSVP Protocol," USC/Information Sciences Institute,

1995.

[115] M. Rouse, "RSVP (Resource Reservation Protocol)," April 2007. [Online]. Available:

https://searchnetworking.techtarget.com/definition/RSVP. [Accessed 28 June 2019].

[116] N. Kortas, "The Performance evaluation of using Quic, TCP and SCTP within Cloud and Cloudlet environments," International Journal

of All Research Education and Scientific Methods (IJARESM), vol. 1, no. 1, 2015.

[117] R. Hamilton, J. Iyengar, I. Swett and A. Wilk, "QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2 draft-tsvwg-quic-

protocol-02," Network Working Group, 2016.

[118] 17 November 2014. [Online]. Available: http://highscalability.squarespace.com/blog/2014/11/17/aeron-do-we-really-need-another-

messaging-system.html. [Accessed 29 June 2019].

[119] M. Thompson, 20 March 2019. [Online]. Available: https://github.com/real-logic/aeron/wiki/Protocol-Specification. [Accessed 29 June

2019].

[120] F. Valsorda, V. Vasiliev, H. Wee, D. Wong, C. Wood, T. Wright, P. Wu and K. Yamamoto, "The Transport Layer Security (TLS) Protocol

Version 1.3," Internet Engineering Task Force (IETF), 2018.

[121] R. Gandhi, H. Shah and J. Whittaker, "Updates to the Fast Reroute Procedures for Co-routed Associated Bidirectional Label Switched

Paths (LSPs)," Internet Engineering Task Force (IETF) , 2019.

[122] J. Touch, "Transport Options for UDP draft-ietf-tsvwg-udp-options-07," IETF, Manhattan, 2019.

[123] R. Stewart, M. Tuexen and M. Proshin, "Stream Control Transmission Protocol: Errata and Issues in RFC 4960," Internet Engineering

Task Force IETF, 2019.

[124] M. Amend, A. Brunstrom, A. Kassler and V. Rakocevic, "DCCP Extensions for Multipath Operation with Multiple Addresses draft-

amend-tsvwg-multipath-dccp-02," IETF, 2019.

[125] E. Rescorla, H. Tschofenig and N. Modadugu, "The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 draft-ietf-tls-dtls13-

32," IETF, 2019.

[126] J. Iyengar and M. Thomson, "QUIC: A UDP-Based Multiplexed and Secure Transport draft-ietf-quic-transport-22," IETF, 2019.

[127] E. Rescorla, H. Tschofenig and N. Modadugu, "The Datagram Transport Layer Security (DTLS) Protocol Version 1.3draft-ietf-tls-dtls13-

01," IETF, 2017.

[128] K. Vignesh, "Master Thesis: Performance analysis of end-to-end DTLS and IPsec-based communication in IoT environments," Blekinge

Institute of Technology, Karlskrona, Sweden, 2017.

[129] "[MX] RSVP messages out of sequence," [Online]. Available:

https://kb.juniper.net/InfoCenter/index?page=content&id=KB30375&cat=TRAFFIC_ENGINEERING&actp=LIST. [Accessed 28 June

2019].

[130] "MPLS Error Detection," [Online]. Available: https://flylib.com/books/en/2.501.1.43/1/. [Accessed 28 June 2019].

[131] "RSVP ready to manage VoIP, video traffic," 25 January 2007. [Online]. Available:

https://searchunifiedcommunications.techtarget.com/news/1242869/RSVP-ready-to-manage-VoIP-video-traffic. [Accessed 28 June

2019].

[132] A. Ghedini, "The Road to QUIC," 26 July 2018. [Online]. Available: https://blog.cloudflare.com/the-road-to-quic/. [Accessed 28 June

2019].

[133] K. Mirja, T. Brian and E. Zurich, "Applicability of the QUIC Transport Protocol draft-ietf-quic-applicability-04," Network Working

Group, 2019.

[134] 30 November 2017. [Online]. Available: https://blog.skymind.ai/interview-with-adam-gibson-creator-of-dl4j-why-aeron-matters/.

[Accessed 29 June 2019].

[135] W. Eddy, "Transmission Control Protocol Specification draft-ietf-tcpm-rfc793bis-14," Internet Engineering Task Force, 2019.

[136] J. Touch, E. Lear, A. Mankin, M. Kojo, M. Kumiko, S. Lars and M. Eggert, "Service Name and Transport Protocol Port Number Registry,"

IETF, 2019.

[137] 4 October 2011. [Online]. Available: http://cs-pages.blogspot.com/2011/10/compare-and-contrast-advantages-and.html. [Accessed 27

June 2019].

[138] T. Phelan, G. Fairhurst and C. Perkins, "DCCP-UDP: A Datagram Congestion Control Protocol UDP Encapsulation for NAT Traversal,"

IETF, 2012.

[139] R. Stewart, M. Tuexen and I. Ruengeler, "Stream Control Transmission Protocol (SCTP) Network Address Translation Support," Network

Working Group Internet-Draft, 2019.

[140] [Online]. Available: https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.networkcomm/sctp_intro.htm.

[Accessed 27 June 2019].

[141] J. Mena and R. Rusich, "SCTP: Stream Control Transmission Protocol an analysis," 2006.

[142] D. T and R. E, "The Transport Layer Security (TLS) Protocol Version 1.2," IETF, 2008.

[143] A. Leslie, ""TLS vs. SSL" - 5 Things To Know (Differences, Protocols, & Handshakes)," 8 June 2018. [Online]. Available:

https://www.hostingadvice.com/how-to/tls-vs-ssl/. [Accessed 28 June 2019].

[144] P. Levis, K. Pister, R. Struik, J. Vasseur and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF,

2012.

[145] O. Iova, F. Theoleyre and T. Noel, "Using multiparent routing in RPL to increase the stability and the lifetime of the network," Ad Hoc

Networks, vol. 29 , 2015.

[146] O. Iova, P. Picco, T. Istomin and C. Kiraly, "RPL: The Routing Standard for the Internet of Things... Or Is It?," IEEE Communications

Magazine, vol. 54, no. 12, 2016.

[147] H. Kim, J. Ko, D. Culler and J. Paek, "Challenging the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL): A Survey,"

IEEE Communications Surveys & Tutorials, vol. 1, no. 1, 2017.

[148] J. Sobral, J. Rodrigues, R. Rabêlo, J. Almuhtadi and V. Korotaev, "Routing Protocols for Low Power and Lossy Networks in Internet of

Things Applications," Sensors, vol. 19, no. 9, 2019.

[149] M. Aboubakar, M. Kellil, A. Bouabdallah and P. Roux, "Toward Intelligent Reconfiguration of RPL Networks using Supervised

Learning," in Wireless Days (WD), Manchester, United Kingdom, 2019.

[150] T. Salman and R. Jain, "Internet of Things and Data Analytics Handbook," in Networking protocols and standards for internet of things,

John Wiley & Sons, 2016, pp. 215-238.

[151] S. Basagni, C. Petrioli, R. Petroccia and D. Spaccini, "CARP: A Channel-aware routing protocol for underwater acoustic wireless

networks," Ad Hoc Networks, vol. 34, pp. 92-104, 2015.

[152] B. Santos, M. Vieira and L. Vieira, "eXtend Collection Tree Protocol," in Wireless Communications and Networking Conference

(WCNC), New Orleans, LA, USA, 2016.

[153] D. Sharma, "Evaluating and improving collection tree protocol in mobile wireless sensor networ," Thesis, University of Ontario Institute

of Technology (UOIT) , Oshawa, Ontario, Canada , 2011.

[154] T. Clausen, J. Yi and U. Herberg, "Lightweight On-demand Ad hoc Distance-vector Routing - Next Generation (LOADng): Protocol,

Extension, and Applicability," Computer Networks, vol. 126, pp. 125-140, 2017.

[155] T. Qiu, Y. Lv, F. Xia, N. Chen, J. Wan and A. Tolba, "ERGID: An efficient routing protocol for emergency response Internet of Things,"

Journal of Network and Computer Applications, vol. 72, pp. 104-112, 2016.

[156] N. Gozuacik and S. Oktug, "Parent-Aware Routing for IoT Networks," in Conference on Internet of Things and Smart Spaces, Balandin

, 2015.

[157] C. H. Barriquello, G. W. Denardin and A. Campos, "A geographic routing approach for IPv6 in large-scale low-power and lossy networks,"

Computers & Electrical Engineering, vol. 45, pp. 182-191, 2015.

[158] Y. Tian and R. Hou, " An Improved AOMDV Routing Protocol for Internet of Things," in International Conference on Computational

Intelligence and Software Engineering , Wuhan, China, 2010.

[159] M. Bouaziz, A. Rachedi, A. Belghith, M. Berbineau and S. Al-Ahmadi, "EMA-RPL: Energy and mobility aware routing for the Internet

of Mobile Things," Future Generation Computer Systems, vol. 97, p. 247–258, 1 January 2019.

[160] Z. Zhou, B. Yao, R. Xing, L. Shu and S. Bu, "E-CARP: An Energy Efficient Routing Protocol for UWSNs in the Internet of Underwater

Things," IEEE Sensors Journal, vol. 16, no. 11, pp. 4072 - 4082, 2015.

[161] S. Sebastian and R. Arockiam, "ELT-EAPR: Expected Life Time of Energy Aware Parent Routing for IoT Networks," International

Journal of Pure and Applied Mathematics, vol. 118, no. 8, 2018.

[162] J. Sobral, J. Rodrigues, R. Rabelo, K. Saleem and V. Furtado, "LOADng-IoT: An Enhanced Routing Protocol for Internet of Things

Applications over Low Power Networks," Sensors, vol. 19, no. 1, 2019.

[163] S. Hashemian and W. Tabataba, "A Multigate Scheme to Improve CORPL under Traffic Load in Cognitive Radio Based Smart Grids

with Mesh Topology," Nashriyyah muhandisi barq va muhandisi kampyutar, vol. 16, no. 4, pp. 229 -238, 2019.

[164] R. Jadhav, R. Sahoo, Y. Wu and D. Zhang, "RPL Observations draft-ietf-roll-rpl-observations-01," IETF, 2019 .

[165] O. Gaddour, A. Koubaa, R. Rangarajan, O. Cheikhrouhou, E. Tovar and M. Abid, "Co-RPL: RPL routing for mobile low power wireless

sensor networks using Corona mechanism," in IEEE International Symposium on Industrial Embedded Systems , Pisa, Italy, 2014.

[166] S. Abdel Hakeem, A. Hady and H. Kim, "RPL Routing Protocol Performance in Smart Grid Applications Based Wireless Sensors:

Experimental and Simulated Analysis," Electronics, vol. 8, no. 2, 2019.

[167] A. witwit and A. Idrees, "A Comprehensive Review for {RPL} Routing Protocol in Low Power and Lossy Networks," in New Trends in

Information and Communications Technology Applications, Baghdad, Iraq, Springer International Publishing, 2018.

[168] A. Aijaz and H. Aghvami, "Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective," IEEE

Internet of Things Journal, vol. 2, no. 2, 2015.

[169] H. Prasad and S. Babu, "A Survey on Network Routing Protocols in Internet of Things (IoT)," International Journal of Computer

Applications, vol. 160, no. 2, 2017.

[170] A. A. Khan, M. H. Rehmani and M. Reisslein, "Requirements, Design Challenges, and Review of Routing and MAC Protocols for CR-

Based Smart Grid Systems," IEEE Communications Magazine, vol. 55, no. 5, 2017.

[171] 15 July 2011. [Online]. Available: https://sing.stanford.edu/gnawali/ctp/. [Accessed 3 July 2019].

[172] Z. Aqun, W. Yang, L. Yi and L. Cy, "Research on Dynamic Routing Mechanisms in Wireless Sensor Networks," The Scientific World

Journal, vol. 2014, 2014.

[173] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis, "Collection Tree Protocol," in Embedded Networked Sensor Systems,

Berkeley, California, USA, 2009.

[174] P. Pecho, P. HanaCek and J. Nagy, "Simulation and Evaluation of CTP and Secure-CTP Protocols," RadioEngineering, vol. 19, no. 1,

2010.

[175] T. Clausen, A. Verdiere and J. Yi, "The Lightweight On-demand Ad hoc Distance-vector Routing Protocol - Next Generation (LOADng),"

Network Working Group, 2016.

[176] D. Sasidharan and L. Jacob, "Design of Composite Routing Metrics in LOADng Routing Protocol for IoT Applications," in The Sixteenth

International Conference on Networks, 2017.

[177] M. Vucinic, B. Tourancheau and A. Duda, "Performance Comparison of the RPL and LOADng Routing Protocols in a Home Automation

Scenario," in IEEE Wireless Communications and Networking Conference (WCNC) , Shanghai, China, 2013.

[178] H. Makwana and H. Patel, "Advancement in Performance of Wireless AdHoc Network using AOMDV in MANET," International Journal

for Innovative Research in Science & Technology, vol. 4, no. 10, pp. 16-20, 2018.

[179] N. Srinidhi, K. S. Dilip and K. Venugopal, "Network optimizations in the Internet of Things: A review," Engineering Science and

Technology, an International Journal, vol. 22, no. 2, pp. 1-21, 2019.

[180] A. Dhumane, R. Prasad and J. Prasad, "Routing Issues in Internet of Things: A Survey," in International MultiConference of Engineers

and Computer Scientists, Hong Kong, 2016.

[181] A. P and S. Bhuraria, "Near field communication," SET Labs Bridfings, vol. 10, p. 67–74, 2012.

[182] V. Coskun, B. Ozdenizci and K. Ok, "A Survey on Near Field Communication (NFC) Technology," Wireless Personal

Communications,Springer-Verlag , vol. 71, no. 3, pp. 2259-2294, 2013.

[183] K. Curran, A. Millar and C. Garvey, "Near Field Communication," International Journal of Electrical and Computer Engineering (IJECE),

vol. 2, no. 3, pp. 371-382, 2012.

[184] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded the Internet, A John Wiley and Sons, Ltd, Publication, 2010.

[185] J. Hui, David Culler and Samita Chakrabarti, "6LoWPAN: Incorporating IEEE 802.15.4 into the IP architecture," Internet Protocol for

Smart Objects (IPSO) Alliance, White paper # 3, USA, 2009.

[186] L. Devasena, "IPv6 Low Power Wireless Personal Area Network (6LoWPAN) for Networking Internet of Things (IoT) – Analyzing its

Suitability for IoT," Indian Journal of Science and Technology, vol. 9, no. 30, 2016.

[187] C. Gomez, J. Oller and J. Paradells, "Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless

Technology," Sensors, vol. 12, no. 12, pp. 11734-11753, 2012.

[188] L. Mainetti, L. Patrono and A. Vilei, "Evolution of wireless sensor networks towards the Internet of Things: A survey," in SoftCOM 2011,

19th International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 2011.

[189] B. Paolo, P. Prashant, C. Vince, C. Stefano, G. Alberto and H. Fun, "Wireless sensor networks: A survey on the state of the art and the

802.15.4 and ZigBee standards," Elsevier, vol. 30, no. 7, p. 1655–1695, 2007.

[190] European Commission, "Building radio frequency identification for the global environment," June 2009. [Online]. Available:

http://www.bridge-project.eu.. [Accessed 2019 February 2019].

[191] R. Want, "An introduction to RFID technology," IEEE Pervasive Computing, vol. 5, no. 1, p. 25–33, 2006.

[192] C. Luca, D. D. Danilo, M. Luca, P. Luigi, L. S. Maria and T. Luciano, "An IoT-aware Architecture to improve Safety in Sports

Environments," Journal of communications software and systems, vol. 13, no. 2, pp. 44-52, 2017.

[193] E. De Poorter, J. Hoebeke, M. Strobbe, I. Moerman, S. Latré, M. Weyn, B. Lannoo and J. Famaey, "Sub-GHz LPWAN Network

Coexistence, Management and Virtualization: An Overview and Open Research Challenges," Wireless Personal

Communications,Springer-Verlag , vol. 95, no. 1, p. 187–213, 2017.

[194] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui and T. Watteyne, "Understanding the Limits of LoRaWAN,"

IEEE Communications Magazine, vol. 55, no. 9, pp. 34 - 40, 2017.

[195] C.-S. Sum, G. P. Villardi, M. A. Rahman, T. Baykas, H. N. Tran, Z. Lan, C. Sun, Y. Alemseged, J. Wang, C. Song, C.-W. Pyo, S. Filin

and H. Harada, "Cognitive communication in TV white spaces: An overview of regulations, standards, and technology," IEEE

Communications Magazine, vol. 51, no. 7, pp. 138 - 145, 2013.

[196] A. Augustin, J. Yi, T. Clausen and W. Townsley, "A Study of LoRa: Long Range and Low Power Networks for the Internet of Things,"

Sensors, vol. 16, no. 9, 2016.

[197] Z-Wave, "Z-Wave," 2 February 2019. [Online]. Available: https://en.wikipedia.org/wiki/Z-Wave. [Accessed 10 February 2019].

[198] T. Nisha, R. S. Rajat Dwivedi and S. Kapil, "Overview of Technologies Associated with IoT," International Journal of Innovations &

Advancement in Computer Science, vol. 6, no. 11, pp. 84-93, 2017.

[199] ACS Wireless, "Telensa Street Light Controls.," 2017. [Online]. Available: https://www.advanced-cx.com/telensa. [Accessed 10 February

2019].

[200] F. Joseph and B. Stephen, "An Analysis of the Energy Consumption of LPWA-based IoT Devices," in International Symposium on

Networks, Computers and Communications (ISNCC), Rome, Italy, 2018.

[201] U. Raza, P. Kulkarni and M. Sooriyabandara, "Low Power Wide Area Networks: An Overview," IEEE Communications Surveys and

Tutorials, vol. 19, no. 2, pp. 855-873, 2017.

[202] Y. Choi, Y.-G. Hong and J.-S. Youn, "Transmission of IPv6 Packets over Near Field Communication draft-ietf-6lo-nfc-11," 6Lo Working

Group, 2018.

[203] C. Gomez, S. Darroudi, T. Savolainen and M. Spoerk, "IPv6 Mesh over BLUETOOTH (R) Low Energy using IPSP draft-ietf-6lo-

blemesh-05," 6Lo Working Group, 2019.

[204] L. Leonardi, G. Patti and L. Bello, "Multi-hop Real-time Communications over Bluetooth Low Energy Industrial Wireless Mesh

Networks," IEEE Access, vol. 6, pp. 26505 - 26519, 2018.

[205] "Zigbee is the only complete loT solution, from the mesh network to the universal language that allows smart objects to work together.,"

[Online]. Available: https://zigbee.org/zigbee. [Accessed 30 July 2019].

[206] L. A. Technical, "LoRaWAN™ 1.0.3 Specification," LoRa Alliance, 2018.

[207] Y. Seok, "IEEE 802.11AH (WI-FI IN 900 MHZ License-exempt band) for IoT application," 14 August 2016. [Online]. Available:

https://www.standardsuniversity.org/e-magazine/august-2016-volume-6/ieee-802-11ah-wi-fi-900-mhz-license-exempt-band-iot-

application/. [Accessed 15 July 2019].

[208] "Z-Wave Plus™ Certification," [Online]. Available: https://z-wavealliance.org/z-wave_plus_certification/. [Accessed 19 July 2019].

[209] "5G spectrum: strategies to maximize all bands," [Online]. Available: https://www.ericsson.com/en/networks/trending/hot-topics/5g-

spectrum-strategies-to-maximize-all-bands. [Accessed 24 July 2019].

[210] M. Zarri, "Road to 5G: Introduction and Migration," GSMA, 2018.

[211] "Release 17," [Online]. Available: https://www.3gpp.org/release-17. [Accessed 18 July 2019].

[212] "Global Smart Street Lighting & Smart Cities: Market Forecast (2019– 2028)," Northeast group, Washington, 2019.

[213] [Online]. Available: https://www.zigbee.org/zigbee-for-developers/zigbee-3-0/. [Accessed 9 July 2019].

[214] C. Perkins and V. Devarapalli, "Standards Track MN Identifier Types for MIPv6," Internet Engineering Task Force (IETF), 2018.

[215] "How to use NFC on Android," 9 Octobor 2018. [Online]. Available: https://www.androidauthority.com/how-to-use-nfc-android-

164644/. [Accessed 8 July 2019].

[216] "Near Field Communication (NFC)," International Journal of Computer Science and Network Security, vol. 12, no. 2, pp. 93-99, 2012.

[217] B. Charrat, "Method for routing incoming and outgoing data in an NFC chipset". USA Patent US 7954,723 B2 , 7 June 2011.

[218] E. Kim, D. Kaspar, N. Chevrollier and J. Vasseur, "Design and Application Spaces for 6LoWPANs draft-ietf-6lowpan-usecases-10,"

6LoWPAN Working Group, 2011.

[219] M. Shin, T. Camilo, J. Silva and D. Kaspar, "Mobility Support in 6LoWPAN draft-shin-6lowpan-mobility-01," Network Working Group,

2007.

[220] K. Shahzad and B. Oelmann, "A comparative study of in-sensor processing vs. raw data transmission using ZigBee, BLE and Wi-Fi for

data intensive monitoring applications," in 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona,

Spain, 2014.

[221] S. Sirur, P. Juturu, P. Gupta, R. Serikar, K. Reddy, S. Barak and B. Kim, "A mesh network for mobile devices using Bluetooth low

energy," in 2015 IEEE Sensors, Busan, South Korea, 2015.

[222] J. Lee, Y. Su and C. Shen, "A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi," in 33rd Annual Conference

of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007.

[223] M. Kasraoui, A. Cabani and J. Mouzna, "ZBR-M: a new Zigbee routing protocol," International Journal of Computer Science and

Applications, , vol. 10, no. 2, p. 15 – 32, 2013.

[224] R. Singhn, J. Kaur and I. Gill, "Evaluation of Hybrid Topologies under Mobility of ZigBee Devices using Different Trajectories,"

International Journal of Computer Applications (0975 – 8887), vol. 122, no. 20, 2015.

[225] K. Sattlegger and U. Denk, "Navigating your way through the RFID jungle," Texas Instruments white paper, 2014.

[226] H. Arthaber, T. Faseth and F. Galler, "Spread-Spectrum Based Ranging of Passive UHF EPC RFID Tags," IEEE Communications Letters,

vol. 19, no. 10, 2015.

[227] "RFID Standards: ISO, IEC, EPCglobal," [Online]. Available: https://www.electronics-notes.com/articles/connectivity/rfid-radio-

frequency-identification/standards-iec-iso-epcglobal.php. [Accessed 10 July 2019].

[228] M. Yarvis, "Mesh networking with RFID publication classification communications". Patent US 2006/0109084 A1 , 25 May 2006.

[229] A. Shah and M. Engineer, "A Survey of Lightweight Cryptographic Algorithms for IoT-Based Applications:," in Smart Innovations in

Communication and Computational Sciences, Singapore, springer, 2019, pp. 284-294.

[230] "What is the LoRaWAN® Specification?," [Online]. Available: https://lora-alliance.org/about-lorawan. [Accessed 15 July 2019].

[231] A. Cilfone, L. Davoli, L. Belli and G. Ferrari, "Wireless Mesh Networking: An IoT-Oriented Perspective Survey on Relevant

Technologies," Future Internet, vol. 11, no. 4, 2019.

[232] [Online]. Available: https://www.wi-fi.org. [Accessed 15 July 2019].

[233] K. Daly, "Why Wi-Fi Halow will revolutionize industrial process controls," 15 October 2018. [Online]. Available:

https://www.morsemicro.com/blog/wifi-halow-industrial. [Accessed 15 July 2019].

[234] M. Denatma and D. Perdana, "Simulation and Analysis of Energy Consumption and Performance of Routing Protocol DSDV and OLSR

on IEEE 802.11ah Standard," International Journal of simulation, system, science & technology, vol. 1, no. 35, 2016.

[235] "Sigfox Protocol Library for devices," [Online]. Available: https://build.sigfox.com/sigfox-library-for-devices. [Accessed 19 July 2019].

[236] "Comparing IoT Networks at a Glance," [Online]. Available: https://www.wi-sun.org/iot-networks/. [Accessed 16 July 2019].

[237] B. Heile, B. Liu, M. Zhang and C. Perkins, "Wi-SUN FAN Overview," IETF, 2017.

[238] K. Mekki, E. Bajic, F. Chaxel and F. Meyer, "A comparative study of LPWAN technologies for large-scale IoT deployment," ICT Express,

vol. 5, no. 1, pp. 1-7, 2019.

[239] S. Duhovnikov, A. Baltaci, D. Gera and D. Schupke, "Power Consumption Analysis of NB-IoT Technology for Low-Power Aircraft

Applications," in IEEE 5th World Forum on Internet , 2019.

[240] S. Farrell, "LPWAN Overview draft-ietf-lpwan-overview-10," IETF, 2018.

[241] 1 October 2014. [Online]. Available: https://z-wavealliance.org/about_z-wave_technology/. [Accessed 8 April 2019].

[242] L. Vora, "Evolution of mobile generation technology: 1G to 5G and review of upcoming wireless technology 5G," International Journal

of Modern Trends in Engineering and Research (IJMTER), vol. 2, no. 10, 2015.

[243] "Mobile Communication: From 1G to 4G," 1 February 2019. [Online]. Available: https://electronicsforu.com/technology-trends/mobile-

communication-1g-4g. [Accessed 21 July 2019].

[244] "technologies," [Online]. Available: https://www.etsi.org/technologies. [Accessed 21 July 2019].

[245] F. Njoroge and L. Kamau, "A Survey of Cryptographic Methods in Mobile Network Technologies from 1G to 4G," 2018.

[246] "Mass scale smart city technology," [Online]. Available: https://www.telensa.com/. [Accessed 25 July 2019].

[247] D. Evans, "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything," Cisco Internet Business Solutions

Group (IBSG), april 2011.

[248] G. Fortino and P. Trunfio, Internet of Things Based on Smart Objects, Switzerland: Springer International Publishing, 2014.

[249] M. Cruz, J. Rodrigues, A. Sangaiah, J. Al-Muhtadi and V. Korotaev, "Performance evaluation of IoT Middleware," Journal of Network

and Computer Applications,Elsiver, vol. 109, p. 53–65, 2018.

[250] G. Kortuem, F. Kawsar, D. Fitton and V. Sundramoorthy, "Smart objects as building blocks for the Internet of things," IEEE Internet

Computing , vol. 14, no. 1, pp. 44 - 51, 2010.

[251] A. Farahzadi, P. Shams, J. Rezazadeh and R. Farahbakhsh, "Middleware Technologies for Cloud of Things - a survey," Digital

Communications and Networks, Elsevier, vol. 4, no. 3, pp. 176-188, 2017.

[252] N. Peter, "Principled Assuredly Trustworthy Composable Architectures," Principal Scientist, Computer Science Laboratory, California ,

USA, 2004.

[253] M. Papazoglou and D. Georgakopoulos, "Service-oriented computing: concepts, characteristics and directions," in Proceedings of the

Fourth International Conference on Web Information Systems Engineering., Rome, Italy, 2003.

[254] "Service Discovery," [Online]. Available: https://aws.amazon.com. [Accessed 14 August 2019].

[255] [Online]. Available: https://azure.microsoft.com. [Accessed 14 August 2019].

[256] "IBM Watson IoT platform," [Online]. Available: https://www.ibm.com/internet-of-things/solutions/iot-platform/watson-iot-platform.

[Accessed 16 August 2019].

[257] xively, 2014. [Online]. Available: http://xively.com. [Accessed 11 February 2019].

[258] N. Sinha, E. Pujitha, J. Alex and R. Sahaya, "Xively Based Sensing and Monitoring System for IoT," in International Conference on

Computer Communication and Informatics (ICCCI) - Xively based sensing and monitoring system for IoT, Coimbatore, INDIA, 2015.

[259] [Online]. Available: https://www.oracle.com/internet-of-things/. [Accessed 17 August 2019].

[260] M. Eisenhauer, P. Rosengren and P. Antolin, "A development platform for integrating wireless devices and sensors into ambient

intelligence systems," in 2009 6th IEEE Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks Workshops, Rome, Italy, 2009.

[261] HYDRA, 2010. [Online]. Available: http://hydramiddleware.eu. [Accessed 12 March 2018].

[262] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, "Context Aware Computing for The Internet of Things: A Survey," IEEE,

vol. 16, no. 1, pp. 414 - 454, 2013.

[263] "LinkSmart Docs," 16 July 2019. [Online]. Available: https://docs.linksmart.eu. [Accessed 17 August 2019].

[264] Global Sensor Networks, 2004. [Online]. Available: http://lsir.epfl.ch/research/current/gsn/. [Accessed 11 February 2019].

[265] "Understand Your Things The open IoT platform with MATLAB analytics.," [Online]. Available: https://thingspeak.com. [Accessed 18

August 2019].

[266] 3 April 2016. [Online]. Available: https://github.com/AuraMiddleware/aura-middleware. [Accessed 13 August 2019].

[267] P. Persson and O. Angelsmark, "Calvin – merging cloud and IoT," Procedia Computer Science, Elsevier , vol. 52, p. 210 – 217, 2015.

[268] Node-RED, "A visual tool for wiring the Internet of Things," 2015. [Online]. Available: http://nodered.org.

[269] Ptolemy II, 1999 . [Online]. Available: http://ptolemy.eecs.berkeley.edu. [Accessed 11 February 2019].

[270] [Online]. Available: https://doc.akka.io. [Accessed 21 August 2019].

[271] "Akka Part of Lightbend Platform," [Online]. Available: https://www.lightbend.com/akka-part-of-lightbend-platform. [Accessed 21

August 2019].

[272] P. Pietzuch, "Hermes: A scalable event-based middleware," University of Cambridge, Cambridge, 2004.

[273] Z. Theodore, P. Andreas, A. Federico, G. Jose and L. Fernando, "FIWARE lab:managing resources and services in a cloud federation

supporting future internet applications," in IEEE/ACM 7th International Conference on Utility and Cloud Computing, London, United

Kingdom , 2014 .

[274] [Online]. Available: https://developers.google.com. [Accessed 16 August 2019].

[275] "INTRODUCTION TO XIVELY," [Online]. Available: https://www.developerxively.com/docs. [Accessed 16 August 2019].

[276] [Online]. Available: https://docs.kaaiot.io. [Accessed 17 August 2019].

[277] 29 Septemper 2014. [Online]. Available: https://github.com/LSIR/gsn/wiki/GSN-in-a-nutshell. [Accessed 18 August 2019].

[278] [Online]. Available: https://github.com/EricssonResearch/calvin-base. [Accessed 19 August 2019].

[279] "Node-RED," 16 August 2019. [Online]. Available: https://nodered.org/docs/api/. [Accessed 19 August 2019].

[280] C. Ptolemaeus, System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.

[281] "Ptolemy II," [Online]. Available: https://ptolemy.berkeley.edu/ptolemyII/index.htm. [Accessed 20 August 2019].

[282] M. Bernardo and A. Bogliolo, "Hermes: Agent-Based Middleware for Mobile Computing," in Computer Science, Berlin, Springer, 2005.

[283] "Gryphon Trading Framework 0.12 Documentation," [Online]. Available: https://gryphon.readthedocs.io. [Accessed 23 August 2019].

[284] "REBECA - Publish/Subscribe Middleware," 20 Septemper 2011. [Online]. Available: https://www.ava.uni-rostock.de/en/ava-

research/projects/rebeca/. [Accessed 23 August 2019].

[285] "FIWARE step by step," [Online]. Available: https://fiware-tutorials.readthedocs.io. [Accessed 24 August 2019].

[286] M. Sharif and A. Sadeghi-Niaraki, "Ubiquitous Sensor Network Simulation and Emulation Environments: A Survey," Journal of Network

and Computer Applications,Elsevier , vol. 93, pp. 150-181, 2017.

[287] M. Chernyshev, Z. Baig, O. Bello and S. Zeadally, "Internet of Things (IoT): Research, Simulators, and Testbeds," IEEE Internet of

Things Journal, vol. 5, no. 3, pp. 1637 - 1647, 2018.

[288] S. Han, M. Lee, N. Crespi, K. Heo, N. Van, M. Brut and P. Gatellier, "DPWSim: A Simulation Toolkit for IoT Applications using Devices

Profile for Web Services," in 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, South Korea, 2014.

[289] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh and R. Buyya, "iFogSim: A toolkit for modeling and simulation of resource management

techniques in the Internet of Things, Edge and Fog computing environments," Special Issue: Cloud and Fog Computing, Wiley Blackwell

(John Wiley & Sons) , vol. 47, no. 9, pp. 1275-1296, 2017.

[290] R. Buyya, R. Ranjan and R. Calheiros, "Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit:

Challenges and opportunities," in 2009 International Conference on High Performance Computing & Simulation, Leipzig, Germany,

2009.

[291] S. Dash, P. Naidu, B. Chandra, R. Bayindir and S. Das, "Analysis of Cloud Environment Using CloudSim," in Artificial Intelligence and

Evolutionary Computations in Engineering Systems, Singapore, 2018.

[292] S. Sotiriadis, N. Bessis, E. Asimakopoulou and N. Mustafee, "Towards Simulating the Internet of Things," in 2014 28th International

Conference on Advanced Information Networking and Applications Workshops, Victoria, BC, Canada, 2014.

[293] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos and R. Ranjan, "IoTSim: A simulator for analysing IoT

applications," Elsevier,Journal of Systems Architecture, vol. 72, pp. 93-107, 2017.

[294] "The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University of Melbourne," December 2013. [Online]. Available:

http://www.cloudbus.org/cloudsim/. [Accessed 12 February 2019].

[295] S. Stelios, B. Nik, A. Nikos and A. Ashiq, "SimIC: Designing a new inter-cloud simulation platform for integrating large-scale resource

management," in IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain,

2013.

[296] A. Markus, G. Kecskemeti and A. Kertesz, "Flexible Representation of IoT Sensors for Cloud Simulators," in 2017 25th Euromicro

International Conference on Parallel, Distributed and Network-based Processing (PDP), Petersburg, Russia, 2017.

[297] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos and R. Ranjan, "IoTSim: A simulator for analysing IoT

applications," Journal of Systems Architecture, Elsevier, vol. 72, pp. 93-107, 2016.

[298] Ž. MIODRAG, N. BOŠKO, P. JELICA and P. RANKO, "A Survey And Classification Of Wireless Sensor Networks Simulators Based

On The Domain Of Use," Ad Hoc & Sensor Wireless Networks, Old City Publishing, vol. 20, pp. 245-287, 2014.

[299] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne and T. Voigt, "Cross-level sensor network simulation with Cooja," in Proceedings. 2006

31st IEEE Conference on Local Computer Networks, Tampa, USA, 2006.

[300] "qualnet," 2008. [Online]. Available: https://web.scalable-networks.com/qualnet-network-simulator-software. [Accessed 12 February

2019].

[301] K. Mehdi, M. Lounis, A. Bounceur and T. Kechadi, "CupCarbon: A Multi-Agent and Discrete Event Wireless Sensor Network Design

and Simulation Tool," in Institute for Computer Science, Social Informatics and Telecommunications Engineering (ICST), 2014.

[302] C. Mallanda, A. Suri, V. Kunchakarra, S. Iyengar, R. Kannan and A. Durresi, "Simulating Wireless Sensor Networks with OMNeT++,"

IEEE, 2005.

[303] "NS3," 11 February 2019. [Online]. Available: https://www.nsnam.org/docs/tutorial/html/introduction.html. [Accessed 12 February

2019].

[304] "cupcarbon," 2017. [Online]. Available: http://www.cupcarbon.com/. [Accessed 12 February 2019].

[305] G. Keramidas, N. Voros and M. Hübner, Components and Services for IoT Platforms || Internet of Things Simulation Using OMNeT++

and Hardware in the Loop, Switzerland : Springer International Publishing, 2017.

[306] A. Abdelrahman, H. Mohammad and A. F. O. A. Fayez, "A Survey on Wireless Sensor Networks Simulation Tools and Testbeds," in

Sensors, Transducers, Signal Conditioning and Wireless Sensors Networks Advances in Sensors, Barcelona, Spain, International

Frequency Sensor Association (IFSA), 2016, pp. 283-302.

[307] S. Han, M. Lee, N. Crespi, V. Luong, K. Heo, M. Brut and P. Gatellier, "DPWSim: A Devices Profile for Web Services (DPWS)

Simulator," IEEE Internet of Things Journal, vol. 2, no. 3, pp. 221 - 229, 2015.

[308] K. Darabkh and L. Al-Jdayeh, "AEA-FCP: An Adaptive Energy-aware Fixed Clustering Protocol for Data Dissemination in Wireless

Sensor Networks," Personal and Ubiquitous Computing, vol. 23, no. 5, p. 819–837, 2019.

[309] R. Al-Zubi, N. Abedsalam, A. Atieh and K. Darabkh, "LBCH: Load Balancing Cluster Head Protocol for Wireless Sensor Networks,"

Informatica, vol. 29, no. 4, pp. 633-650, 2018.

[310] K. Darabkh, W. Al-Rawashdeh, M. Hawa and R. Saifan, "MT-CHR: A Modified Threshold-based Cluster Head Replacement Protocol

for Wireless Sensor Networks," Computers & Electrical Engineering, vol. 72, pp. 926-938, 2018.

[311] K. Darabkh, N. Al-Maaitah, I. Jafar and A. Khalifeh, "EA-CRP: A Novel Energy-aware Clustering and Routing Protocol in Wireless

Sensor Networks," Computers & Electrical Engineering, vol. 72, pp. 702-718, 2018.

[312] F. Petter and V. Ovidui, Internet of Things From Research and Innovation to Market deployment, Denmark: River Publishers, 2014.

[313] G. Gardašević, M. Veletić, N. Maletić, D. Vasiljević, I. Radusinović, S. Tomović and M. Radonjić, "The IoT Architectural Framework,

Design Issues and Application Domains," Wireless Personal Communications, Springer-Verlag, vol. 92, no. 1, pp. 127-148, 2016.

[314] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang and R. Lemmens, "New Generation Sensor Web

Enablement," Sensors, vol. 11, no. 12, pp. 2652-2699, 2011.

[315] K. Darabkh and J. Zomot, "An Improved Cluster Head Selection Algorithm for Wireless Sensor Networks," in 14th International Wireless

Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018.

[316] K. Darabkh and L. Al-Jdayeh, "A New Fixed Clustering Based Algorithm for Wireless Sensor Networks," in 14th International Wireless

Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018.

[317] M. Al-Mistarihi, I. Tanash, F. Yaseen and K. Darabkh, "Protecting Source Location Privacy in a Clustered Wireless Sensor Networks

Against Local Eavesdroppers," Mobile Networks and Applications, p. 1–13, 2018.

[318] K. Darabkh, W. Al-Rawashdeh, R. Al-Zubi and S. Alnabelsi, "C-DTB-CHR: centralized density- and threshold-based cluster head

replacement protocols for wireless sensor networks," The Journal of Supercomputing, vol. 73, no. 12, p. 5332–5353, 2017.

[319] K. Darabkh and N. Alsaraireh, "A Yet Efficient Target Tracking Algorithm in Wireless Sensor Networks," in 15th International Multi-

Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia, 2018.

[320] K. Darabkh and R. Muqat, "An Efficient Protocol for Minimizing Long-distance Communications over Wireless Sensor Networks," in

15th International Multi-Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia, 2018.

[321] Y. Zou, H. Wan, X. Zhang, D. Ha and P. Wang, "Electronic Nose and Electronic Tongue," Beijing and Springer Science+Business Media

Dordrecht, 2015.

[322] N. Lane, E. Miluzzo, H. Lu, D. Peebles, C. Tanzeem, C. Andrew and C. Dartmouth, "A survey of mobile phone sensing," IEEE

Communications Magazine, vol. 48, no. 9, pp. 140-150, 2010.

[323] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things for Smart Cities," IEEE Internet of Things Journal,

Institute of Electrical and Electronics Engineers , vol. 1, no. 1, pp. 22-32, 2014.

[324] J. Lynch and L. Kenneth, "A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring," Shock and

Vibration Digest, vol. 38, no. 2, p. 91–130, 2006.

[325] N. Maisonneuve, M. Stevens, M. Niessen, P. Hanappe and L. Steels, "Citizen Noise Pollution Monitoring," in The Proceedings of the

10th International Digital Government Research Conference, Puebla, Mexico, 2009.

[326] X. Li, W. Shu, M. Li, H.-Y. Huang, P.-E. Luo and M.-Y. Wu, "Performance Evaluation of Vehicle-Based Mobile Sensor Networks for

Traffic Monitoring," IEEE Transactions on Vehicular Technology , vol. 58, no. 4, p. 1647–1653, 2009.

[327] "Smart Cities Are Built On The Internet Of Things," Lopez Research, 2014.

[328] S. Yu, J. Hsieh, Y. Chen and W. Hu, "An Automatic Traffic Surveillance System for Vehicle Tracking and Classification," in Scandinavian

Conference on Image Analysis,Springer-Verlag, Berlin, 2003.

[329] W. Hu, X. Hu, J.-q. Deng, C. Zhu, G. Fotopoulos, E. Ngai and V. Leung, "Mood-fatigue analyzer: towards context-aware mobile sensing

applications for safe driving," in M4IOT '14 Proceedings of the 1st ACM Workshop on Middleware for Context-Aware Applications in

the IoT, Bordeaux, France, 2014.

[330] H. Singh, J. Bhatia and J. Kaur, "Eye tracking based driver fatigue monitoring and warning system," in India International Conference on

Power Electronics 2010 (IICPE2010), New Delhi, India, 2011.

[331] A. Kotb, S. Yao-chun and H. Yi, "Smart Parking Guidance, Monitoring and Reservations: A Review," IEEE Intelligent Transportation

Systems Magazine, vol. 9, no. 2, pp. 6 - 16, 2017.

[332] Q. Liu, H. Lu, B. Zou and Q. Li, "Design and Development of Parking Guidance Information System Based on Web and GIS Technology,"

in 2006 6th International Conference on ITS Telecommunications, Chengdu, China, 2006.

[333] L. Mimbela and P. Kent, Summary of vehicle detection and surveillance technologies used in intelligent transportation systems, The

Vehicle Detector Clearinghouse, 2007.

[334] V. Tamilmaran and K. Dwarkadas, "Smart Grid: An Overview," Smart Grid and Renewable Energy, vol. 2, no. 4, pp. 305-311, 2011.

[335] W. Kastner, G. Neugschwandtner, S. Soucek and M. Newmann, "Communication systems for building automation and control,"

Proceedings of the IEEE , vol. 93, no. 6, p. 1178–1203, 2005.

[336] Final Technical Report, "Smart Water Systems," Oxford University, Oxford, 2011.

[337] E. Farah, A. Abdallah and I. Shahrour, "Sunrise: Large-scale demonstrator of the smart water system," International Journal of Sustainable

Development and Planning, vol. 12, no. 1, p. 112–121, 2017.

[338] S. Akane and P. Rosalind, "Stress Recognition using Wearable Sensors and Mobile Phones," in Humaine Association Conference on

Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2013.

[339] C.-h. Tien and D. Can, "Environment Monitoring System for Agriculture Application Based on Wireless Sensor Network," in Seventh

International Conference on Information Science and Technology (ICIST), Da Nang, Vietnam, 2017.

[340] A. Mussab, Z. A, B. Bahaa, M. Talal and L. Kiah, "A Review of Smart Home Applications based on Internet of Things," Journal of

Network and Computer Applications, vol. 97, pp. 48-65, 2017.

[341] T. Hargreaves, C. Wilson and R. Hauxwell-Baldwin, "Learning to live in a smart home," Building Research and Information, vol. 46, no.

1, pp. 127-139, 2018.

[342] D. K. Mishra, M. K. Nayak and A. Joshi, "Internet of Things Applications at Urban Spaces (Tel Aviv Smart City: A Case Study)," in

Information and Communication Technology for Sustainable Development, Singapore, Springer, 2018, pp. 1-11.

[343] L. Yan, M. Katherine and F. Simon, "Current Standards Landscape for Smart Manufacturing Systems Manufacturing Systems," National

Institute of Standards and Technology , USA, 2016.

[344] L. Neweb, 10 September 2019. [Online]. Available: https://www.cnetfrance.fr/news/vie-privee-comment-bien-proteger-vos-donnees-

personnelles-39886253.htm. [Accessed 30 January 2020].

[345] D. Tony, "Busniss Insider,Morgan Stanley: 75 Billion Devices Will Be Connected To The Internet Of Things By 2020," 2 October 2013.

[Online]. Available: http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10. [Accessed

17 February 2019].

[346] I. Qusay, "Internet of things: a survey of challenges and issues," International Journal of Internet of Things and Cyber-Assurance , vol. 1,

no. 1, pp. 40-75, 2018.

[347] S. Raja, D. Rajkumar and V. Raj, "Internet of Things: Challenges, Issues and Applications," Journal of Circuits, Systems and Computers,

vol. 27, no. 12, pp. 1-16, 2018.

[348] M. Shetty and M. D, "Challenges, Issues and Applications of Internet of Things," in nternet of Things: Novel Advances and Envisioned

Applications. Studies in Big Data, vol. 25, Cham, Springer International Publishing AG, 2017, pp. 231-243.

Please cite it as: Wafa’a Kassab and Khalid A. Darabkh, “A-Z Survey of Internet of Things: Architectures, Protocols,
Applications, Recent Advances, Future Directions and Recommendations,” Journal of Network and Computer Applications,
Elsevier, vol. 163, p.102663, August 2020. DOI: https://doi.org/10.1016/j.jnca.2020.102663

Published via this link: https://www.sciencedirect.com/science/article/pii/S1084804520301375

https://doi.org/10.1016/j.jnca.2020.102663
https://www.sciencedirect.com/science/article/pii/S1084804520301375

