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Abstract - Ubiquitous sensing, provided via wireless sensor networks technologies, disseminates across many 

domains of contemporary day living. This provides the ability to sense, process, analyze and infer environmental parameters 

from natural resources and delicate ecologies to urban environments. The explosion in the number of devices that are 

connected to the internet has led to the emergence of the Internet of Things (IoT) technological revolution. In these 

technologies, actuators and sensors incorporate smoothly with the IoT environment. Furthermore, the sensed data is shared 

through platforms to innovate a common operating picture. This cutting-edge technology is fueled by a diversity of IoT 

devices that enables technologies such as near field communication, embedded actuator, sensor nodes, radio frequency 

identification tags, and readers. IoT has emerged from its infancy and has established a fully integrated future internet. 

Different visions of IoT technologies have been reviewed, however, what emerges currently in this field should be faced and 

displayed via the research community. In this paper, we are keen to discuss the recent worldwide implementation of IoT, 

where the prime enabling technologies, recent and future communication protocols and application areas that drive IoT 

research in the near future are explored. Furthermore, the original, recent, future enhancements of all IoT stack’s protocols 

are extensively discussed. Middleware’s definition, usages, types and open research challenges are further illustrated. Not 

only to this extent but rather, this survey details the simulation tools of IoT networks, IoT sensors along with their recent 

application areas, broad IoT research challenges, as well as in-depth analysis of IoT research history and recommendations 

that attract current IoT researchers’ attention. 
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1. Introduction 

The next revolution in the era of computing will be out of the realm of the classical desktop. In IoT environment, the 

numerous things that surround us will be connected to the internet in one way or another [1]. Various sensor network technologies 

and Radio-Frequency Identification (RFID) will emerge to face this novel challenge, where communication and information systems 

are embedded in the area that surrounds us [2] [3] [4] [5] [6]. This will lead to the creation of tremendous amounts of data that has 

to be processed, stored and presented in an efficient, easy and seamless manner [7] [8] [9] [10]. The cloud-computing model offers 

a virtual infrastructure to perform such computing through integrating surveillance and storage devices, analytics tools, client 

delivery, and visualization platforms [11]. The cost-based paradigm that cloud computing provides will authorize service 

provisioning for users and businesses to access their applications on-demand from anywhere and at any time [12]. 

The indispensable part of IoT is its smart connectivity with the present network and context-aware computation utilizing 

network resources. The evaluation of widespread communication and information networks comes from the growing existence of 

4G-LTE and Wi-Fi wireless communication protocols [13]. However, to let IoT vision emerges successfully, computing standards 

need to go beyond conventional mobile computing technologies and develop into connecting every existing thing around us and 

embedding intelligence in the surrounding environment. There are essential demands that have to exist in order to achieve context-

aware computation and smart connectivity in an IoT environment. These demands are 1) Understanding of IoT users and their 

appliances, 2) Pervasive communication networks and software architectures to transfer and process the sensed data to where it is 

relevant, 3) Analytics tools for autonomous and intelligent behavior in IoT systems.      

An essential evolution of the present internet into a network of connected-things not only interacts with the physical 

environment through actuation, monitoring, and control, nor simply harvests data from the surrounding environments, but also 

utilizes existing internet criteria to facilitate data transmission, analytics, and communication [14] [15] [16] [17] [18]. IoT area is 

fueled by the propagation of intelligent devices that are enabled by various wireless technologies such as RFID, Bluetooth, 

telephonic data services and Wi-Fi, in addition to embedded actuators and sensor nodes. IoT has emerged from its infancy and is 

transforming from the present traditional internet into a completely integrated future internet [1] [19]. The revolution of IoT has led 

to an increasing interconnection among things at an unprecedented scale and speed to create an intelligent environment. In 2011, 

the number of interconnected devices overtook the number of people on the face of the earth. Currently, there are 9 billion devices 

that are connected to the internet and it is anticipated to reach 24-50 billion IoT devices in 2020 [6] [12]. As stated by the global 

system for mobile communications, this will yield a profit of $1.3 trillion for mobile network operators that cover main sectors such 
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as automotive, consumer electronics, utilities, and health. Numerous researches, industries, and companies are presently involved 

in the development of different IoT aspects to satisfy the increasing technological requirements that come with such rapid growth.   

1.1 Related Works 

Many works have surveyed and covered the different aspects of IoT technology. However, the contributions of these works 

and the research community on IoT-related topics are still highly fragmented and inadequate, and to a large extent concentrated on 

only a few aspects of this domain. Also, the involvement of communications and networking societies is still limited, despite the 

importance of their contributions to the evolution of this field. This subsection presents a literature review for some of these works 

organized chronologically, with a brief discussion regarding the topics they handled in their surveys.  

Atzori et al tried in their survey paper to describe different visions of IoTs model based on diverse scientific communities' 

points of views [20]. This survey addressed the main communication technologies and identified wireless and wired actuator and 

sensor networks without providing any details regarding the protocols and their enhancements related to each IoT layer architecture. 

Furthermore, it illustrated and reviewed the main technologies of the IoT paradigm along with the benefits behind spreading this 

technology in different domains of everyday life. Finally, their work discussed different proposed issues and open research 

challenges that faced the IoT domain until 2009. Miorandi et al presented the vision of the IoT model and defined the main related 

concepts wherein they indicated the significant additions provided by related researches and technology contexts in this field [21].  

Additionally, multiple research and security challenges were investigated followed by a brief discussion of possible IoT applications 

and their impact on different fields. Finally, the authors reviewed related IoT initiatives until 2012. However, their paper not only 

did not cover all the aspects of the IoT field but is also outdated. The concept and history of IoT were demonstrated with a brief 

introduction of different IoT architectures by Said et al [22]. Furthermore, they introduced a few applications that can be 

implemented based on IoT technology, besides demonstrating open problems and research challenges in this field. The definitions, 

taxonomy, and trends of IoT technology with a brief discussion regarding some technologies and applications of this field were 

presented by Gubbi et al [12]. Moreover, an example of cloud computing implementation using Aneka/Azure cloud platform was 

presented, without introducing further details about the specifications of cloud computing technology. Many challenges and open 

research issues were examined by Whitmore et al, with a brief introduction about IoT technologies, applications, and business 

models [23]. Al-Fuqaha et al gave some technical details about IoT technologies, architectures, applications, and protocols [24]. In 

addition, they provided a concise presentation regarding the interaction among IoT solutions, big data, fog, and cloud computing. 

Finally, some Quality of Service (QoS), security issues, and challenges were examined. A limited discussion was provided by 

Kraijak and Tuwanut about architecture, protocols, applications, privacy and security problems in the IoT domain. Finally, they 

presented the applications and future trends of IoT [25]. Masek et al described Machine-to-Machine (M2M) communication 

protocols in cellular networks, with a summarized presentation of some bidirectional communication protocols [26]. They also 

offered a brief investigation regarding the convenience of both protocol buffers format and JavaScript Object Notation (JSON) for 

M2M communication. They also proposed a live smart home project for Telekom Austria group using JSON and protocol buffer 

techniques to implement M2M communication. Many IoT aspects were covered by Ray [27].  Firstly, he tried to give multiple 

definitions of IoT paradigm from different researchers' perspectives. Secondly, different architectures of this technology were 

discussed. Thirdly, the main domains and applications that can be implemented by IoT technology were presented, followed by 

sections about previous wireless and wired technologies and protocols that were implemented in this field. Finally, possible research 

and security challenges were investigated. The Survey paper of Sethi and Sarangi covered different taxonomies of IoT stacks with 

a brief description of each layer's technologies and protocols [28]. Also, they profiled some types of IoT sensors with their related 

applications. Some challenges behind proposing the term of middleware were discussed along with identifying their types. 

Burhanuddin et al provided a theoretical background of the IoT paradigm, with an analysis review of many surveys on this field 

[29]. Further, they discussed the requirements needed to implement IoT applications, followed by a discussion about future 

directions and challenges that face this domain. An inadequate interpretation was given to cover relevant sides of IoT middlewares 

such as the needs behind middleware, its capabilities, enabling technologies, and challenges by Ngu et al [30].Moreover, the authors 

classified various types of IoT middlewares and gave many examples for each architecture, without taking into consideration other 

aspects of IoT model. Silva et al presented one type of IoT architectures with its relevant technologies and then went to simply 

summarize some of the prevalent communication protocols and standards that are adopted by the IoT field [31]. Although some IoT 

applications were identified, followed by a brief discussion of some issues and security challenges that face the domain, it was 

overall, an insufficient study that left the reader with many questions about the intricacies of the subject at hand. Different points of 

view were presented regarding various types of IoT stack architectures with possible attacks relevant to each layer and suggestions 

to overcome and solve these issues by Burhan et al [32]. In addition, a number of communication technologies were highlighted 

along with their drawbacks and characteristics. An overview of different procedures that were proposed to secure IoT environment 

with their restrictions until 2018 was discussed, where a novel IoT architecture model was proposed by the authors to fill security 

gaps in the previous architectures. To this end, a section for some issues and challenges that face the security of IoT environment 

was provided. Atlam et al identified the general notion characteristics of IoT, followed by a presentation of simple IoT stack 

architecture [33]. On the other hand, they discussed some communication technologies and applications of the IoT field. However, 

limited discussion regarding IoT challenges and future directions was introduced.        

ˇColakovi´c and Hadžiali´c identified features and visions of IoT and provided insights of some enabling technologies and 

communication protocols based on their functionalities, while they slightly reviewed the middleware and network domains [34]. 

The authors focused further on addressing and discussing the challenges and open issues that face the IoT model. A detailed 

presentation was provided for the communication protocols of the application layer, such as Hypertext Transfer Protocol (HTTP), 

Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), Data Distribution Service (DDS),  

Advanced Message Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP) along with their 

implementations in different segments of the IoT environment (IoT, cloud, fog) by Dizdarević [35]. Thereafter, the author conducted 

a comparison between these protocols considering distinctive aspects such as latency, bandwidth consumption and throughput, 



 

 

 

energy consumption, security, and developer’s choice. Finally, a concise description of open issues and challenges were provided. 

Balaji et al [36] presented a few technologies and protocols that are utilized in IoT domain, followed by a summary of some security 

issues that face this field. In addition, they mentioned the popular IoT- based lifesaver tools and discussed a number of real-time 

applications. Finally, few of the issues prevalent in the IoT field were explained and the future scope and applications were left out. 

A comprehensive focus on IoT forensic was presented by Yaqoob et al [37]. This work demonstrated novel factors that affect and 

enable forensics in the IoT domain. It further provided an investigation of several IoT forensics literatures and categorized them 

depending on sources of evidence, forensics phases, networks, enablers, forensics data processing, forensics tools, forensics layers, 

etc. to analyze their strengths and weaknesses. Several research challenges and issues were identified as future research directions. 

Sharma et al presented many definitions for IoT notions based on different researchers' perspectives [38]. The authors 

chronologically addressed the evolution of this technology. In the end, a slight discussion was provided to handle different IoT 

aspects such as its technology trends, communication standards, architecture and an overview of its future.      

1.2 Findings and Impacts 

There are many surveys that have been done to investigate different fields and issues of IoT domain till now. To the best 

of our knowledge, there are no prior surveys similar to ours. Interestingly, Table 1 displays how this work is distinctive from other 

highly cited papers mentioned in the previous section considering many perspectives out of which IoT paradigm, architectures, 

spreading spectrum techniques, layers protocols (original, recent, future enhancements), IoT middleware (recent challenges), IoT 

simulation tools, IoT applications, research security and challenges, and research history analysis and recommendations. In light of 

the aforementioned deficiencies of the related works, the major findings of this work can be summarized as follows:  
1. Having higher value for researchers, as this survey is considered to be a starting point for their future researches because it 

gives the reader the opportunity to comprehend what has been done in IoT field, what still needs to be developed as well as 

what the risks and weakness factors are that need to be addressed. In addition, it exhibits the current trends in IoT research 

that are encouraged by the need for the convergence in multiple interdisciplinary technologies and IoT applications. 

2. Highlighting diverse visions, definitions, and a thorough overview of IoT components and features for the reasoning of 

expediting a better comprehension of different IoT specifications by researchers and technicians. 

3. Providing a detailed demonstration of different spreading spectrum techniques (i.e., Direct-Sequence Spread Spectrum 

(DSSS), Frequency-Hopping Spread Spectrum (FHSS), Chirp Spread Spectrum (CSS), Time-Hopping Spread Spectrum 

(THSS)). Based on such important information, the network designers can use the proper or suitable spreading spectrum 

techniques in their IoT communication systems, which will reduce crosstalk interference, obtain less static noise and data 

integrity, reduce signals susceptibility to multipath fading, avoid signals interference, and guarantee security implementation 

by making IoT data signals hard to detect, intercept or demodulate. 

4. Providing insights and deep synopsis of the most recent standards and protocols, which are classified based on different IoT 

stack architecture (i.e., application, transport, network, and data link layers), thereby making sure that the reader will be aware 

of the full picture of the original, current, and future enhancements of each protocol. Matter of fact, conducting comparisons 

between all protocols in each layer from different perspectives will help the researchers and technicians in deciding which 

one suits them more quickly in professional and organized manners without digging through precise details provided in 

standard specifications, sources, and Request for Comments (RFC). 

5. Presenting a comprehensive overview of the emerging challenges and issues in the IoT domain in order to be tackled through 

future researches. In fact, after studying numerous IoT research papers we have come to the conclusion that most of the 

challenges and security issues emerge from the remarkable increase in data traffic, the huge variety of traffic types, diversity 

of IoT devices, great variances in data forms, heterogeneous networks, etc. All of these concerns have a dramatic effect on 

the performance and QoS of the IoT systems.   

6. Detailing the most and recent trends and specifications of IoT middleware aspects. In other words, we make sure that the 

readers get a full understanding of the recent challenges and issues that face the middleware field, the diverse classification 

of middleware architectures, and differences of emerging middleware platforms for each type of architecture.     

7. Introducing a comprehensive overview of IoT simulators that are currently available through classifying them into categories 

according to their functions and then conducting comparisons while considering prevailing needs and aspects. Besides, the 

major challenges raised through moving from simulating the Wireless Sensor Network (WSN) environment into IoT are 

highlighted, thereby allowing the developers to upgrade the current versions of these simulators to suit IoT environment’s 

requirements. 

8. Analyzing the IoT research history, utilizing Scopus database through 2011 to 2020, in a very professional manner which 

primarily includes both IoT stack and middleware architectures. In particular, as far as the former is concerned, we analyze 

the growth and diminishment of publications in the whole IoT stack which includes data link and communication protocols, 

network, transport, as well as application layers. In regards to the latter one, we analyze its publications’ growth and 

diminishment considering actor-based, event-based, cloud-based, and service-based architectures bearing in mind that 

addressing the challenges and limitations of middleware architectures has to take the functional components as service 

composition, registration, and discovery and non-functional needs, such as ease of deployment, privacy, security, availability, 

reliability, timeliness, and scalability all into consideration. As a result, we provide recommendations that will certainly 

attract most IoT researchers. 

1.3 Paper Outline 

The remaining of this paper is organized as follows: 

 Overview of the IoT paradigm (definition, functional blocks, basic components of smart devices) (section 2). 



 

 

Table 1: Comparison of this survey with other related IoT works considering several IoT aspects 

Articles Survey subject Year Overview 

of IoT 

paradigm 

Architecture 

of IoT 

Spreading 

spectrum 

techniques  

IoT layers protocols 

   

IoT middleware IoT 

simulation 

tools  

IoT 

applications  

Research 

security 

and 

challenges  

Research 

recommendations 

Original  Recent Future  

enhancements 

Recent Challenges 

Atzori et al 
[20] 

The internet of things: A survey 2010 1   ★   ☆   ★ ☆  

Miorandi et 

al [21] 

Internet of things: Vision, 

applications and research 

challenges 

2012    ☆      ☆ ★  

Said et al 

[22] 

Towards internet of things: 

survey and future vision 

2013  ☆        ☆ ☆  

Gubbi et al  

[12] 

Internet of things (IoT): A vision, 

architectural elements, and future 
directions 

 

2013 ☆ ☆        ☆ ☆ ☆ 

Whitmore et 
al [23] 

The internet of things A survey 
of topics and trends 

2014    ☆   ☆    ☆ ☆ 

Al-Fuqaha 
et al [24] 

IoT survey on enabling, 
technologies, protocols 

and applications 

2015 ☆ ✔2 
 

✔ 
     ☆3 ✔ ✔ 

Kraijak et al 
[25] 

Survey on IoT architecture, 
protocols, applications, 

security, privacy, implementation 

and future trends 

2015  ☆  ☆      ☆ ☆  

Masek et al 
[26] 

Implementation of true IoT 
vision: Survey on enabling 

protocols and hands-on 

experience 

2016    ★      ☆   

Ray 
[27] 

A survey on Internet of things 
architectures 

2016 ☆ ★  ★   ☆   
✔ ✔ ★ 

Sethi et al 
[28] 

Internet of Things: Architectures, 
protocols, and applications 

2017 ★ ★  ☆   ☆   ☆ ☆  

Burhanuddin 
et al [29] 

Internet of things architecture: 
current challenges and future 

direction of research 

2017           
✔ ☆ 

Ngu et al  

[30] 

IoT middleware: A survey on 

issues and enabling technologies 

2017       ★ ☆   ☆  

Silva et al 
[31] 

Internet of things: A 
comprehensive review of 

2017 ☆ ★4  ☆      ☆ ☆  

                                                           
1 : Aspect is not existed in the survey 

2 ✔: Aspect is covered to the core in the survey   

3 ☆:  Aspect is shallow covered in the survey   
4 ★: Aspect is sufficiently covered in the survey  



 

 

 

enabling technologies, 

architecture, and challenges 

 

Burhan et al  

[32] 

IoT elements, layered 

architectures and security 
issues: a comprehensive survey 

 

2018 ☆ ✔ 
 ☆      ☆ ✔ ☆ 

Atlam et al 
[33] 

Internet of things: State-of-the-
art, challenges, applications, and 

open issues 

 

2018  ☆  ☆      ☆ ☆ ☆ 

Colakovi ´c 
et al [34] 

Internet of Things (IoT): A 
review of enabling technologies, 

challenges, and open research 

issues 

2018 ☆ ☆  ☆       
✔ ☆ 

Dizdarević 
et al [35] 

A Survey of communication 
protocols for internet of things 

and related challenges of fog and 

cloud computing integration 

2019    ★ ☆      ☆  

Balaji et al  
[36] 

IoT technology, applications and 
challenges: A contemporary 

survey 

2019    ☆      ☆ ☆  

Yaqoob et al 
[37] 

 

Internet of things forensics: 
Recent advances, taxonomy, 

requirements, and open 

challenges 

2019 ☆         ☆ ☆  

Sharma et al 

[38] 

The History, present and future 

with IoT 
 

2019 ☆ ★  ☆      ☆ ☆  

Kassab and 

Darabkh  

 

This paper - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

 

 

 

  

 

 

 

 

 



 

 

 The taxonomy of IoT architecture (IoT layers, Fog layers, cloud computing) (section 3). 

 Distinct spread-spectrum telecommunications techniques such as (DSSS, FHSS, CSS, THSS) (section 4). 

 IoT layers’ protocols (origin, recent, future enhancements) (section 5). 

 Middleware’s definition, uses, types and open research challenges (section 6). 

 Different simulation tools of IoT networks (section 7). 

 Various types of IoT sensors with recent application areas in IoT (Section 8). 

 Broad and open IoT research challenges (section 9) 

 Conclusions and recommendations (Section 10). 

 

2. Overview of the IoT Paradigm  

IoT paradigm has opened the doors to new inventions, discoveries and interactions among things and people, which will, 

in turn, improve the exploitation of scarce resources and human quality of life. To comprehend the full picture of the IoT model, 

the following sections will address different IoT definitions, functional blocks, and smart devices' basic components. 

 

2.1 Internet of Things Definition 

During the previous decade, the IoT field has acquired a considerable interest in the industry as well as in the academic 

domains, the primary reason for this interest comes from the abilities that IoT provides [1]. It also guarantees to establish a world 

wherein all smart objects and devices are connected to the internet and can communicate with each other with minimum human 

interference [19]. The supreme purpose of IoT technology is to enhance people's life, wherein all smart objects around us realize 

what we require, what we want, what we like and behalf accordingly without explicit orders [19] [39]. IoT includes an enormous 

amount of technologies that form its vision but researches this field is still in its early stages. Thus, there is not a unified definition 

for IoT term, the subsequent definitions have been provided from distinctive researchers.    

 Definition 1:  Objects have virtual personalities and identities, where they are embedded with smart interfaces that allow 

them to communicate and connect with user contexts and social environments [40]. 

 Definition 2: Interconnected things that have active roles in what could be called the internet of the future [41].  

 Definition 3: This expression consists of two words: Internet which is defined as the worldwide network of an enormous 

number of networks depending on communication protocols standards, whereas the word Things refers to all objects that 

are connected to that network based on the same standards [41].  

 Definition 4: The environment of IoT network composes of physical and virtual entities, where these entities turn into 

virtual things inside a cyber-world. These things are embedded with different abilities as sensing, analyzing and processing 

and self-management based on interoperable communication protocols and specific criteria, these smart things should have 

unique identities and virtual personalities [6].  

 Definition 5: IoT notion is anything that can be accessed from anywhere at any time by anybody for any service through 

any network. Thus, IoT can be called as 6Anys [27].     

 

2.2 IoT Functional Blocks 

An IoT paradigm is composed of a number of functional blocks, which ease different functionalities of smart objects like 

sensing, actuation, identification, management, and communication. Figure 1 shows these blocks with brief explanations in the 

following bullet points [27]: 

 Device: Smart devices are the main units of the IoT system, where they are able to perform many operations such as 

sensing, monitoring, control, and actuation activities. They are also capable of exchanging data with applications and 

other smart servers. Each IoT device must be prepared with many interfaces to enable it to connect with other smart  

devices, where it consists of interfaces for Internet connectivity, I/O for sensors, audio/video, memory, and storage. IoT 

devices are varied according to the application they are utilized for. These applications could be smartwatches, wearable 

sensors, automobiles, industrial machines, LED lights, etc. [27]. 

 Services: There is an enormous number of applications that utilize IoT techniques from office automation and home 

appliances to manufacturing lines and goods tracking etc. Thus, it is required to apply specific IoT services in order to 

enhance IoT application development and to speed up its implementation. These services can be classified into identity- 

related services, services for device modeling, information aggregation services, devices discovery, devices control, 

collaborative aware services, ubiquitous services, data analytics and data publishing [27] [42]. 

 Management: The main feature of the IoT device, which distinguishes it from traditional devices that can be managed and 

controlled using mechanical buttons or switches, is remote management with or without human intervention. Furthermore, 

these devices can exchange data between each other to take a suitable decision later on [27] [40]. 

 Security: The data of networks, specifically data of wireless networks, is vulnerable to a massive number of attacks as a 

denial of service, spoofing, and eavesdropping, etc. Thus, IoT system tries to mitigate these attacks via the implementation 

of many security functions like privacy, authorization, authentication, data security, content integrity and message integrity 

[27] [39]. 

 Application: The application layer provides IoT users with interfaces that enable them to monitor and control diverse 

aspects of IoT applications. Furthermore, they permit users to analyze and visualize the status of IoT system at any time 

and from anywhere to take suitable action [27]. 



 

 

 

 

Figure 1: IoT device components 

2.3 Basic Components of IoT Devices 

IoT systems as mentioned before consisting of devices and applications, in order to allow them to communicate with each 

other they must have basic components, as will be illustrated below: 

1. Identification (ID): Each object in IoT system must have a unique identification; an ID is assigned to an entity based on 

conventional parameters like universal product code, Media Access Control (MAC) ID, IPv6 ID or another custom method 

[27].  

2. Meta information: Metadata consists of information about each device in IoT system such as device model, ID, revision, 

hardware, serial number and manufactured date. 

3. Security controls: It resembles the “friend list” of Facebook, as the device owner can place restrictions on the devices 

types that can connect to his device [28]. 

4. Service discovery: This feature enables each IoT device to store details of all other smart devices that belong to the network 

in a specific directory. It is very important to keep these directories updated in order to get information about new devices 

that recently have joined the IoT network [28].     

5. Relationship management: It allows each IoT device to start, update and terminate the relation between itself and other 

devices. Furthermore, it stores a list of the devices types that it should be connected with, according to the service type 

they are provided and based on human settings [27] [43]. For instance, a light sensor can create a relationship with a light 

controller device.  

6. Service composition: This component enables interaction between smart objects and aims to provide users with the best-

integrated service. To achieve such goals, the discovery service tries to find the required service that is provided by the 

smart object, to get benefit from it later on. It is also in charge of processing the data obtained from different objects to 

provide the user with the best solution [43].  

 

3. Architecture of IoT  

IoT connects millions of smart objects, which leads to more data traffic and the need for large data processors and storages 

[19]. Based on the above, IoT will face challenges regarding QoS, privacy, and security [44]. Thus, IoT architecture must take into 

consideration many issues such as interoperability, scalability, QoS, reliability, etc. [45]. In the literature, various IoT architectures 

have been suggested [46] [47] [48]. Nevertheless, each proposed architecture brings many shared drawbacks and fails to cover all 

of the IoT characteristics, which are summarized as follows [49]: 

a. Distributive: IoT model is probably developed in an enormously distributed environment, where data can be collected 

from various sources and consequently can be processed via distinctive smart entities in a distributed procedure. 

b. Interoperability: IoT devices that belong to distinct vendors have to communicate with each other to obtain mutual goals. 

Protocols and systems must be also designed in a manner that permits smart devices from numerous manufacturers to 

exchange their sensed data in an interoperable manner. 

c. Scalability: Billions of objects are expected to join the network of any IoT environment. Thus, applications and systems 

that run on these environments must be able to manage and process a tremendous amount of data. 

d. Resources scarcity: Both of computation units and energy are considered to be highly scarce resources. 

e. Security: Users' feelings of being helpless and exposed under the control and dominant of an unknown external device 

could sorely handicap IoT deployment. 

To overcome these issues, many researchers follow a specific-layered architecture for IoT infrastructure. In every proposed 

IoT architecture, similar techniques, functionalities, and services will be grouped into the same layer, which will facilitate the 
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development and enhancement of the architecture of each layer in the future [50]. There is no global consensus on the architecture 

of IoT, so different IoT architectures have been suggested by many researchers [49]. To the best of our knowledge and after an 

extensive search on IoT architecture models, we found that the superior model with respect to the elements that compose this 

environment is the “Three Based Architecture” model that is described in [51]. This architecture composes of the following three 

layers: 

a. IoT layer: This layer contains all smart devices, entities, and end-users that are located in the IoT system. 

b. Fog layer: All fog nodes are placed in this layer. 

c. Cloud layer: All distributed cloud servers exist in this layer, where these servers consist of multiple processing units like 

a rack of high capabilities servers or it could be a huge server with multiple processing cores. 

 

In every layer a set of nodes are grouped into domains, wherein a single IoT domain, that is composed of Nodes-Fog-Cloud 

agents, an application can be performed as depicted in Figure 2. The basic method that permits any IoT node, fog computing node 

and cloud server of communicating and interacting with each other is demonstrated as follows; firstly, an IoT node transmits its 

sensed data directly to a fog node that belongs to its domain application. As a result, the fog node processes the received data directly 

or sends it to another fog node or cloud server belongs to the same domain in order to send the reply back to the related IoT node. 

This step will reduce the service delay5 of IoT node in receiving a response for any request, this comes from the location of the fog 

layer which allows its nodes to handle most of the requests come from the IoT layer [51]. The following sections demonstrate the 

architecture of each layer in the three-based architecture model. 

 

 

Figure 2: IoT three-based architecture layered 

3.1 IoT Stack Architecture 

Based on our thorough readings of a massive number of prior relevant surveys and books, we propose that the division 

of IoT stack consists of five layers which include perception, data link, network, transport, as well as application layers as 

shown in Figure 3, where all are discussed as follows:  

i. Perception Layer: The primary mission of this layer is to sense the physical attributes of the entities that surround us and 

within the dominant of IoT network, where it depends on many sensing technologies such as RFID, WSN, Global 

Positioning System (GPS), etc. [49] [52]. Moreover, it is responsible for converting the sensed data to digital signals to be 

appropriate for network transmission. As a matter of fact, embedding intelligence and nanotechnology play an important 

role in this layer, as it enhances the processing capabilities of any object through inserting small chips (microcontroller) 

into smart devices that are used in everyday life [49].  

ii. Data Link Layer: The IoT data link layer includes various communication protocols, which primarily provide services to 

the network layer. In fact, there are different standard technologies and protocols indicated by organizations for data link 

protocols out of which, Bluetooth, ZigBee, RFID, low power wide-area-networks, Z-wave, cellular [28]. 

iii. Network Layer: It is in charge of providing data with routing paths to be transmitted in packets form over the network 

area. The network layer establishes logical connections, delivers error reporting, manages and selects the routing path for 

data transmission. Moreover, this layer contains all network devices such as switches, firewalls, bridges, and routers, which 

are required to work along with suitable communication and routing protocols, such as 3G, 4G, 5G, Wi-Fi, infrared 

technology, ZigBee, fiber-to-the-x [49]. 

iv. Transport Layer: It works transitionally with the application layer to transmit and receive data without errors. The 

transmitting side of this layer is responsible for breaking messages that are received from the application layer into 

segments, and then send them to the network layer. In turn, the received segments will be reassembled into messages to be 

directly passed into the application layer by the receiving side. The transport layer provides features, such as packet delivery 

order, congestion avoidance, multiplexing, byte orientation, data integrity and reliability over the transmitted data.  

                                                           
5 Service delay: Is the time period between the moment that IoT node transmits a service request and the time it receives the reply for its request [51]. 



 

 

 

v. Application Layer: This layer represents the front end of IoT architecture, where most of IoT potential will be exploited, 

because it provides IoT developers with interfaces, platforms, and tools that are required to implement IoT applications 

such as smart homes, intelligent transportation, smart health, and smart cities [49]. Moreover, it is responsible for receiving 

the processed data from the network layer.  
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Figure 3: Five layers IoT architecture 



 

 

 

3.2 Fog and Cloud Computing Layers   

Big data that are generated by different IoT applications presents a new characteristic called Geo-distribution [53]. This 

new dimension requires that the sensed information has to be processed at the edge of the network area close to the smart devices 

instead of processing it by remote servers of cloud computing [54]. It is worth mentioning that it is indispensable to offer low latency 

response in order to allow smart objects to take the right action at the suitable time and to protect the integrity of sensitive 

infrastructure components. As a result, fog computing paradigm was suggested to extend cloud-computing services to the edge of 

IoT networks, to provide a highly virtualized platform that supplies many networking, storage and computational services between 

smart devices and cloud computing services [55]. Fog architecture comprises of four layers as depicted in Figure 4, which are 

monitoring, pre-processing, storage, and security layers [56]. 

 

3.2.1 Fog Layers Architecture 

i. Monitoring layer: This layer is responsible for observing the activities of smart devices and networks. For example, it 

detects which sensor node performs some task, what task the node performs and at what time it is executed. Besides, this 

layer is in charge of monitoring the energy level of different network devices [28] [56]. 

ii. Pre-Processing layer: Performs data management, analyzing, filtering and trimming processes to generate useful and 

meaningful data.      

iii. Temporary storage layer: After the pre-processing layer processes sensed data, it will be stored temporarily in the 

resources of this layer. The temporary storage layer offers many storage functionalities such as data storing, distribution, 

and replication [28]. 

iv. Security layer: It implements encryption and decryption techniques to protect the privacy and integrity of data. 
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Figure 4: Layered architecture of fog computing 

 

3.2.2 Why to Use Fog Computing Nodes 

Fog computing nodes act as a bridge between smart objects, storage services, and large-scale cloud computing servers. 

This model extends network resources and services to the underlying network [56], so it has the capability of providing end-users 

with better delay performance services. Despite that, there is an important difference between the cloud and fog computing 

paradigms, where the cloud has enormous computational, communication and storage capabilities compared with fog computing 

[57], Figure 5 shows the roles of cloud computing and fog computing in the delivery of IoT services [58].     

Connecting a massive number of smart objects to the internet such as smartphones, PCs, animals, and humans tracking, 

creates what is called the “Big Data” term that needs high capabilities to be stored, processed and analyzed. Fog computing nodes 

provide end-users with such abilities and are the best choice for many applications rather than farthest cloud computing for the 

following reasons: 

1. Edge location, low latency, location awareness: According to that, fog computing provides its clients with rich applications 

and services with low latency requirements [57]. 

2.  Geographical distribution: Applications and services that are hosted and processed by the fog nodes require widely 

distributed deployment of these nodes closer to the end-user. Fog, for instance, plays an essential role in delivering quality 

streaming to vehicles via access points and proxies that are positioned along tracks and highways. 



 

 

 

3. Mobility supporting: It is common that fog applications communicate directly with mobile smart entities. Thus, fog 

computing is able to support mobility standards such as locator identifier separation protocol [28] [59] [60]. 

4. Real-time interactions: It has the ability to implement real-time interaction services since it can give an instantaneous 

response. 

5. Dominance of wireless access. 

6. Supporting online analytic and interaction with the cloud, as it plays a significant role in the ingestion and processing of 

a massive amount of data that are received from close smart devices. 

7. Scalability: Fog permits IoT environments to grow, so as the number of smart devices increased, as a result, the number 

of fog nodes will be increased too to handle the new load. Such resource expansion cannot be achieved from the cloud 

side since the deployment of new servers is highly cost. 

8. On the fly analysis: Fog resources aggregate data to transmit it partially processed to the cloud servers for additional 

processing.  

9. Power constraints: Since most of the smart devices are battery-powered, long-distance communication toward the cloud 

will deplete their energy faster.   

 

Figure 5: The role of the cloud and fog computing in the delivery of IoT services 

3.2.3 Cloud Computing Architecture 

In the IoT model, communication and information systems are embedded in a smart environment that surrounds us. This 

will lead to the generation of a massive amount of data that needs to be presented, processed and stored in an efficient, seamless and 

easy interpreting manner. According to [12], cloud-computing technology is the latest paradigm that proves its efficiency, 

scalability, autonomy, and reliability, as it provides high capabilities in dynamic resources discovery, ubiquitous access and 

composability6, which are important for the prosperity of the future of IoT applications [49]. This platform plays several roles such 

as a data receiver from smart devices, a computer that analyzes and interprets distinct types of data, and as a supplier of web-based 

visualizations [61]. Many researchers try to construct a compatible architecture that can describe the function of the cloud computing 

paradigm as shown in Figure 6. This model consists of three layers, which are; the base layer that includes a database to keep details 

of all smart devices in the IoT network. The next layer is the component layer, which includes the codes that are required to interact 

with all IoT entities and employ a subset of these entities to execute a service or to query their status, where the last layer in this 

model is the application layer, which is in charge of providing users with the needed services [28]. 

 

                                                           
6 Composability: A system design principle that deals with the inter-relations among components, highly composable system supplies components that can be 
nominated and assembled in innumerable combinations to satisfy particular user requirements [252]. 
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Figure 6: Cloud computing architecture 

 

4. Spread-Spectrum Telecommunications Protocols  
In 1941, spread spectrum communications technology was first described by Hollywood actress Hedy Lamarr and pianist 

George Antheil as the following; to achieve a secure communication in any radio communication system, both transmitter and 

receiver that are forming this system must be tuned to the same plurality of frequencies. According to their innovation, they were 

granted U.S. patent #2.292.387. 

In 1978, the federal communications commission in the USA assigned specific frequency bands for the systems that utilize 

SS techniques in their communications, specifically these bands were devoted to Industrial, Scientific, and Medical (ISM) 

applications. The great success of SS technologies comes from their reliability, immunity against jamming impacts, ability to 

guarantee privacy and security, low sensitivity to signals interferences and low power exhaustion. SS techniques are implemented 

in police and military applications to attain a high degree of security and privacy because the signal bandwidth is distributed over 

enormous frequency ranges, which makes it impossible to track transmissions patterns [62]. It is worth stating that the SS techniques 

enable numerous users to transmit their data at the same channel simultaneously since they use different spreading frequencies. 

Figure 7 below describes the main characteristics of any spread spectrum system [63]. Firstly, the digital signal is fed into channel 

encoder to be converted into analog form with a narrow bandwidth around a specific frequency. Then the digital signal will be 

modulated with a concatenation of digits known as a spreading sequence or a spreading code that is produced by a pseudorandom 

number or a Pseudo-Noise (PN) generator in order to increase the bandwidth of the transmitted signal [64]. On the other hand, the 

received signal will be demodulated on the receiver’s side by the same spreading code, to be fed later on into a channel decoder to 

retrieve the original data. The main pros of employing spreading spectrum techniques in communication systems are summarized 

below: 

1. The signal gains resistance against multipath distortion and different sorts of noise.  

2. Spread spectrum techniques can be utilized for encrypting and hiding signals, where the recipient who knows the spreading 

code can only recover the encrypted signal. 

3. The communication channel can simultaneously be shared by multiple signals without any interference, which enables this 

technique to be utilized in cellular applications.   

 Pseudorandom numbers are generated by a deterministic algorithm that is fed by an initial value called a seed, so these 

numbers are not considered to be random. The vital point is that unless you know both the seed and the algorithm, it is unpractical 

to anticipate SS sequence. Thus, when the recipient gets pseudocode and algorithm from a transmitter, it will be possible to decode 

the signal effectively. There are four types of SS techniques, which are: 

 Direct Spread Spectrum. 

 Frequency Hopping Spread Spectrum. 

 Chirp Spread Spectrum. 

 Time Hopping Spread Spectrum. 

 

4.1 Direct-Sequence Spread Spectrum 

In this technique, every bit in the original signal will be represented by numerous bits that compose the transmitted signal 

using a spreading code [63]. In other words, every bit of the original signal will be multiplied by a sequence of n bits that is called 

a chip, where its rate is equal to n times of the original signal bit rate [64]. The multiplied signal will be then spread across a wider 

frequency band that is proportional to the chip’s PN, size as shown in Figure 8. One procedure of implementing the DSSS technique 

is to combine the digital signal stream with spreading code bits sequence by utilizing an exclusive-or operation. The spread signal 

can give security if the intruder does not know the spreading code; also, it can give immunity against signals interferences if each 

user utilizes a distinctive spreading code.    
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Figure 7: General model of SS digital communication system 
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Figure 8: Spectrum of DSSS 

 

4.2 Frequency-Hopping Spread Spectrum 

With this technique, the signal is broadcast over arbitrary series of radio frequencies jumping from frequency to another at 

specific interims. The recipient also hops between the same frequencies in synchronization with the transmitter to retrieve the 

original message as indicated in Figure 9 [63]. In FHSS method, channel bandwidth is partitioned into a large number of non-

overlapping frequencies slots, specifically 2𝑘 frequencies will form 2𝑘   channels (frequencies slots). In any signal interval, the 

transmitted signal will occupy one or more of the accessible frequency slots using a PN generator. Spaces between the frequencies 

of the signal and the width of each channel commonly correspond to the bandwidth of the input signal. The sender transmits through 

one channel at a time for a specific period. For example, the IEEE 802.11 protocol utilizes a 300ms interim to transmit a number of 

bits using a specific encoding technique. A spreading code determines the sequence of the utilized channels, where both the sender 

and the recipient must utilize the same FHSS code in order to tune the sequence of channels in synchronization. 

In the transmitter side, binary data pass into a modulator that converts it from a digital form to an analog form, this 

modulator could be binary-phase-shift keying or Frequency Shift Keying (FSK). The converted signal will be then centered on a 

specific frequency based on a pseudorandom number or a PN code that serves as an index for the table of frequencies as shown in 

Table 2, where k bits of PN forms 2𝑘 frequencies and each k bits of PN refer to a specific frequency [65]. At each consecutive 

interval, new k PN bits are generated in order to select a new carrier frequency that will be modulated with the signal to create a 

new one with the same shape but centered on the selected frequency. In turn, the received signal will be demodulated with the same 

sequence of pseudo-noise codes to derive the frequencies that are required to retrieve the original signal. For a data rate of ρ, the 

time period needed to transmit one bit equal to Т= 1 ρ⁄  , while the required time to transmit any signal consists of (𝐿) bits is Т𝑠 =
𝐿Т. Furthermore, the needed time to change the frequency of a signal utilizing the FHSS technique is T𝑐, if T𝑐 equal or more than 



 

 

 

Т𝑠then, the FHSS is considered to be a slow-FHSS, else it is known as a fast-FHSS. Typically using a large number of frequencies 

in the FHSS technique will improve the resistance to signal jamming and interferences. 
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Figure 9: Frequency-hopping example 

Table 2: Frequency hopping values based on PN code indices  

 

 

 

 

 

 

 

 

 

 

4.3 Chirp Spread Spectrum 

This technique is considered to be a good modulation choice for wireless communication systems since it has many 

capabilities, such as low power data transmission, strong rejection against signals interferences, and its simplicity to be implemented 

[66]. Unlike DSSS or FHSS, which employ coding techniques in the spread spectrum of a data signal, CSS does not demand any 

code in order to spread the spectrum. The frequency of a sinusoidal signal that is modulated via CSS is increased and decreased in 

a specific time duration . It also uses a pulse compression method to decode the information.  

CSS technique is classified into two types; which are Direct Modulation (DM) and Binary Orthogonal Keying (BOK) [67]. 

DM technique relies on using chirps when it performs spreading and dispreading processes in the signal, while the data is modulated 

via a non-coherent modulation scheme, as it needs a digital modulator to send data. The second type of CSS, which is BOK, uses 

two distinctive chirps with the same duration and bandwidth, but with opposite polarity, which are, up-chirp and down-chirp, based 

on 0’s and 1’s bits. Both up and down chirps are used to represent data symbols, for instance, a bit ‘1’ is used to represent the 

positive chirps while ‘0’ bit is used to represent the negative instantaneous frequency change. At the receiver side, there is a matched 

filter to decode received signals [68]. 

 

 4.4 Time Hopping Spread Spectrum 

This technique is based on splitting the signal transmission period into ‘N’ short time slots as shown in Figure 10, where 

N=2𝑛7 [69] [70]. Through each frame, only a single time slot will be selected by the pseudorandom code generator to transmit a 

modulated data packet. Once the signal reaches the receiver side, it will be passed through electronically controllable switch, to be 

demodulated later on with the help of a bit synchronizer that is responsible for controlling the PN code generator to keep up 

synchronization with the received signal.  Finally, the processed signal will be sent out through the storage and relocked unit.      

                                                           
7 ‘n’ symbol represents the number of the transmitted bits per time slot in one frame. 
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Figure 10: Time hopping spread spectrum system 

5. IoT Stack Protocols (Origin, Recent, Future Enhancements) 

Communication protocols are the proper descriptions of transmission, design, and rules of any digital message [71]. These 

protocols form the backbone of IoT networks as they enable them to be coupled and connected to smart services and applications. 

In addition, they allow smart things and devices to exchange their sensed data through these networks. The major functions of 

communication protocols are defining the following features; different addressing schemes of smart devices, transmitted data 

formats, data encoding, flow control, retransmission of lost packets ways, and routing process of IoT packets from source nodes 

toward destination nodes [27] [72]. 

 IoT field is widely and swiftly spreading, where it comprises of a massive number of heterogeneous smart objects and 

power-constrained devices that are connected to IoT network with minimal storage and computing resources [73]. Based on that, 

IoT communication protocols face many challenges that should be taken into consideration while designing an IoT application, 

which are indicated as follows [74]: 

 Identification and addressing: As billions of smart devices will be connected to the internet, each device must be 

identified via a unique address that permits it to communicate with other objects. Based on that, a large addressing space 

is required. 

 Low power communication: Data exchanging process through devices is a power-consuming operation, especially in a 

wireless medium. Hence, a solution that facilitates communication among smart things with minimal power consumption 

is required. 

 Routing protocol with minimum memory requirements and efficacious communication patterns. 

 Non-Lossy and high-speed communication. 

 The mobility of the smart objects. 

Many classifications have been proposed to overcome the aforementioned challenges of IoT protocols. In this article, we 

follow the well-known classification that refers to the OSI model to describe the original, recent and future enhancements of each 

IoT layer protocols as given below:   

 

5.1 Application Layer IoT Protocols 

The application layer of IoT is in charge of determining suitable protocols and providing services that are required for 

message passing at the application level. Many factors should be taken into consideration when selecting proper communication 

protocol for a specific application, which are power consumption, required bandwidth, transfer and connection time, delivery 

guarantee, data security, and packet size. The following sections discuss IoT application layer protocols along with their recent and 

future enhancements, where Table 3 compares these protocols from different aspects and clarifies their advantages and 

disadvantages.          

 

5.1.1 Original Application Layer IoT Protocols 

(1) Message Queue Telemetry Transport: It is a lightweight protocol that was developed by Andy Stanford-Clark and Arlen 

Nipper in 1990. It enables the communication process between IoT devices and the network with middleware and applications 

in many forms such as M2M, server to server and machine to the server, and it works over the top of Transmission Control 

Protocol/Internet Protocol (TCP/IP) [75]. It supports also the communication over limited bandwidth and unreliable links. Hence, 

MQTT is used for publishing and subscribing operations to exchange lightweight messages, with a packet size that does not 

exceed 256MB, between clients and servers [76] [77]. Moreover, MQTT is suitable for operation in constrained devices with 

limited power and processing capabilities.    

(2) HyperText Transfer Protocol: It is a web messaging and text-based protocol that was designed by Tim Berners-Lee in 1997, 

it also supports request/response Representational State Transfer Protocol (RESTful) functions, where the client transmits HTTP 

request message to the server [78]. HTTP depends on TCP as a transport protocol and Transport Layer Security/ Secure Sockets 

Layer (TLS/SSL) as a security protocol, which makes the communication between the server and the client connection-oriented. 

However, IoT communication over HTTP protocol causes the consumption of network resources and serious overhead as it 

requires transferring a lot of small packets [79]. 

(3) Extensible Messaging and Presence Protocol: It was developed by Homonym open source community in 1999 and was 

standardized by the Internet Engineering Task Force (IETF). XMPP supports low latency communication and small message 

transmission, which makes it suitable for many services such as video and voice calls, instant messaging, chats, publish-subscribe 

systems, gaming, and IoT applications. This protocol permits communication among heterogeneous applications due to its 

simplicity and flexibility. Nevertheless, it consumes the network bandwidth, needs high CPU capabilities, allows only the 

transmission of simple data type and there is no guarantee on the QoS [80] [81]. 



 

 

 

(4) Representational State Transfer Protocol: REST protocol is a set of best practices, rules, and constraints, where it was 

designed by Roy Fielding to provide web services that permit data exchange and communication among different devices and 

to build distributed hypermedia systems and provide them with desirable features such as modifiability and scalability. RESTful 

is based on HTTP protocol to support request-response and client-server models, which will allow the client to access server 

resources on IoT environments. However, RESTful Application Programming Interfaces (APIs) are considered to be a good 

choice for multiple IoT applications because they are lightweight and simple protocols [81] [82]. 

(5) Constrained Application Protocol: This protocol was proposed by IETF [83], to suit the communication among resource-

constrained and unsynchronized devices, provide flow control, reliable delivery, and simple congestion control for IoT 

applications. It supports also the publish/subscribe communication model that is based on multicast and unicast requests. CoAP 

runs over User Datagram Protocol (UDP) because of its simplicity, having a small message size and a low code footprint,  to 

manage resources, to reduce bandwidth requirements, and eliminate the cost of TCP handshake overhead before the beginning 

of transmission [84]. However, this protocol has many shortcomings as it increases communication latency, packet delivery 

corruption and it fails to transmit complex data [81].   

(6) Advanced Message Queuing Protocol: It was developed by John O'Hara in 2003 to support a publish/subscribe architecture 

based on an efficient and reliable messaging queue. AMQP is widely used in commercial and business fields, as it supports 

reliable and secure communication between heterogeneous devices. Also, it runs over TCP protocol to guarantee more reliability. 

The process of transmitting data over AMQP consists of two steps which are; message queue and exchange queue. In the message 

queue model, the messages will be stored until they are transmitted to the receiver, while in exchange queue form the message 

will be routed in a suitable order [85]. 

(7) Data Distribution Service: It was developed by Object Management Group (OMG) and run over TCP/UDP transport protocols 

to achieve high performance, real-time, interoperable, scalable and dependable data communication based on publish/subscribe 

model. DSS is based on Peer-to-Peer (P2P) and decentralized communication, by a data-bus to enable asynchronous data 

transmission, which makes it a significant solution for IoT applications. 

 

5.1.2 Recent Enhancements of Application Layer IoT Protocols 

 Novel enhancements were applied on MQTT to launch MQTT v5.0, which has considerable amendments compared with the 

previous versions as the following [86]: 

 Allowing discovery functions: Inform the client with the maximum packet size and the maximum number of packets it can 

transmit at the beginning of the connection. 

 Better error reporting: Reason code has the responsibility of warning users if data is not transmitted successfully. 

 Shared subscriptions: By distributing messages evenly among the receivers for the sake of load balancing purposes, when 

the message rate of subscription is high. 

 Message properties: Define packets' properties and features through metadata at the header of the message. 

 Message expiry: It is an option to discard a message if it cannot be received within a predefined time. 

 Session expiry: Terminate client session, if it cannot be connected after a period of time. 

 Appropriate delay: Publish a message to the client, if it is disconnected more than predefined time. Also, notify clients 

about disconnections of their applications. 

 Topic alias: Representing messages topics by a single number, which will reduce message sizes. 

 

 Designing RESTful IoT systems have many commonalities with other web applications, even though the primary characteristics 

that should be considered when building these systems are: 

 Interaction patterns, data formats and other approaches that avoid or reduce the need for human intervention. 

 Preferring simple and compact data formats to ease the transmission and processing over constrained networks.     

     However, many aspects of RESTful protocol need to be improved to enhance its capabilities as follows [87] : 

 3-way commit, because of robust and unreliable communication in high packet loss networks. 

 Sharing knowledge methods between system components, such as media types, well-known locations, uniform resource 

identifiers schemes, and relation types. 

 Further information on choosing what is modeled as a resource and how to select resources. 

 

 The main objectives behind enhancing CoAP capabilities to run over TLS and TCP, are that some enterprise networks face 

connectivity issues compelling them to block UDP packets, while the second target is to gain many desirable features of TCP 

protocol such as [88]: 

 Nating over TCP lasts for a long period compared with UDP, as it provides additional information regarding session 

lifecycle. Thus, timeout binding for TCP is 386 minutes, while it does not exceed 160 seconds for UDP protocol. Generally, 

the shorter timeout of UDP requires to transmit the keepalive messages more frequently compared with TCP protocol.  

 TCP uses techniques for flow control and congestion control that are more advanced than those provided by UDP, which 

allow CoAP to transmit larger payloads.  

However, there are numerous hindrances of using CoAP over TCP, as it requires more round trips, large code and 

packet sizes, and more RAM requirements. 

 

 AMQP v2.5.0 has added a new platform to the previous version of the protocol, dropped Python 3.4, and fixed numerous bugs.  

In addition to the above, the motivation behind launching a novel AMQP v.2.5.0 protocol is the need of scaling hundreds to 

thousands of subscribers and publishers in a reliable and flexible manner [89]. 

 



 

 

 

 DDS protocol specifies the communication semantics (QoS and behavior) and APIs that permit robust and efficient data 

transmission to the right place at the right time. Therefore, it is important to design the interfaces in a way that meet the above 

requirements as follows [90]: 

 Permitting the middleware to dynamic pre-allocate resources to be at the minimum. 

 Evading features that require using of hard-to-predict or unbounded resources. 

 Reducing the need for making copies of data. 

5.1.3 Future Research Directions of Application Layer IoT Protocols 

 HTTP protocol supports a wide range of internet services. A novel version (HTTP/3) is proposed to suit running over  

Quick UDP Internet Connections (QUIC) protocol. QUIC tries to enhance HTTP performance by incorporating TLS v1.3 

security procedure. HTTP/1.1 runs over TCP protocol and utilizes whitespace-delimited fields to transmit HTTP texts, 

where multiple TCP connections are required since one HTTP response or request can be transferred at a time in each 

direction. HTTP/2 presents a new layer multiplexing and binary framing layer in order to enhance network latency without 

any modification in the transport layer. Nevertheless, the parallel multiplexing nature of HTTP/2 makes it prone to packet 

reordering or loss. HTTP/3 is intended to support transporting over QUIC protocol and internal framing layer to benefit 

from their features [91].       

 XEP-0128 is a service discovery extension for XEP-0030 protocol which does not have an option that allows users to add 

a service description attribute. Adding an additional attribute to service discovery schema does not solve this issue, so it is 

better to include additional information that provides a method to resiliently specify data structured formats [92].     

Table 3: Comparison between application layer IoT protocols 

Protocol MQTT HTTP XMPP RESTful 

Year 1999 1997 1999 2000 

Standard OASIS8, Eclipse Foundations IETF, W3C9 (RFC 3920-RFC 3923) 

RFC 4622, RFC 4854,  
RFC 4979, RFC 6122 

IETF 

Latest 

Version/year 

MQTT version 5.0 (2018) [93] HTTP version 3.0 (2018) [91] XMPP v 1.0.1 

XEP-0128 (2019) [92] 

RESTFUL (2018) [87]                          

UDP/TCP TCP TCP TCP TCP 

Architecture Publish/Subscribe Request/Response Publish/Subscribe 

Request/Response 

Request/Response 

Semantics/ 

Methods 

Connect, Disconnect, Publish, Subscribe, 

Unsubscribe, Close 

Get, Post, Head, Put, Patch, 

Options, Connect, Delete 

Get, Post, Put, Set, Result Post, Put, Delete, Get 

Security TLS/SSL TLS/SSL TLS/SASL10 TLS/SSL 

QoS options Yes Limited No Yes 

Caching Yes Yes Yes API calls can be cached 

Performance Needs low power requirements High latency Traffic overhead Requires fewer resources 

Message format Plain-text Plain-text, Textual information 
encoded in ASCII 

Chatting, message exchanging. Plain-text , XML11, HTML 
YAML12, JSON 

Merits  Suitable for resource-constrained 

devices 

 Suitable for high latency and low 

bandwidth networks 

 Simplicity 

 Very small message header 

 Persistent connections 

  Request pipelining 

  Chunked transfer encoding 

 High interpretability on the 
web  

 

 Decentralization can be run 

by anyone on any server and 
there is no central master 

server 

 Open standards 
Flexibility (Custom 

functionality can be built on 

top of XMPP) 

 Scalability 

 Easy implementation and 
interaction  

 Browser-friendliness 

 Flexibility 

 Independence of 
programming language and 

platforms 

Demerits  It does not support encryption 

 Needs more efforts in security  

 Requires high power and 
resources  

 Increases communication 
latency  

 Consumes network 
bandwidth 

  Does not include reliability 

 Does not support QoS 

 High network overhead 

 In-band binary data transfer is 
limited 

 Less security 

 Not suitable for distributed 

environments 

References [75] [76] [77] [94] [95] [96] [78] [79] [81] [92] [35] [81] [82] [97] [98] [99] 

Table 3: Comparison between application layer IoT protocols (Cont.) 

Protocol AMQP DDS CoAP 

Year 2003 2001 2010 
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Standard 
OASIS, ISO/IEC13 OMG IETF, Eclipse Foundation 

Latest Version/year AMQP v 2.5.0 (2019) [89]                                                                    DDS v.1.4 (2015) [90] RFC 8323 (2018) [88]                                          

UDP/TCP TCP TCP/UDP UDP 

Architecture Publish/Subscribe Publish/Subscribe  
Request/Response 

Publish/Subscribe 

Semantics/ 

Methods 

Consume, Deliver, Publish, Get, Select, Ack, 

Delete, Nack, Recover, Reject, Open, Close 

Write, Read, Take, Dispose, Wait Post, Put, Delete, Get CON(Confirmable), 

NON (non-confirmable), ACK 

(Acknowledgement), RST (reset) 

Security 
TLS/SSL, IPSec14, SASL TLS/ DTLS DTLS15, IPSec 

QoS options Yes Yes QoS by 4 types of messages: Confirmable, 

Non-Confirmable, 

Acknowledge, Reset 

Caching Yes Yes Yes 

Performance Efficient in the environment that does not have 
any restriction in network bandwidth, power, 

latency, and processing capabilities 

Efficient in the application that requires 
low latency and high bandwidth 

Sufficient for constrained environment and 
networks 

Message format Binary encoded ASCII characters, Binary encoded Binary encoded 

Merits  Scalable  

 Supports the communication between 
heterogeneous devices 

  Supports reliability, security, and performance 

 Supports durability, security, and 

priority QoS standards 

 Achieves high performance, real-

time, interoperable, scalable and 
dependable data communication 

 Reliability 

 Retransmitting lost packets 

 Multicast support 

 Resources monitoring 

 Low overhead 

 Simplicity for constrained environments 

Demerits  It is not suitable for real-time and   resource-
constrained environments    

 It does not support automation discovery 

procedure  

 Heavy protocol as it requires memory and 

power resources 

 Consumes high bandwidth  Multicast communications are less secure, 
as there are no suitable key management 

procedures  

 An end to end security is not supported  

 It does not contain built-in security 

characteristics 

References [35] [84] [85] [94]  [100] [35] [94] [101] [35] [83] [84] [94] [100] [102] 

 

5.2 Transport Layer IoT Protocols 

This layer is also known as routing layer since it is responsible for routing data packets through the network area, where 

its protocols are in charge of ordering packets, error detection, and correction [103]. The following sections describe the main 

transport protocols that are utilized in IoT environments with their enhancements and future works, where Table 4 provides a 

comparison among these protocols from different characteristics.  

 

5.2.1 Original Transport Layer IoT Protocols: 

(1) Transmission Control Protocol (TCP): It is a heavyweight and connection-oriented protocol, which means that the connection 

must be established until all the required data have finished exchanged between each end device. This makes TCP suitable for 

reliable communications, as it needs acknowledgment message to guarantee each sending and receiving process, supports 

retransmission of lost or corrupted packets and provides a flow-control mechanism. Consequently, the packet overhead will be 

very large in this protocol, which will lead to more power consumption from devices and hence, making it not suitable to operate 

in power-constrained devices. TCP breaks down the data packet into multiple packets, where each packet has an ordering number 

with source and destination IPs [104].   

(2) User Datagram Protocol (UDP): It is a connectionless protocol that aims to provide unreliable, minimal message queueing, 

message passing and best-effort transport to protocols and applications which operate over IP. There is no need to establish end 

to end connection between the communicating entities, which in turn will offer a very efficient communication for some 

applications that require real-time performance with low latency such as video and voice [105]. Moreover, there is no guarantee 

on data packets ordering, duplicate, delivery or protection. On the other hand, UDP provides a port number attribute to address 

functions of source and destination, as well it provides a checksum for data integrity.     

(3) Datagram Congestion Control Protocol (DCCP): It provides unicast bidirectional connections of unreliable dynamic 

congestion-controlled datagram. These features make DCCP suitable for the applications that transmit massive amounts of data 

and the applications that tradeoff between reliability and timeliness, such as Voice over Internet Protocol (VoIP) and media 

streaming [106]. The flow rate in DCCP can be adjusted gradually since it is unreliable and lacks a receiving window [107].     

(4) Stream Control Transmission Protocol (SCTP): It is a connectionless, message-oriented and IP transport layer protocol like 

UDP that was designed and launched in 2007 by Stewart [108].On the other hand, SCTP provides connection-oriented P2P, 

reliable transmitting for the applications that are communicating over an IP. Thus, it inherits most of the TCP features including 

the recovery of the lost packets and congestion control [109]. 

(5) Transport Layer Security: It runs on the top of many transport layer protocols, as it was designed to provide secure channels 

among the communicating peers and to provide authentication, data confidentiality, data integrity and encryption to the 
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14 IPSec: Internet Protocol Security 
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applications, by preventing eavesdropping, message forgery, and tampering. It consists of two components, where the first 

component is the handshaking protocol that has the responsibility of authenticating the communication ends, agreeing on shared 

keys and negotiating the cryptographic parameters and modes, where the second component is the record protocol that splits the 

traffic into many records and protects them by utilizing the traffic keys [110] [111].    

(6) Datagram Transport Layer Security: It was designed to provide security for datagram applications that do not require or 

provide in-order or reliable data delivery such as datagram online gaming, internet telephony and media streaming, which are 

considered to be delay-sensitive applications. DTLS is an extension of TLS protocol, where it provides the same security 

functionalities but for data stream transmission by preventing message forgery, tampering, and eavesdropping. Thus, it should 

deal with and solve many datagram issues, such as loss of datagram packets, packet reordering and delay [112].    

(7) Resource Reservation Protocol (RSVP): It is multicast and unicast control transmission protocol that was designed to provide 

flexible, robust, scalable and heterogeneous resources reservation setup at each router for data stream transmission. RSVP 

organizes message formats, hosts and routers mechanisms, also it can operate over IPv4 or IPv6 [113]. It also supports many 

functionalities such as resource reservations in each node along the data path, multipoint to multipoint communication paradigm, 

cache (state) management routers and receiver-initiated reservation [114] [115]. 

(8)  Quick UDP Internet Connections: It is a general-purpose, secure and multiplexed transport protocol. Quick was built on the 

top of UDP protocol by google to provide reliability, security, multiplexing, flow control per-stream, congestion control per 

connection, low latency for data stream transmission, and connection migration to NAT rebinding [116]. This protocol aims to 

improve the performance of connection applications, which are based on TCP protocol through established multiplexed 

connections over UDP [117]. 

(9) Aeron: It is an open-source connection-oriented communication protocol that was proposed by Martin Thompson to run over 

unreliable media such as InfiniBand and UDP, as well to provide in order transmission with optional reliability through 

retransmission of dropped packets. Aeron tries to provide the highest throughput with the lowest latency, which makes it ideal 

for the communication of real-time applications, VoIP, fast-paced networked multiplayer games, video streaming, and high-

frequency financial trading. However, implementing this protocol by java language will reflect on reducing resource 

requirements such as memory and CPU [118] [119].    

 

5.2.2 Recent Enhancements of Transport Layer IoT Protocols 

 TLS v1.3 has improved the major specifications of the original protocol (TLS) as the following [120] : 

 New encryption techniques were proposed and work only with the newest versions of TLS. 

 A zero round trip mode was proposed, so the data transfer session cannot be started until the handshaking process is 

completed.  

 After receiving the ServerHello packet all of the handshaking messages have to be encrypted. 

 The handshake state machine was reconstructed to eliminate unnecessary messages and to be more consistent. 

 Prevent renegotiation when the connection in TLS v1.3 has been established. 

 Using RSA16 probabilistic signature scheme instead of RSA padding, besides removing DH crypto groups and digital 

signature algorithms. 

 

 RSVP protocol was proposed to transform unidirectional Label Switch Path (LSP) connection into a bidirectional connection, 

either by single-sided or by double-sided method, by following the same path. RSVP-Extended (RFC 8537) amends single-

sided and double-sided methods to support fast reroute and co-routed procedures. Fast reroute methods make sure that the traffic 

of LSP flows smoothly via co-routed paths in both directions after it transmits through the fast route. However, to implement 

RFC 8537 standard successfully, all the nodes on the LSP path should support this protocol [121].    

 

5.2.3 Future Research Directions of Transport Layer IoT Protocols 

 TCP is a significant transport protocol that has been continuously improved since 1981. Over this time, many piecemeal changes 

have been done to suit tremendous numbers of internet applications and to fix many errors and hindrances in many aspects such 

as performance and security. TCP provides byte stream service, in-order and reliable delivery of data segments over the network 

as IP datagram. Achieving data reliability is done by detecting packets errors through segment checksum, or detecting packet 

loses through sequence number. Also, it supports a connection-oriented unicast or anycast transmissions. Many issues should 

be considered to be solved in the future, such as IP security precedence and compartment, validation of sequence number, Nagle 

algorithm (small packets buffering) modification and low watermark function usage. 

 

 Many transport protocols extend their capabilities by dedicating an area for header options, which will adapt the protocol to be 

used in particular environments or in unexpected conditions that have not been seen by the developers. UDP is one of the 

popular transport layer protocols that lack this feature. Thus, UDP-Options-07 comes to extend UDP header to locate a trailer 

space for options after the data payload field [122].  

 

 Transmission over SCTP has faced many issues and hindrances from the first launching till now. RFC 8540 presented the 

improvements that have been made to handle these issues, such as path error, counter threshold, shutdown request of the upper-

layer protocols, new chunk types registration, detection of endpoint failure, identifying the rules of data transmission, 

miscellaneous typos, etc [123].  
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 Communication through DCCP is currently limited on one path per connection, even though multipath connection only exists 

among peers. Improves DCCP capabilities to support the use of simultaneous multipath communications, will reflect positively 

on enhancing network resources usage through applying load balancing techniques, providing flexibility to face the network 

failure and improving the network throughput [124].    

 

 DTLS v1.3 has been evolved to allow a secure client/server communication over the internet by implementing the following 

[125]: 

 A new handshaking form has to be proposed to support short message exchange. 

 Legacy and weaker cryptographic algorithms ought to be removed. 

 Supporting authenticated encryption with associated data ciphers. 

 Encrypting sequence numbers. 

 Adding connection ID functionality. 

 Optimizing sizing and encoding of the record layer. 

 Providing elastic cryptography method negotiation. 

 Redefining a new method for phase-shift keying authentication. 

 Proposing a new session resumption procedure. 

 

 QUIC v.1 is an enhanced version of QUIC protocol that aims to be utilized over UDP, which will evade the need to change the 

middleboxes and the operating systems of clients by applying data encryption and headers authentication techniques [126]. 

Table 4: Comparison between transport layer protocols considering different aspects 

 Protocols DTLS RSVP QUIC Aeron 

Standard RFC4347 RFC 2205 gQUIC Aeron 

Latest version of 

protocol\ Year 

DTLS v.1.3 (2019) [125] RFC 8537 (2019) [121] QUIC v.1 (2019) [126] * 

Flow control * Yes Yes Yes 

Congestion control * Yes Yes Yes 

Packet size 224-1 bytes (handshake message) 16 bits header 2- and 19-bytes header for wire 
connection 

32 bytes  

Transport packet 

entity 

 Datagram Datagram  QUIC packet Frame 

Error detection Yes Yes Yes Yes 

Reordering and 

sequence 

numbering 

Yes Yes Yes Yes 

Reliability Yes Yes Yes Yes 

Port Numbering * Yes Yes * 

Merits  Provides security for datagram 

transmission 

 Provides reliability for handshake 

 uses retransmission timer to reduce 
the probability of packet loss 

 Queues unordered messages  

 Data Integrity 

 Error reporting 

 Permits multicast 

communications among 
heterogeneous devices  

 QoS routing can be deployed 
separately from data  

 
 

 Built-in performance and 

security, as it has many 

security functions such as 

encryption and authentication  

 Processing many requests and 
transmission concurrently with 

one handshaking  

 Low packet loss 

 Minimize bandwidth 
consumption 

 Tries to attain high 

throughput with low 

latency for both unicast 

and multicast 

communications  

 Affords reliable 

multicast operation 

 Provides different QoS 

degree based on data 

stream type 

Demerits  Cannot provide protection for 

SCTP control chunks  

 DTLS over SCTP is slower 

 When the collision occurs, DTLS 
will process only the packets from 

the first source and discards the 
others 

 Requires a lot of work on the 

router's side to manage resources 
reservations 

 Puts heavy processing load on 
routers especially in a heavy 

traffic case, which will degrade 

their performance 

 Soft state requires many 

refreshments 

 Scalability issue 

 Performance problem of the 

data transmitting and receiving 

 Information exposure when 

using long header 
 

This protocol on its 

infancy stages  

References [112] [127] [128] [114] [129] [130] [131] [117] [116] [132] [133] [118] [119] [134] 

Table 4: Comparison between transport layer protocols considering different aspects (Cont.) 

Protocols TCP UDP DCCP SCTP TLS 

Standard RFC793 RFC768 RFC4340 RFC4960 TLS 1.0 (RFC2246) 

Latest version of 

protocol\ Year 

RFC793bis-14 (2019) [135] Transport Options for 

UDP (2019) [122] 

Multipath DCCP (2019) 

[124] 

RFC8540 (2019) [123] 

 

 

TLS v1.3 (RFC8446) 

(2018) [120] 

Flow control Yes No No Yes * 

Congestion control Yes No Yes Yes *  

Packet size 20-40 bytes header 

 

8-bytes header  12 or 16-bytes header 12-bytes header 5-byte header 

 

Transport packet 

entity 

Segment Datagram Datagram Datagram Runs over Segment  

Error detection Yes No Yes Yes Yes 



 

 

 

Reordering and 

sequence 

numbering 

Yes No Yes/No yes Yes, by MAC 

Reliability Yes No No Yes Yes 

Port numbering Yes Yes Yes Yes Yes 

Merits  Supports most of the 
applications that run over 

the internet 

 Improves the 

performance and 
robustness of varying 

quality and capacity 

networks 
 

 

 
 

 There is no 
guarantee on 

packets delivery 

 Packets may arrive 

out of order  

 No flow-control 

 High packet loss 

 There is no startup 

latency  
 

 

 Eliminates the delay 
that can occur when 

waiting packets arrive 
out of order 

 Supports various 
delivery modes such as 

strict, partial and 

unordered delivery  

 Multi-homing support 

as it can send a message 

to the same destination, 
but it can reroute it to 

another IP, if the 

previous IP is 
unreachable 

 Enables congestion 
control techniques   

 Provides flexibility for 
VoIP applications that 

need reliable message 
data transmission 

 Supports Multihoming 
method 

 Supports additional 

security features, 
which minimize denial 

of service attacks 

 

 Prevent tampering by 
intruders 

 Prohibit passively 
listening by attackers  

 

Demerits  It is not suitable for real-

time and synchronous 

applications 

 It gives strict order of the 
data that is delivered 

between hosts 

 It cannot continue a 
transmission if a specific 

sequenced packet has not 
been received and 

acknowledged yet 

 All broadcast and 

multicast 

transmissions are 

unreliable in UDP  

 Retransmission is 
required when there 

is a corrupted data  
 

  Unreliable transport 

protocol, which affects 

visual quality of the 

video streaming and 

QoS performance  

 It lacks receiving 

window 
 

  

 Network address 

translation problem 

when using multi-

homing function 

 Dynamic IP 
addressing issue, 

especially in multi-
homing function 

 The transmission 
process of the line will 

be blocked until the 

head of the stream is 
received and 

acknowledged 

 Adding more latency  

 Handshaking process 

consumes resources 

 Complicates the 
configuration 

managements  

References [109] [136] [137] [107] [138] [109] [136] [139] [140] 

[141] 

[110] [142] [143] 

 

5.3 Network Layer IoT Protocols 

This layer has the responsibility of forming, addressing and routing data packets, as it receives the datagram packets from 

the transport layer and transfers them into data packets form to be then transmitted to the destination side. The following subsections 

discuss the common routing protocols that are broadly utilized in data packets transmission along with their future improvements, 

where Table 5 compares these protocols from distinctive aspects.   

 

5.3.1 Original Network Layer IoT Protocols 

(1) Routing Protocol for Low-Power and Lossy Network (RPL): It is a tree-based, IPv6 proactive, distance vector routing 

protocol that was designed by routing-over-low-power-and-lossy-networks working group in 2012 to run over lossy and low 

power commercial appliances networks, where their interconnections are characterized by instability, low data rates, and high 

loss rates [144]. RPL structs the network topology into Destination Oriented Graph (DAG) that consists of Destination-Oriented 

Directed Acyclic Graph (DODAG). Every DODAG represents a routing tree that is constructed by a root (sink) node. To create 

optimal routes of DODAG, RPL utilizes an Objective Function (OF), which is calculated based on routing metrics [145]. The 

first step of creating DODAG begins by transmitting the DODAG Information Object (DIO) message, which consists of node 

rank, OF, mode of operation and metric, by the root node to all other neighbors. Consequently, nodes that receive DIO messages 

will decide to join DODAG or not based on OF. The joining nodes will compute their rank, determine the upward route toward 

the root node, opt their preferred parents and refresh their neighbor tables. If the node sends a DIO message it will become a 

router, else it will be a leaf [146] [147] [148] [149].     

(2) Cognitive Routing Protocol for Low-Power and Lossy Network (CORPL): It is an extension of the RPL protocol, where it 

was designed to suit cognitive network and is based on DODAG topology in routing generation with novel modifications. 

CORPL uses an opportunistic forwarding mechanism allowing it to select the optimal forwarder from a set of eligible neighbors 

to be the next hop for data transmission. In this approach, each node maintains a set of forwarders instead of one parent and 

updates its set based on the receiving DIO messages [150].     

(3) Channel-Aware Routing Protocol (CARP): It is a distributed protocol that was designed for underwater and IoT applications 

because of its lightweight data packet. CARP considers link quality to opt the forwarder nodes, according to the successful data 

transmission that occurred by neighboring sensors. The routing operation of CARP consists of network initialization step and 

data forwarding step. In the first step, the sink node broadcasts hello messages containing its ID along with the hop count to 

enable the receiving node from updating its distance toward the sink node. In the data transmission step, the sender broadcasts a 

ping message to its neighbors to choose the optimal relaying node based on the link quality and the information that it receives 

from pong messages by them, in order to forward data through the optimal node [151].      

(4) Collection Tree Protocol (CTP): It is a tree-based routing protocol that was designed to provide the best effort for anycast 

communication in low energy demands networks. In the beginning, some nodes advertise themselves as root nodes (sink nodes), 



 

 

 

where data is delivered to the root with minimum cost. Other nodes will connect to the root tree through beacon advertisements, 

then send their collected data to the next hop toward the sink node based on the minimum Expected Transmission Count (ETX) 

cost of their neighbors. However, CTP does not support reverse routing from the sink node to sensors [152] [153].      

(5) Lightweight On-Demand Ad Hoc Distance-Vector Routing Protocol-Next Generation LOADng: It is a lightweight 

distance-vector and reactive protocol that is derived from On-demand Distance vector (AODV) protocol to enable secure, 

scalable and efficient routing in lossy and low power networks.  As a reactive protocol, there is no routing table for the routes to 

all destinations. Thus, LOADng generates on-demand route requests to discover a path to the destination node, when there is 

generated data required to be sent, until receiving unicast reply hop by hop from the destination node back to the sender node. If 

broken is detected in the route, then attempts to repair is applied or an error message will be directed to the requested node [154].   

(6) An Efficient Routing Protocol for Emergency Response Internet (ERGID): It aims to provide reliable data transmission and 

efficient emergency response for IoT applications. ERGID selects the optimal route toward destination considering global 

latency estimation and the residual energy of the candidate route nodes. The first procedure is called delay iterative method, and 

it tries to alleviate the problem of disregarding valid routes, update routing tables periodically and ensure real-time 

communication for the emergency-response-applications. Whereas, the second procedure is called residual energy probability 

choice [148] [155]. 

(7) Parent Aware Objective Function (PAOF): It is an objective function proactive protocol that tries to achieve load balancing 

by employing parent count and ETX metrics in route selection for data transmission. To select the desired route, PAOF first 

computes the difference between the ETX of the candidate nodes, in case if it is smaller than predefined value called 

MinHopRankIncrease17,  then it will compare between the parents count and consequently select the least value as the preferable 

route [148] [156].     

(8) Geographic Routing Approach for The Ipv6-Enabled Large-Scale Low-Power and Lossy Networks (GeoRank): It is a 

hybrid approach that integrates the rank-based behavior of RPL protocol with geometric-based behavior of greedy other adaptive 

face routing protocol, to be implemented in large-scale networks that have a non-uniform link density, in order to enhance P2P 

communication over 6LowPAN and to minimize the number of control packets.  In this protocol, each node in the network area 

is declared by its position and must be aware of other nodes' positions. Initially, GeoRank computes the distance between the 

source node and the destination according to the list of DODAG root, to choose the anchor root that gains the lowest absolute 

angle difference between the source and destination path. Then, the protocol tries to forward the data to the neighbor that is 

located one hop from the destination based on a greedy forwarding algorithm. If there is no node achieves this condition, then 

GeoRank mode will be applied to forward the data to the preferred parent in the path to be sent then to the anchor node until it 

reaches its destination. The proposed algorithm is only applied for down routes, where RPL is performed to discover and reach 

upward routes [148] [157].  

(9) Ad-Hoc On-Demand Multipath Distance Vector for IoT (AOMDV-IoT): It aims to discover and create a connection among 

nodes and the internet. AOMDV-IoT creates two routing tables for each node, which are Internet Connecting Table (ICT) and 

routing table. Also, it transforms IP address into Internet Linking Address (ILA). Once a node requests to be connected to the 

internet, the required IP will be converted into ILA in order to facilitate searching through ICT, which provides the source node 

with a suitable internet node.  In case, if there is no internet node in ICT, then the source node will broadcast a requested packet 

to update both tables until it finds the optimal route toward an internet node [158].        

5.3.2 Recent Enhancements of Network Layer IoT Protocols 

 RPL routing protocol is not applicable for Mobile Nodes (MNs) of dynamic networks, as it cannot deal efficiently with MNs 

disconnections, data losses, routes reliability and real-time applications. Applying mobility detection using RPL is based on the 

absence/reception of DIO messages and that means more control overhead, which will consequently lead to more delay, more 

power consumption, more collisions, and data losses. Energy and Mobility Aware Routing protocol (EMA-RPL) was proposed 

by Bouaziz et al to deal with the aforementioned issues of real-time IoT applications, wherein the data is transmitted via MNs. 

In EMA-RPL protocol MNs must join the DODAG tree by choosing the Preferred Parent (PP) depending on specific OF, while 

static nodes are connected to PP using a proactive process. This will reflect on reducing or avoiding the data loss and the 

disconnection time during the network recovery process. To avoid route interruption, EMA-RPL excludes MNs from the route 

path selection and prevents them from sending periodic DIO messages to preserve their energy. A new node role is proposed 

by EMA-RPL protocol to preserve network resources and to achieve load balancing among nodes, called Associated Node 

(AN) to be connected with MN. AN is in charge of detecting any movement of a MN using the Received Signal Strength 

Indicator (RSSI), data transmission from or to the MN and looking for a new AN for the MN. Future refinements are required 

because using RSSI in the prediction process is not efficient especially in the presence of obstacles or in closed environments 

[159]. 

 

 Zhou et al proposed an enhanced version of CARP (E-CARP) protocol, which aims to provide an efficient energy routing 

protocol in the underwater wireless sensor networks. To achieve this end, E-CARP employs many techniques as follows: 

 Instead of transmitting the sensed data toward the sink node by the same sensor each timepoint, E-CARP just permits 

caching the received data to reuse it by the sink when needed. Precisely, if the bias in data is within a certain range, the 

sensor node transmits only small (INFORM) control packets rather than large data packets, which consequently improves 

the network capacity and reduces the energy consumption. 

 There is no need to periodically select a relay node for each source node if the network topology is stable, this will improve 

the network lifetime by reducing the number of control overheads. 

                                                           
17 MinHopRankIncrease: It is a parameter defined in the DIO control message of RPL protocol [144]. 



 

 

 

However, E-CARP distinguishes and prioritizes data based on its importance, as the data with the high priority should 

firstly be routed to the base station. Moreover, sensed data may change based on temporal or/and spatial discipline. The sensed 

data that are gathered at earlier time points by some nodes might be used in some applications, instead of fetching instantaneous 

data [160].   

 

 Extend Collection Tree Protocol (XCTP) was proposed as an extension of CTP. CTP maintains a routing tree that affords paths 

in one direction from sensor nodes toward root (base station) node only, while XCTP solves this issue through allowing 

communication in both ways from node to root and root to node requiring low overhead and few memory storages. Finding 

routes to the reverse path (from root to nodes) requires transmitting acknowledgment packets and feedback commands to 

guarantee reliable data delivery [152].   

 

 Expected Life Time of Energy-Aware Parent Routing (ELT-EAPR) protocol tries to select the optimal route to the base station 

node based on parent event rate and residual energy through utilizing a sigmoid neural network predictor, which will enhance 

the network lifetime [161]. 

 

 LOADng protocol requires many enhancements as it faces many issues such as determining all the nodes that are responsible 

for providing internet connections to other network nodes, also the creation of the on-demand routes leads to a massive number 

of control overheads. As a result, LOADng-IoT protocol tries to improve the route discovery process, enhance the network QoS, 

and minimize the number of control overheads by employing the following amendments [162]: 

 Finding Internet Connected Nodes (INs) without any prior knowledge of their addresses in the local network, by 

broadcasting a special RREQ-IoT, so any intermediate node knows an IN will send unicast RREP message to the originator 

node. However, the prior knowledge of INs causes several issues such as the INs can be overloaded by the messages from 

other network nodes, network nodes may be configured in long paths toward INs, and packets may be lost if INs are 

disconnected from the internet. 

 Internet route cache is responsible for storing information about the routes toward INs, which will reduce both delay time 

and control overhead packets. It is worth mentioning that this procedure is optional and based on device capabilities. 

 A novel error code to evade the loss of data by informing the other nodes about any internet connection loss, which will 

allow them to find a new IN they can relay their data through in order to increase the successful delivery ratio.       

Table 5: Comparison between network layer protocols considering distinctive aspects 

Protocol RPL CORPL CARP CTP LOADng 

Standard RFC6550 * * * * 

Recent protocol (year) EM-ARPL (2019) [159] [163]/ 2019 E-CARP (2015) 

[160] 

XCTP (2016) [152] LOADng-IoT (2019) [162] 

Network topology Mesh, hierarchical based on 

DAG 

Cognitive M2M 

networks, mesh 

* Tree-based topology, 

Mesh 

Grid 

Scalability Yes Yes Yes Yes, by beacon 

message  

Yes 

Applications Building automation, home, 

industrial, Smart Grid, Smart 

Cities 

Smart grid Underwater WSNs 

applications 

Commercial products, 

industrial WSNs, 

teaching, research  

Home applications, industrial 

applications 

Routing metrics Bandwidth, reliability, hop 
count, number of 

transmissions, connectivity, 

link quality 

Expected Transmission 
(ETX) value, reliability, 

collision risk, delay 

 

End-to-end packet 
latency, energy 

consumption per 

bit, buffer spaces, 
packet delivery 

ratio 

ETX Hop-count 

Multi-hop routing Yes Yes Yes Yes Yes 

Consider link quality No Yes Yes Yes Yes 

Traffic flows MP2P18, P2MP19 or P2P MP2P, P2P, P2MP MP2P, P2MP, P2P MP2P, P2MP P2P 

Algorithm Distance vector Distance vector Link state Distance vector  Distance vector 

Data rates Low data rates Low data rate low data rate Low traffic rates  

Mobility of Network No No Supported  Yes Yes 

Proactive 20 or Reactive 
21 

Proactive Proactive Reactive Both  Reactive 

Security Not supported Not supported Not supported  Not supported It uses integrity check value, 
timestamp  

Buffering Limited buffer size Yes Yes Yes Limited buffer size 

Latency High latency Supports the delay of 

sensitive applications 

Low latency High latency  High latency  

Simulation tool Contiki/Cooja Cooja Real-Time Test-

bed, NS2 

nesC C, Java, C++, 

TOSSIM 

NS2, Tmote Sk, Cooja 

OS to implement a 

protocol 

Contiki, LiteOS, TinyOS, T-

Kernel, EyeOS, RIOT 

Contiki OS SUNSET TinyOS, Mantis OS, 

Sun SPOTs, Contiki 
OS, Linux/Click 

Linux kernel, Contiki 

                                                           
18 MP2P: Multipoint-to-Point communication 
19 P2MP: Point-to-Multipoint communication 
20proactive protocol: Each node builds its routing table based on the entire topology of the network, and updates it regularly to get up-to-date routing paths to other 

nodes. 
21 Reactive protocol: The routes are created when source node wants to communicate with a destination, it recalls route discovery technique to look for a path 
toward destination. 



 

 

 

Merits  Supports routing in limited 
resources environments 

 Supports storing and non-
storing mode to reduce 

memory requirements 

 Avoids loops 

 Achieves good packet 
delivery ratio 

 Minimum collisions 

 Improves the 

performance in 
spectrum sensing state 

 Considers 
residual energy, 

link quality and 

buffer space 

when choosing 

relaying node 

 

 Achieves high 
delivery data ratio 

when transmitting 

from sensors to sink 

node 

 

 Generates control traffic to 
construct a route, when 

there is data transmission 

only 

 Finds a bi-directional path 

for any destination in the 
network 

 

Demerits  Susceptible to high packet 
loss due to congestions 

 High delay 

 Susceptible to attacks as it 

does not support end-to-
end encryption 

 Floods the network with 

control over had packets 

 Takes a long time for 
DAG convergence in 

high node density 

networks 

 Retransmissions of 

duplicate data packets 

 No security 

 No reusability of 

previously 
collected data 

 Control packets 
increase 

communication 

cost, which will 
consequently 

increase the 

consumed 
energy of the 

network 

 Adaptive beacons 
consume more 

bandwidth and 

energy 

 Does not support 

routing from sink 
toward sensors 

 There is no 
guarantee on data 

delivery 

 Routing changes 
could lead to loops 

 Prone to data packets loss 
due to collisions 

 There is no policy to 
protect the    network 

confidentiality 

 Data transmissions 
consume a lot of energy, 

which will reduce the 
lifetime of nodes 

 Route discovery delay 

 It does not consider the 
constraints of the nodes, 

which will reduce the 
network's lifetime. 

References [144] [148] [164] [165] [166] 

[167] 

[168] [169] [170] [151] [171] [172] [173] [174] [175] [176] [177] 

Table 5: Comparison between network layer protocols considering distinctive aspects (Cont.) 

Protocol ERGID PAOF  GeoRank AOMDV-IoT 

Standard * * *  

Recent protocol (year) * ELT-EAPR (2018) [161] * EAOMDV (2018) [178] 

Network topology Mesh, hierarchical based on 
DAG 

Mesh, hierarchical based on 
DAG 

Geographical greedy networks Dynamic IoT network 

Scalability Yes Yes  Yes Yes 

Applications Emergency response 

applications 

* Smart street lights application and 

urban IoT applications  

Mobile IoT applications 

Routing metrics Residual energy, transmission 
delay 

ETX, the number of candidate 
parents 

Distance from node to root (rank)  Lifetime hop count 

Multi-hop routing Yes  Yes  Yes  Yes 

Consider link quality No  No  No No 

Traffic flows MP2P, P2P, P2MP MP2P, P2P, P2MP P2P P2P, P2MP 

Algorithm Dijkstra algorithm Distance vector Distance vector, greedy-

forwarding 

Distance vector 

Data rates High  * Low data rate   

Mobility of Network No No Yes, but restricting the mobility 

of node to be one hop from the 

static node 

Yes 

Proactive or Reactive  Proactive Proactive Reactive Reactive 

Security No No  No No 

Buffering Yes Limited buffer size Yes Yes 

Latency Low latency  Low latency * Low latency  

Simulation tool NS2 Cooja Simulation supports the 

implementation of open street 
map data set 

NS2 

OS to implement 

protocol 

Linux Contiki OS * Linux 

Merits  Achieves load balancing 

among routes  

 Minimizes delay, packet 
loss, and energy 

consumption 

  Achieves load balancing 

among routes  

 Reduces end to end delay 

 Minimizes collision rates  

 Increases network lifetime 

 Reduces control overhead in 

P2P communication 

 Improves scalability routing 
performance 

 Reduces memory utilization  

 Adaptive protocol that supports 

varying link densities 

 Avoids using DAO control 

messages  

 Decreases end to end delay  

 Reduces packet loss rate 
 

Demerits  On large scale networks, 
energy consumption is not 

validated  

 High transmission rate will 

increase network 
congestion, which will lead 

to the increase of data loss 

rate 

 Uses a high number of 

control overheads 

 Requires a frequent update 

of routing tables 

  It does not consider parents 
node energy 

 Large number of control 
packets  

 

 It suits static network or 
requires embedding GPS into 

mobile nodes that should be 
one hop away from static nodes   

 

 In data routing, there is no 
security technique applied   

 Requires more memory size to 
maintain ICT  

 It does not consider the 
residual energy of the node in 

selecting data route  

 It chooses the path with 

minimum hop count, but it may 

not be an optimal path 

 High latency and failure data 

delivery when link failure, as it 
stores information of one route 

only   

References [148] [155] [179]  [148] [156] [179]  [148] [157] [179]  [158] [180] 



 

 

 

5.4 Data Link Layer IoT Protocols 

This section handles the most popular IoT protocols in the data link layer and gives a brief description of their main 

specifications and future improvements as displayed in Figure 11, whereas Table 6 compares between them from different features.  

5.4.1 Original Data Link Layer IoT Protocols 

 NFC protocol: The range of this protocol is very short, so mobile objects that utilize it can communicate with each other 

over a few centimeters. All varieties of data can be transmitted in seconds between NFC devices if they are very close to 

each other. This protocol depends on RFID, as it utilizes the alteration in the magnetic field to allow devices to 

communicate with each other. NFC devices can operate in two modes, active and passive. In the active mode, all the 

communicating devices should create magnetic fields, wherein the passive mode one of these devices creates a magnetic 

field and the others utilize load modulation to transmit their data. The passive mode is very useful when power-constrained 

devices communicate with each other as it conserves the energy, which makes it widely used in all smartphones today 

[181] [182] [183].  

 Low-power Wireless Personal Area Network (6LowPAN) protocol: 6LowPAN permits smart devices to connect to the 

internet using IPV6 protocol, takes into consideration the nature of wireless IoT networks through constructing very 

compact header message format [184]. Moreover, it breaks down hindrances to utilize IPV6 addressing protocol in limited 

processing capabilities, low data-rate, and restricted power IoT objects over the limited bandwidth of wireless networks 

[28] [185] [186].      

 Bluetooth Low Energy (BLE) protocol: This communication technology was developed by Bluetooth Special Interest 

Group, as a low-power solution for short-range communication between controlling and monitoring applications [187].  

Moreover, it supports quick transmission process of data packets with data rates up to 2Mbps in the ISM band. Devices 

that implement BLE protocol are classified into two types; master and slave where master devices act as a prime device 

that can connect to several slaves. To comprehend that, let us assume an IoT scenario in which a PC or a phone act as a 

master, where other devices as smartwatch, fitness tracker and thermostat are considered to be slaves. In such a scenario, 

slaves ought to be in a sleep mode until they receive packets from the master device to preserve their energy [28]. 

 ZigBee: It was designed in order to provide a scalable, low cost and low power wireless connectivity for a wide variety of 

controlling and monitoring applications. This protocol builds over IEEE 802.15.4 and extends its features through 

providing expandable and flexible wireless network topologies by employing intelligent routing and setup procedures to 

enable high resilience for failure and easy installation. Moreover, it is very efficient when working with other wireless 

communication technologies, as it incorporates rigorous security and listening techniques [188]. Based on the above, 

ZigBee will be utilized in a vast range of applications and products across commercial, government, consumer and 

industrial markets in the near future [189]. 

 Radio Frequency Identification protocol: RFID is a low cost and low power wireless communication protocol that is 

implemented on totally passive chips or battery-assisted passive (BAP) chips, which are embedded with antennas named 

tags [28]. These tags can send data only when they are powered through an electromagnetic field created by a reader [190]. 

The lifetime of RFID tags can be measured in decades, as they do not depend on an internal source of energy to operate, 

which makes this technology suitable in many IoT applications [191]. Nonetheless, the primary hurdle of this technology 

is that RFID tags operate only under a reader coverage domain, which is not more than 10 m in fully passive tags, while 

its range reaches up to 50 m in BAP tags [192].            

 Low Power Wide-Area-Networks (LPWAN) protocols: LPWAN protocols are low-power, low-bandwidth, and low-

cost protocols, especially in the communications over long distances areas. Moreover, the devices that implement these 

protocols transmit over sub-GHz radio frequencies from 433MHz to 868 MHz in Europe and up to 915 MHz in the USA, 

with transmission ranges from 1m up to 50Km [193]. Since many industrial, civil and other IoT applications operate over 

2.4GHz or 5GHz ISM frequency bands, a number of low power wide-domain networking protocols have arisen. The 

following are the general characteristics of LPWAN protocols, followed by a brief discussion about the characteristics of 

each protocol:  

 The devices that implement these protocols have very low power consumption.  

 These protocols support the transmission process of small packets only, commonly 100 bytes or less. 

 The devices that implement LPWAN protocols consist of very low-cost units, so they usually cost less than a few 

dollars. 

 These devices are designed to have good coverage inside and outside their domains. 

 

i. Long Range Wide-Area-Networks (LoRaWAN) protocol: It is a physical layer communication protocol, with 

low power consumption and long battery lifetime that reaches up to 10 years. LoRaWAN is employed in wide Area 

Network (WAN) services and applications, such as M2M, industrial applications and smart cities [193], that require 

long communication distances ranging from (2-5) Km in urban territories and up to 15 km in suburban areas [194]. 

It also supports the communication process over large networks that contain billions of smart devices, thus the data 

rate of this protocol varies from 0.3 kbps to 50 kbps in the full-duplex wireless medium. 

ii. Low Power WiFi (WiFi HaLow) protocol: It is a wireless communication MAC and physical layers protocol. 

WiFi HaLow was developed to enable wireless sensors to communicate with each other over long distances with 

low power consumption.   

iii. WiSUN protocol: This protocol operates in both sub-GHz bands and 2.4GHz bands and it also supports data 

transmitting rates within (40 -1000) kbps for data packet size starts from1500 bytes and above. Furthermore, WiSUN 

enables IP packets to be delivered without fragmentation [195]. 



 

 

 

iv. Narrowband Internet of Things (NB-IoT): It is a narrowband radio technology that was standardized and 

developed by the 3rd Generation Partnership Project (3GPP) in June 2016 to support low data rates and complexity 

IoT applications. It introduces a novel radio access technology based on Long-Term Evolution (LTE) standards but 

with minimal features in order to reduce the power consumption of resource-constrained IoT devices. It operates on 

(180-200) kHz and also employs QPSK modulation. 

v. SigFox protocol: A narrowband or ultra-narrowband technology was developed to connect a massive number of 

power-constrained devices. This protocol operates on an 868MHz frequency band, where the spectrum is divided 

into 400 channels of 100Hz. IoT devices can transmit up to140 packets each a day with a data rate of up to 100 bps 

and its signal can reach distances from (30-50) km in rural territories wherein urban territories it reaches from (3-

10) km [196].   

 Z-Wave: A low power wireless communication technology is designed for domestic automation products like smart light 

controller and other sensors inside home devices. This technology aims to provide reliable communication of small data 

packets with low latency transmissions and small data rates that reach up to 200kbps and operate over 900MHz ISM bands. 

Moreover, the Z-Wave protocol enables controlling of up to 232 smart devices [197]. 

 Cellular: Any IoT service that demands to operate over long distances can benefit from deploying Global System for 

Mobile Communication (GSM) technologies such as 3G, 4G, and 5G cellular communication protocols, as they have 

abilities to transmit large quantities of data packets, particularly in 4G and 5G technologies. Based on that, communication 

through cellular protocols is very expensive and extremely power-consuming for many applications [198].         

 Telensa: This communication protocol transmits over Ultra Narrowband technology and sub 1GHz unlicensed ISM bands. 

Besides, it completely supports bi-directional communications (full-duplex technology). Consequently, it is convenient for 

monitoring and controlling the operations of IoT applications. A Telensa sink node could connect up to 5000 devices and 

its communication range can reach up to 2km in urban territories and 4 km in rural environments. The lifetime of A Telensa 

node can reach up to 20 years [199], which makes is applicable for many applications such as smart lighting, smart parking, 

and other smart city applications that are required long lifetime sensors [200] [201].  

 

5.4.2 Recent Enhancements of Data Link Layer IoT Protocols 

 Considering the exponential expansion in the number of heterogeneous air interface technologies that have their different 

characteristics and require to communicate with each other, NFC is deemed to be one of the most used air interfaces 

technologies for short distances. NFC has many properties such as protecting the privacy and the security of communication 

from attacks, low power consumption, and acceptable overhead. IPv6 considers to be an ideal internet protocol solution, 

as it provides large address space for a huge amount of network devices. Thus, it is necessary to enhance the characteristics 

of NFC protocol to support transmission over IPV6 protocol utilizing 6LowPAN techniques to produce a novel version of 

the NFC protocol called IPv6-over-NFC. However, this new technology is not suitable to transmit large data size or 

multimedia streaming over long-lived distances [202]. 

 Given the essential role of BLE technology in IoT fields, many communities such as IETF and Bluetooth adapt 6LoWPAN 

technology to enable IPV6 over BLE mesh networks (6Lo-BLEMesh). Nevertheless, 6Lo-BLEMesh technology finds the 

desired route by using a routing protocol, which makes the network prone to many threats and attacks [203].    

1. Leonardi et al proposed a connection Multi-hop Real-Time BLE (MRT-BLE) protocol to provide higher throughput and 

bounded packet delays compared with the connectionless origin version of  BLE [204]. Moreover, it permits data to hop 

over 37 channels instead of 3 connectionless channels. The basic idea of MRT-BLE is to divide the WSN into many sub-

networks, where each one of them is managed by a master node and two sub-networks are connected through a master\slave 

device or a slave device that acts as a bridge between them. However, MRT-BLE does not suit mobile networks.      

 ZigBee 3.0 is built over Zigbee PRO to support monitoring and controlling of heterogeneous networks that connect IP 

based devices from different vendors and markets such as smartphones, tablets or computers by adding security layer and 

mesh networking to the application framework. This will make heterogeneous IoT networks certifiable, green low-power, 

more reliable and robust, interoperable and full-stack solutions [205].   

 LoRaWAN technology is developed to support fixed battery-powered or mobile star networks, where the gateway node 

has the responsibility of relaying data between the central server and end devices. Gateways are connected to the central 

servers via IP connection standards, while the end devices communicate with one or more gateways through FSK 

communication or single-hop LoRa. All the communications between the gateways and devices are bidirectional and spread 

over different data rates and channels. An adaptive data rate technique is utilized by LoRaWAN to maximize the network 

lifetime. LoRaWAN technology is classified into three categories, which are (class A) bi-directional end-devices, (class B) 

bi-directional end-devices with scheduled receive slots, and (class C) bi-directional end-devices with maximal receive slots. 

LoRaWAN v1.0.3 supports both unicast and multicast transmissions over class B end devices, whereas 

(DeviceTimeRequest) a new MAC command is utilized to synchronize the time clock of both class A and class B end 

devices [206]. 

 IEEE 802.11ah-2016 technology was proposed by the IEEE standards association to extend the transmission range of 

Wireless Local Area Network (WLAN) to sub 1 GHz band, providing alternative bands rather than heavily overcrowded 

2.4GHz and 5GHz bands. 1 GHz band used nowadays to minimize the propagation loss through obstructions, walls, and 

free spaces. Moreover, IEEE 802.11ah-2016 provides multiple data rate modes, based on the application's requirements 

starting from 150kbps up to 347Mbps. Low data rates options are appropriate for IoT applications, as it can provide full 

home coverage for the transmission of battery-powered devices, whereas the high data rates modes are suitable for power 

amplifier devices. Briefly, IEEE 802.11ah-2016 aims to improve WLAN lifetime, provide more network scalability, and 

support single-hop and multi-hop operations [207]. 



 

 

 

 Z-Wave Plus is a novel version of Z-Wave protocol, where it was designed to enhance smart home users' experience and 

make installation and setup of this protocol easier and faster. It extends Z-Wave capabilities by increasing battery life 50%, 

allowing devices to communicate with each other up to 60m, and permitting automatic installation of new devices. 

Moreover, Z-Wave plus improves network bandwidth to be more than 250%, as it offers 3 new radio frequency channels, 

which will improve IoT devices connections, noise immunity, and increase bandwidth. Lastly, it enables devices to address 

issues with the explorer frame feature in order to enhance fault tolerance and self-healing [208].    

5.4.3 Future Research Directions of Data Link Layer IoT Protocols 

 5G is the latest cellular communication protocol that replaces the current 4G technology by providing a number of 

enhancements in scalability, reliability, connectivity, speed, energy, and efficiency of the network. The main reason for 

developing a new communication technology is to support the tremendous growth of devices connected to the internet and 

controlled the operations of critical commercial machines and appliances, which creates the need for zero delays, more 

bandwidth, and less energy consumption communication. 5G supports the connection of 1 million devices per square km 

their speeds may reach up to 500km/h, allowing them to communicate with uplink speeds at least 10Gbps and 20Gbps for 

downlink, while it reaches 100Mbps for download and 50Mbps for upload per user. This cutting-edge technology is very 

efficient in energy conservation as it alternates between sleep mode with zero energy consumption and applies energy 

efficiency mode in loaded circumstances. Moreover, the maximum latency caused by utilizing 5G technology should reach 

4ms compared with 20ms by the 4G network. 5G supports multi-layer spectrums to meet different requirements, through 

utilizing large-scale antenna, which are sub 1GHz for low-band spectrum, 1GHz and 6GHz for mid-band spectrum and 24- 

40 GHz for high-band spectrum [209] [210].       

 

 3GPP-Release17 technology concentrates on enhancing 5G system capabilities to be launched in 2021. This release will 

enhance and cover many aspects, such as 5G IoT, high precision positioning, improving low latency and ultra-reliable 

communications, asset tracking, application layer support for 5G factories, unmanned aerial communication systems, 

audio/visual service production, communication services for critical medical applications, and architectural enhancements 

for 5G multicast-broadcast services [211]. 

 

 Telensa 5th generation has released “urban data project” with the partnership of Qualcomm, Kainos, and Microsoft Azure 

to protect the data generated from street light sensors by applying city-data guardian method in the cloud with safeguard 

in data usage and privacy, which will improve and leverage city services [212]. 

 

Table 6: Comparison between data link layer protocols considering different aspects 

Wireless 

communication 

Protocol 

NFC 6LowPAN Bluetooth 

Low Energy 

(BLE) 

Zigbee RFID LoRaWAN Low Power Wi-Fi 

WiFi HaLow 

Network 

standard 

ISO/IEC  13157, 

ISO/IEC 18000-3  

IEEE 802.15.4 802.15.1 IEEE 

802.15.4 

ISO 18000 v1 – 

ISO 18000 v7 ISO 
10536, ISO 11784, 

ISO 11785, etc. 

* IEEE 802.11ah 

Recent version of 

the protocol 

(year) 

IPv6-over-NFC 

(2019)  [202] 

6Lo-BLEMesh 

(2019)  [203] 

6Lo-BLEMesh 

(2019) [203] 

MRT-BLE 

(2018)  [204] 

Zigbee 3.0 

(2018)  
[213] 

RFC 8371 (2018) 

[214] 

LoRaWAN 

v1.0.3 (2018) 
[206] 

IEEE 802.11ah-2016 

(2017)  [207] 

Network type P2P Star, mesh Star Star, tree 
cluster, 

mesh, hybrid 

P2P network, mesh Star-of-stars, 
mesh 

Mesh, star, tree 

Frequency Band 13.56MHz 2.4GHz (2.402 – 2.481) 
GHz 

2.4GHz, 
915Mhz, 

868Mhz 

(125–134) KHz 
(13.56, 865-60) 

MHz (902-928) 

MHz 

(100Hz, 869 
MHz) for Europe        

915 MHz for 

North America 

(1, 2, 4, 8, 16) MHz 
(902 -928) MHz 

USA (863- 868) 

MHz Europe (775- 
787) MHz China.  

1 GHz 

Transmission 

range 

10 cm (10-100) m up to 100 m (10-100) m 
Sub-GHz up 

to 1km 

(1-10) cm 
(1 -30) m 

 

(2-5) km urban 
environment, 

15km suburban 

environment 

1 km 

Power 

consumption 

15 mA * 15 mA 30 mA * up to ~50mW 2 µA- 8 mA 

Number of nodes 

per network 

2 nodes 65000 nodes 65535 nodes 65000 * Thousands of 

nodes 

8191 



 

 

 

Applications Service initiation 
applications, 

payment, and 

ticketing 

applications, P2P 

data transferring 

Smart home, 
smart 

agriculture, 

industrial IoT, 

structural 

monitoring, 

healthcare 
applications 

Mobile phones, 
gaming, smart 

homes, 

wearables, 

PCs, security, 

proximity, 

healthcare, 
sports and 

fitness, 

Industrial, etc. 

Smart home, 
medical 

monitoring, 

environment 

AI sensors, 

consumer 

electronics 

Retail sector, 
warehouse 

management, 

inventory 

management, 

supply chain 

management and 
logistics, library 

systems, traceability 

management 
medicine smart 

spaces, smart 

parking, 
environmental 

monitoring 

Smart city, 
industrial 

applications, 

real-time 

monitoring, 

metering, smart 

logistics and 
transportation, 

video 

surveillance. 

Smart home, digital 
healthcare, smart 

city, agriculture, 

retail 

Data rate 106 kbit/s -424 

kbit/s 

(20, 40, 250) 

kbps 

125 Kbps, (1, 

2) Mbps 

250kbps 700 kbps - 4 Mbps 250 bps– (5.5, 

11, 50) kbps 

347 Mbps 

Spreading 

technique 

* DSSS FHSS DSSS DSSS, FHSS FHSS, CSS DSSS, FHSS 

Applicable 

routing protocols 

NFC includes 

routing features 

RPL, AODV RPL, 

6LoWPAN 

Zigbee, 

RPL, 

AODV, 
ZBR22, 

ZBR-M  

OLCMR23                                                           

OLSR24 

AODV, HWMP25 AODV, OLSR, 

DSDV26 

Mobility Yes Yes  Yes Yes Yes  Yes  Yes  

Cryptography No  AES27-128 bit  AES-128 bit AES-128 
bit, ACLs28 

Present, 
Hummingbird, 

Photon, DES, Hight 

AES-128 bit WPA3,29 Morse 
micro, OTA30 

References [215] [216] [217] [24] [28] [186] 
[218] [219] 

[24] [220] 
[221] 

[222] [223] 
[224] 

[225] [226] [227] 
[228] [229] 

[230] [231] [207] [232] [233] 
[234] 

 

Table 6: Comparison between data link layer protocols considering different aspects (Cont.) 

 
Wireless 

communication 

Protocol 

Wi-SUN NB-IoT SigFox Z-Wave Cellular 

1G, 2G, 3G, 4G 

Telensa 

Network standard

  

IEEE 802.15.4g 3GPP 
ETSI EN 31300 220-

1,   

ETSI EN 300 220-2 

IEEE 802.11 
IEEE 802.15  

IEEE 802.16 

MTS 32,  AMTS 33, PTT34 (1G) 
GSM, iDEN35, GPRS, HSCSD36 (2G) 

UTMS37, IMT38-2000 (3G) 

LTE, LTE -A 39, IMT-Advanced (4G) 

* 

Recent version of 

the protocol (year)  

* 3GPP-Release 
17 (2019) [211] 

Sigfox v. 2.6.0 
(2018) [235]  

Z-Wave plus 
(5th Generation 

Z-Wave) (2015) 

[208] 

5G (2018) 
 

Telensa 5G 
(2019-2028) 

[212] 

Network type Mesh, star, hybrid 

star/mesh 

Star Star Mesh Mobile network or cellular network  Mesh, star 

Frequency Band  920 MH               

863–870 MHz 

3.75 kHz,      

15 kHz,             
 180-200 kHz,                

  850-900 MHz 

200 kHz 

868 - 869 MHz 
 902 -928 MHz 

868 MHz 

(Europe)  
 908 MHz 

(United States)  

900MHz (ISM) 

30 KHz (1G) 

200 kHz (2G) 
(1800‐ 2400 MHz)3G 

(2-8 GHz) 4G 

60MHz, 

200MHz, 
433Mhz, 

470MHz, 

868Mhz, 
915MHz 

                                                           
22 ZBR: ZigBee Network Routing 
23 OLCMR: Optimal Link Cost Multipath Routing 
24 OLSR: Optimum Link State Routing 
25 HWMP : Hybrid Wireless Mesh Protocol 
26 DSDV: Destination Sequenced Distance Vector 
27 AES: Advanced Encryption Standard 
28 ACLs: Access Control Lists 
29 WPA3: Wi-Fi Protected Access 3  
30 OTA :Over-the-Air  
31 ETSI EN: European Telecommunications Standards Institute, European Standard 
32 MTS: Mobile Telephone System 
33 AMTS: Advanced Mobile Telephone System 
34 PTT: Push to Talk 
35 iDEN : integrated Digital Enhanced Network 
36 HSCSD: High-Speed Circuit-Switched Data 
37 UTMS: Universal Mobile Telecommunications System 
38 IMT: International Mobile Telecommunications 
39 LTE-A: Long Term Evolution Advanced  



 

 

 

Transmission 

range 

500m -1 km 1 km (urban) 
10 km (rural) 

(30–50) km (rural) 
(3–10) km (urban) 

30 m (2- 20) km 1G 
(35-200) km 2G 

Rural: 500 km/h *t, suburban: 120 

km/h *t, 10 km/h *t (3G) 

500 km/h *t (4G) 

20km (rural) 
 3km (urban)  

Power\ current 

consumption 

2 µA- 8 mA (3-50) µA  500 mW - 4W/ (19-

49) mA 
∼5mW 1800mA (2G) 

800mA (3G) 

(1,000–3,500) mW 4G 

100µW 

Number of nodes 

per network 

5000 55000, 100 K 

devices per cell 

 

* 232 nodes 4,000 devices /km2 (4G) 5000 lights 

per base 

station  

Applications  Smart meters, 

smart city, smart 

agriculture 

Electric 

metering 

manufacturing 
automation, 

retail point of 
sale terminals, 

smart city 

Smart farming, 

status monitoring, 

asset tracking, smart 
building, pallet 

tracking for logistics 

Smart home  Voice Calls (1G) 

Voice calls, browsing and short 

messages (2G) 
Video conferencing, GPS and mobile 

TV (3G) 
Wearable devices, high-speed 

applications and mobile TV (4G) 

Street lighting, 

smart city, air 

quality, traffic 
monitoring, 

smart waste 
bin 

management, 

and smart 
meter 

Data rate 50 kbps- 1 Mbps (30-60) kbps    

 200 kbps 

(10-100) bps (9.6, 40, 200) 

kbps 

2.4 kbps (1G) 

64 Kbps (2G) 

144 kbps-2 Mbps (3G) 
100 Mbps - 1 Gbps (4G) 

500bps 

downlink 62.5 

bps uplink 

Spreading 

technique 

DSSS DSSS FHSS DSSS FHSS, DSSS, CDMA40 * 

Applicable routing 

protocols 

RPL * * AODV, DSR41 AODV, DSR, GPSR42 RPL 

Mobility Yes  Yes Yes  Yes Yes Yes  

Cryptography AES, certificates, 

HMAC43 

AES, LTE 

encryption 

AES-128 AES-128 Voice scrambling (1G) Authentication 

and 128-bit key per subscriber (2G) 
SNOW3G cipher, Rijndael cipher, 

KASUMI cipher and AES-128 (3G)                                

   EPS integrity algorithm (4G) 

City-data 

guardian 

References [236] [237] [238] [239] [238] [240] [24] [241] [242] [243] [244] [245] [212] [246]  

 

6. Middleware 

It is anticipated that the number of IoT devices will reach around 50 billion in 2020 [247]. This massive number of smart 

things that are connected to the internet, represents the so-called IoTs, aims to make the surrounding environment more intelligent 

[248]. Based on the above, the amount of the collected data in the IoT environment will be immense and will create considerable 

defiance for both industries and researches domains. One of the major challenges that IoT paradigm confronts is machine-to-machine 

communication, where this challenge forms a big concern in IoT systems because of an abundant number of the existing smart 

devices that do not follow the same protocols, as most vendors do not care about the compatibility of their products with other 

competitors’ brands. One of the proposed solutions to solve this issue is to enforce universal standards, which is very hard to be 

applied, while another proposed solution is to implement middleware software to facilitate the communication process among these 

devices. Middleware can be defined as a software that offers interoperability between incompatible applications and devices, also 

it hides all the details of smart objects [249] [250]. Hence, it acts as a software bridge between the applications and the things, as it 

enables IoT systems to work efficiently with each other [12] [20] [24] [251]. There are numerous middleware solutions, either a 

proprietary or an open-source provided through companies, where most of these solutions are similar to each other. However, there 

are no guidelines or performance metrics that enable us to compare these solutions to each other [249]. According to that, many 

challenges face IoTs middleware as described below [28]: 

i. Programming abstractions and interoperability: To facilitate collaboration and data exchange among heterogeneous 

devices, IoT middleware aids to permit distinct sorts of smart devices to interact easily with each other. 

ii. Device management and discovery: This property allows IoT devices to discover all other devices and services that are 

located in their network domain. The infrastructure of the IoT environment is mostly dynamic since all newly joined devices 

must announce their existence and the services they provide. Therefore, IoT middleware requires being scalable and 

provides APIs in order to list all IoT devices, their capabilities, and their services. In addition, APIs have to provide the 

users with abilities to categorize the devices based on their capabilities, manage devices depending on their remaining 

energy, report problems in IoT devices to the users and perform load-balancing procedures among them.                     

iii. Big data and analytics: IoT sensors collect an enormous amount of data that requires to be analyzed by specific algorithms 

based on a data type. Also, some of the sensed data may be incomplete because of the flimsy nature of wireless sensor 

networks. Thus, middleware should consider this issue and extrapolate incomplete data by using a suitable machine-

learning algorithm. 

 

                                                           
40 CDMA: Code Division Multiple Access 
41 DSR: Dynamic Source Routing 
42 GPSR: General Packet Radio Service 
43 HMAC: Hash based Message Authentication Code 



 

 

 

   

   

 

Figure 11: Wireless IoT connectivity technologies 



 

 

 

iv. Privacy: Most data that comes from IoT applications and services are related to human personal life. Thus, security and 

privacy issues have to be considered when transferring and processing them, which is required to build mechanisms that 

address these issues by middleware.  

v. Cloud services: Cloud computing part is the most important layer of any IoT system because all of the sensed data will be 

stored and analyzed in a centralized cloud. Therefore, IoT middleware should be run smoothly in distinctive types of clouds 

and enables IoT users to gain the most benefits from the data collected through smart sensors.  

vi. Context detection: IoT applications are classified into two types, which are ambient data collection applications and real-

time reactive applications. In the first type, sensors collect data that will be processed later on offline to get reasonable 

information that will be used for the same scenarios in the future, while in the second type systems should make a real-

time decision based on the sensed data.   

 

6.1 Architecture of IoT Middleware 

The current architecture of IoT middleware is classified into three types based on the services they provide as follows [252]: 

 

1. Service-Oriented Architecture (SOA) or Service-Based Solution: In SOA users and developers are allowed to employ 

or add different types of IoT devices to be utilized as services [30] [253]. Figure 12 represents the architecture of SOA 

middleware, which consists of three layers: The Physical layer that contains actuators and sensors, the Virtualized layer, 

which consists of cloud and infrastructure servers that are responsible for performing different computational operations, 

and the Application layer that composes of all services and utilities. SOA is deemed to be a heavyweight and a very high 

performing middleware, where it can be implemented on the nodes that communicate with the cloud servers or on a 

powerful gateway that is placed between the cloud layer and IoT devices layer. Based on that, this type of middleware is 

not suitable to be implemented on resource-constrained devices and it does not permit device-to-device communication.   
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Figure 12: Service-based IoT Middleware 

2. Cloud-Based Solution: In this type, users are constrained by the number and types of smart devices that can be connected 

to IoT applications. In addition, the sensed data can be easily collected and interpreted, because different used cases can 

be programmed and then determined in advance [30]. The resources of the cloud-computing environment restrict the 

operational components of this middleware. These functions such as storage system or computation engine are represented 

and managed by APIs, where IoT services are controlled and accessed by either cloud bolster RESTful APIs or by the 

applications provided by vendors as shown in Figure 13. 

3. Actor-Based Framework: It is a lightweight middleware that can be implemented in Sensory, Gateway and Cloud 

Computing layers. The computational operations of this middleware are distributed in both sensory layer and mobile access 

layer as shown in Figure 14 [24]. 

4. Event-Based Framework: This type of middleware aims to improve the development of distributed systems by supporting 

the implementation of the publish\subscribe paradigm as shown in Figure 15. This paradigm is considered to be a 

communication infrastructure that aims to provides clients with general-purpose services, as it helps them to cope with the 

heterogeneity and complexity of large-scale and distributed environments. In event-based middleware, distributed 

application complexity is partially hidden from the programmer, which will, in turn, simplify the development and 

programming of many functionalities. 
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Figure 13: Cloud-Based IoT middleware 
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Figure 14: Actor-based IoT Middleware 
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Figure 15: Event-Based IoT Middleware 

6.2 Existing IoT Middleware Platforms 

The following subsections summarize different solutions of IoT middleware based on its type, where Table 7 compares 

between IoT middleware platforms from different aspects. 

  

6.2.1 Cloud-Based IoT Middleware 

1. AWS IoT: This platform was developed by Amazon to manage cloud services, such as permitting millions of connected devices 

to interact securely and easily with other devices and cloud applications. AWS IoT allows customers to build their IoT 

applications in order to collect, process and analyze the sensed data to take a suitable decision without any need to manage 



 

 

 

infrastructure by using AWS services like Amazon Kinesis and Amazon CloudWatch. Also, AWS IoT customers can keep 

track of all the devices that are communicating with their applications all the time [254].      

2. Azure IoT Hub: It is a central platform that was released by Microsoft to manage bidirectional communication between IoT 

applications and their connected devices. Due to the high capabilities of Azure, it allows clients to construct full-featured, 

scalable IoT solutions with secure and reliable communications among the hosted cloud and a massive number of IoT devices. 

Azure IoT Hub supports various messaging patterns to control IoT connected devices, such as request-reply, file upload from 

devices and device-to-cloud telemetry [255].   

3. IBM Watson IoT: This platform is built on the top of IBM Cloud to connect and control different IoT appliances, sensors 

industries, and home applications. IBM Watson provides its clients with an enormous set of adds-on, built-in tools, and 

Blockchain service that enable them to build their own IoT applications, manage their appliances, extract key performance 

indicators from their data, connect their tools and applications and process their collected data using historical and real-time 

analytics.    

4. Google Cloud IoT: It is a fully managed service, which consists of a set of tools that provide a complete solution to securely 

and easily connect, process, manage, store, analyze, and visualize the generated data from dispersed devices, both in the cloud 

and at the edge of the network. Google Cloud IoT aims to have the ability to build models that can efficiently optimize and 

describe a client’s business, anticipate problems, and improve operational efficiency [256].    

5. Xively: It is a public cloud-based IoT middleware that provides a Platform as a Service (PaaS) [257]. This software aims to 

help companies and developers to connect, monitor and control distinctive types of IoT sensors [258]. Furthermore, it offers a 

web-based application that allows IoT devices to quickly connect and transmit data to its cloud servers. Also, it allows clients 

to retrieve their data from the cloud easily at any time and from anywhere, as it provides a time-series database that enables 

swift storage and retrieval of data [30]. 

6. Oracle IoT: It is a cloud-based service platform that enables users to build a real-time IoT solution, which can be integrated 

with enterprise applications, using robust security cloud capabilities, innovative and powerful edge analytics. Moreover, it 

processes the streaming of IoT data to merge insights into customer business easily and quickly. Oracle IoT permits clients to 

connect their devices to the cloud, which will help them in taking critical strategies and decisions [259]. 

 

6.2.2 Service-Based IoT Middleware 
1. LinkSmart (Hydra): It is a web service platform that aims to eliminate the heterogeneity of distinctive devices and entities in 

the IoT environment [260] [261]. Furthermore, it enables controlling all types of smart devices regardless of their 

communication protocols, such as ZigBee, RF, RFID, Wi-Fi, Bluetooth, etc. LinkSmart distributes social trust computation and 

security units through middleware to make IoT devices and services more secure and trustworthy. A prime novelty of this 

middleware is supporting the utilization of IoT devices as services by embedding the required services in these devices. 

LinkSmart can also be used to manage specific IoT applications such as healthcare, agriculture and home automation. Also, it 

supports the self-configuration of devices and service discovery [262]. There are no local aggregation or processing units for 

the sensed data on IoT devices that implement LinkSmart, so it will be sent to the cloud to be processed and archived [263]. 

2. Kaa: It is an open-source platform that is managed by Cybervision Inc and KaaIoT technologies to enable building IoT 

solutions. Using web page Graphical User Interface (GUI), based on the Apache platform, enables the creation of data delivery 

schema, supporting multi-tenancy on servers and generation of endpoint Software Development Kit (SDK). Kaa enables 

interaction with endpoint devices directly or via gateways, while it secures their data by AES and RSA encryption methods.         

3. Global Sensor Networks (GSN): It aims to provide a uniform platform that supports adaptable deployment, sharing, and 

integration of heterogeneous IoT objects [20] [264]. This platform is built to meet the requirements of smart objects whether 

they are physical or virtual sensors or actuators. GSN is a Java platform that is deployed either on IoT cloud or servers, where 

a set of wrappers are permitted to feed the system with a collected live data, which will be processed later on based on XML 

specification files. 

4. ThingSpeak IoT: It is an analytical open-source platform service that is developed by Matlab to enable communications 

between people and things. ThingSpeak provides users with tools that permit them to collect, visualize and analyze real-data 

streams in the cloud. Developers can easily store and retrieve data from devices and sensors by utilizing HTTP protocol over 

the internet [265].        

5. Aura: This middleware is designed to ease the development of pervasive mobile IoT applications, by abstracting the differences 

among heterogeneous devices and permitting them to communicate with each other without any hindrances. Aura tries to 

optimize screen backlight and CPU to improve the performance level and reduce power consumption. Aura applies two 

concepts in interacting with events, where system layers reply directly to the upper layer in a proactive concept, while in a 

reactive concept all layers adjust their resources and performance based on demand [266].   

 

6.2.3 Actor-Based IoT Middleware 

1. Calvin:  It is an open-source IoT platform that was developed by Ericsson to be implemented on the energy-constrained smart 

devices since it provides a portable and light-weight unified programming model, where its interfaces are defined via its input 

and output ports [267]. In Calvin, all low-level communication protocols of IoT devices are hidden as the communication 

between devices is performed through smart things’ ports [30]. Moreover, Calvin can be implemented at the edge of IoT 

environments to reduce long-distance communications, which will minimize the latency and power consumption of IoT devices. 

The major merit of this middleware is its ability to migrate from one environment to another. 



 

 

 

2. Node-RED: It is an open-source IoT platform that was developed by IBM and is based on node.js44 [268]. This platform can 

be implemented at the edge of IoT network, because of its light footprint, whereas on the server-side, a JavaScript platform 

based on an event-driven module and a non-blocking I/O is implemented. The node-red interface permits users to build their 

IoT applications easily through dragging and dropping the connected blocks that represent IoT components. The disadvantages 

of this platform are that it does not support service discovery and enables security by password authentication only [30]. 

3. Ptolemy Accessor Host: This open-source platform was developed by Professor Edward Lee in 1996 to design, simulate, and 

model embedded and real-time devices [269]. The main concept of this platform is that an IoT system is built based on the 

software components that interact and communicate with each other via messages sent through interconnected ports [30]. 

4. Akka: It is a set of open-source libraries and free actor-based platform that was designed to build distributed and run-time 

applications using Java or Scala language. It permits users to meet business requirements without the need for writing large 

low-level codes, which will provide them with high performance, fault tolerance, and reliable behavior. Akka also supports 

multi-threading behavior, abstracts the communication among applications and their devices and provides high-availability and 

clustered architecture [270] [271].  

 

6.2.4 Event-based IoT Middleware: 

1. Hermes: It is an event-based and scalable middleware that aims to ease the construction of distributed and large-scale 

applications. Hermes creates self-managed event brokers based on P2P routing layer, to handle large scale and dynamic 

environments. It introduces a resilient solution against failures via automatic adaptation of event brokers routing states and 

overlay broker network. Hermes middleware released two versions that share most of the codebase, which are the 

implementation in distributed and large-scale applications and communications, besides the implementation among event 

brokers [272].  

2. Gryphon: It is a patronizable publish\subscribe and highly scalable middleware that aims to distribute a large amount of real-

time data over the network. Gryphon is developed by Java interface to support web applications and to build a robust, redundant, 

publish\subscribe, and content-based multi-broker. This middleware contains robust security features, scalable routing 

algorithms, and an effective event matching engine. Also, it is based on an information flow paradigm for messaging (BKS+99) 

to specify the communication between the publisher and the subscriber.     

3. Rebeca: This middleware is based on publish\subscribe technology to implement largescale business applications, by 

emphasizing on the design of efficient routing algorithms and employing professional software engineering methodologies. 

Rebeca aims to prevent and reduce flooding the network by events by utilizing advanced routing techniques. It integrates 

interoperability and subscription merging features with its services to support location mobility and to reduce routing table size. 

Event scope function hides the details of service implementation, as transmission policies, security, data transmission methods, 

interfaces among external and internal, and notification representation [272].      

4. FiWare: It enables efficient, flexible, secure and scalable communications among distributed IoT devices and applications. It 

was designed to support the control and monitoring of many IoT applications such as logistics, shopping floor and smart city 

[28]. This platform consists of many components such as APIs, reusable modules and huge codes, which allow an IoT user to 

build his IoT application. A set of sensed data collected by IoT sensors (context) is captured through REST API, to be sent later 

on to a specific server called the broker. FiWare has developed API to query and store different IoT contexts, so any application 

is registered as a context consumer can retrieve the required data from the broker. There is a specific component in this platform 

called an adapter, where it is responsible for transmitting a particular type of context to the subscriber applications [273].   

 

6.3 Open Research challenges of IoT Middleware: 

 Even though the IoT middleware field has handled many requirements and issues that face the development of IoT 

applications, there are still some open challenges that require to be covered and solved. The following bullet points summarize some 

of these issues: 

 Non-autonomous or semi-autonomous devices and services registration and discovery:  Human intervention in IoT 

components through registration and discovery, makes these applications non-scalable and prone to error. This issue makes 

middleware unsuitable for self-adaptive applications, as M2M communication systems.  

 Unscalable device and services registrations and discovery: The time consumed on devices and services registration or 

discovery may make middleware an improper solution even in small IoT systems.     

 Heterogeneous environments: This issue is considered to be a key challenge that needs to be addressed since most of the 

middlewares support only one or two types of heterogeneous IoT components. Non-autonomous and inflexible services 

and devices registration and discovery limit the support of IoT applications. Subsequently, it is highly recommended that 

new approaches should handle and resolve the heterogeneity of IoT environments, especially in large-scale networks. 

  Leakage of device interpretability: An abstraction layer is required between middleware and resources to solve this 

challenge. Also, extensive researches to abstract the heterogeneity of the resources of IoT systems should attract more 

attention from the researchers.  

  Service Level Agreement (SLA): To afford an agreed level of service to customers, three components should be taken 

into consideration: A model that precisely defines all functional and non-functional services that are required by consumers, 

automatic service to guarantee a high level of QoS and adaptation, and monitoring tool for SLA services. Human 

intervention in current SLA middleware should be replaced and considered by middleware development.       

 QoS level: There is no mechanism that guarantees a specific level of QoS for non-functional services of IoT. So, 

middleware researches should find procedures for optimizing and monitoring QoS levels.  

                                                           
44 Node.js : It is an open-source, cross-platform and  run-time environment for executing JavaScript code on the server-side. 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Server-side


 

 

Table 7: Comparison between IoT middleware considering different aspects 

IoT 

middleware 

AWS IoT Azure IoT Hub IBM Watson 

IoT 

Google Cloud 

IoT 

Xively Oracle IoT LinkSmart 

(Hydra) 

Kaa GSN ThingSpeak 

Middleware 

architecture 

Cloud-Based Cloud-Based Cloud-Based Cloud-Based Cloud-Based Cloud-Based Service-Based Service-Based Service-Based Service-Based 

Open source 

SDK\ open API  

Open source SDK Open Source 
API 

Open source 
SDK 

Open API Open API Open source 
SDK 

Open API Open source SDK * Open source 

Device 

abstraction\ 

Interoperability 

Web services Azure IoT SDK 

for C 

Through MQTT  gRPC, REST 

APIs 

Web services, 

MQTT, board 

support package 

Oracle 

service bus 

Web services Apache NiFi, 

Apache 

ZooKeeper 

XML-RPC, protothreads, 

token machine language  

Libelium, AllJoyn, Beckhoff, 

Senet 

Deployment 

type 

IaaS, PaaS IaaS IaaS, PaaS IaaS, PaaS PaaS PaaS PaaS, SaaS IaaS PaaS PaaS 

Network 

connectivity  

MQTT, HTTP, 

WebSocket 

HTTP, AMQP, 
AMQP over 
WebSocket, 

MQTT, MQTT 

over WebSocket 

MQTT, HTTP, 

TLS 

MQTT, HTTP HTTP, MQTT, 

WebSockets 
MQTT 

MQTT, 

HTTPS 

HTTP, REST, 

MQTT 

MQTT, CoAP HTTP MQTT, REST API 

Data format 

supported 

JSON JSON CSV, JSON JSON CSV, JSON, 

REST API 

CSV, REST 

API 

JSON REST, JSON, API  JSON, SenML XML, CSV, ThingSpeak 

API, JSON 

 

Programming 

languages 

supported 

SDK for Arduino, 
Java, NodeJS, C, 

JavaScript, 

Python, iOS, 
Android 

Node.js, Python, 
Java, Android, 

iOS, C, C# 

 

NodeJS, Java, 
Python, C#, C 

 

Java, Node.js, 
.NET, Python, 

Ruby, PHP 

SDK for 
Arduino, Python, 

Clojure Android, 

Arm mbed, 
Ruby, C, 

JavaScript 

Android, 
Java, 

JavaScript, 

iOS, C 

PHP, Java, 
C#, 

Python, .NET, 

JavaScript,   

C, C++, Java Ruby, Java, C Matlab 

Application 

development 

functionalities  

Real-time 
analytics, 

analytics, 
artificial 

intelligence, 

machine learning, 

event reporting, 
visualization 

Real-time 
analytics, 

analytics, 

machine 
learning, event 

reporting, 

visualization 

Real-time 
analytics, 

analytics, 

machine 
learning, event 

reporting, 

visualization 

Real-time 
analytics, 

analytics, 

machine 
learning, event 

reporting, 

visualization 

Real-time 
messaging, file 

and firmware 

deployments, 
device 

provisioning, 

device logs, 
rules and 

orchestrations 

Real-time 
analytics, 

analytics, 

event 
reporting, 

visualization 

Device 
abstraction, 

stream 

mining, live 
data 

management, 

data storage, 
online 

machine 

learning  

Analytics, 
machine learning, 

event reporting, 

visualization 

visualizing the network 
structure, data stream 

processing, plotting data  

Real-time analytics, analytics, 
event reporting, visualization 

Technologies 

used for 

application 

development 

AWS Cloud-

Trail, AWS 

Lambda, Kenisis, 
Amazon, Amazon 

Dynamo DB, 

Amazon 

CloudWatch 

Amazon machine 

learning 

SQL database, 

Azure tables, 

Azur 
CosmosDB, 

Cloudant, 

NOSQL DB 

Firebase, 

Google's 

BigData tool, 
BigQuery, Go, 

Riptide IO, 

PubSub 

Connected 

Product 

Management 

NoSQL 

Database 

Semantic 

model-driven 

architecture, 
Symfony2, 

URSA, hydra-

py, Hydrus, 

Levanzo, 

Argolis, 

hydra-core, 
Go 

Hadoop, goDB 

Cassandra NoSQ  

GSN-WRAPPERS, Generic 

serial wrapper, Generic UDP 

wrapper, TI-RFID wrapper, 
USB camera wrapper, 

TinyOS wrapper, HTTP 

generic wrapper 

MATLAB dashboard 

Service 

discovery 

Discovery API, 

ECS Event 

Stream, AWS 
Lambda, Amazon 

Route 53, Netflix 
Heureka, etcd, 

Azure container 

service with 

kubernetes, 
Zookeeper 

Netflix Eureka, 
Consul, Eureka 

Discovery 

Knowledge 

Graph, Watson 
Discovery 

Consul, etcd, 

ZooKeeper 

Cloudera 

Navigator 

Java WSDP REST API MQTT with Kaa 

protocol v1 

REST HTTP query, sbt 0.13+, 

Java JDK 1.7, Scala 2.11 

* 

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance


 

 

 

HashiCorp 

Consul, AWS 

App Mesh  

Security and 

privacy 

Auditing, 

encryption, 
authorization, 

authentication 

Encryption, 

authorization, 
authentication 

Authorization, 

authentication 

Authentication Encryption, 

authorization 

Authenticati

on, 
authorization 

Authentication 

authorization, 
encryption 

Encryption Authentication, access control 

mode 

Encryption 

Pricing  Executing 

customers 
functions requires 

payment 

Payment based 

on messages 
per day and 

number of 

devices 

Payment based 

on data storage, 
data traffic and 

number of 

connected 

devices 

Per MB Per device  Based 

subscription 
 

Free Per device  * Free or based on standard 

license  

Persistency 

(Session 

Persistence)  

Persistent 

sessions based on 
MQTT 3.1.1 

features 

CmdKey, Azure 

Storage 
Persistence 

Persistent iSCSI, 
JPA 2.0 

persistence, 

WSJPA, 

OpenJPA, 
EclipseLink 

MQTT v3.1.1 

brokers, 
CloudMQTT, 

DIoTY, IBM 

Bluemix, 
ThingStudio 

MQTT 3.1.1 

broker 

Load 

balancer 

Machine 

learning 
algorithms  

* * Using MQTT 

Stream 

processing  

AWS Lambda SQL query 

language, 
JavaScript, C# 

IBM Streams 

toolkits 

Semios, GCP 

Console, 
Firebase SDK, 

ImageMagick 

Semios, GCP 

Console, 
Firebase SDK, 

ImageMagick 

Oracle event 

processing, 
oracle 

continuous 

query 
language 

CEP queries, 

Esper EPL 

* SQL queries. MATLAB  
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Table 7: Comparison between IoT middleware considering different aspects (Cont.) 

IoT middleware Aura 

 

Calvin NODE-RED Ptolemy Accessor Host Akka Hermes Gryphon Rebeca Fiware 

Middleware 

architecture 

Service-Based Actor-Based Actor-Based Actor-Based Actor-Based Event-Based Event-Based Event-Based Context-Aware Event-

Based 

Open source \ 

open API  

Open source Open source Open source JS Open source Open source Open source Open source Open source  Open source 

Device 

abstraction\ 

Interoperability 

Connectors, Task 

abstraction 

Actor model 

(event-driven) 

Web services Accessor Aggregate 

programming 

Active message 

abstraction, 5-layers 

architecture by 
Fenix, Pegasus 

Information flow 

graph between 

devices, broker 

HTTP, SNMP, 

RMI 

IoT Agent framework 

library 

Deployment 

type 

IaaS, SaaS IaaS PaaS, SaaS * * PaaS SaaS PaaS PaaS 

Network 

connectivity  

MQTT, HTML MQTT HTTP, MQTT HTTP, HTML HTTP, HTML KQML, Fipa ACL, 
HTML, XML 

HTML, HTTP HTTP, SNMP, 
Java RMI 

MQTT, WebSocket, 
HTTP 

Data format 

supported 

RESTful API, JSON JSON JSON JSON, XML JSON  JSON, Hermes 
XML 

NASDAQ, NYSE, 
JSON 

XML  HTTP, JSON-LD 



 

 

 

Programming 

languages 

supported 

JavaScript, PHP, C++, 

python 
C, python  JavaScript, Node.js JavaScript, C++, C Java, Scala Java, Python, C, 

UML 

Python, Java   .NET, C#, Java C++, Java 

Application 

development 

functionalities  

Real-time applications, 
connecting GUI to a 

real-time application, 

online video services, 
billing systems, 

consoles, and mobile 

devices, smart TVs 

Distributed 
applications, 

runtime 

applications  

For connecting to IoT, 
connecting and 

binding to databases, 

collecting and storing 
IoT data for 

processing and in 

event-driven 
applications 

Finite state machine 
applications, web 

applications 

Real-Time streaming 
applications, building 

powerful and 

concurrent, web 
applications  

Internet-based 
distributed 

applications, large-

scale ubiquitous 
applications, web 

service   

Exchange 
connections, ledger 

accuracy guarantees, 

state tracking, fault 
tolerance, monitoring, 

machine learning, 

quantitative analysis 

Monitoring and 
management, 

fault Tolerance, 

publishing 
methods 

Collecting and processing 
data, visualization, and 

analysis of data, data 

access control, 
monetization or 

publication, publisher-

subscriber 
communications 

Technologies 

used for 

application 

development 

OWL, ZMQ, SPARQL, 

MongoDB 

MicroPython Bluemix, MongoDB CapeCode, Nashorn, 
TDL, AJAX, Vert.x, 

XMLHttpRequest, 
Simulink/Stateflow, 

LabVIEW, SCADE  

Spray, play 

framework, apache-

spark, socko web 

server, event-sourced 

library, Gatling stress 
test tool, Scalatra, 

Vaadin, apache flink 

Type-based routing 

algorithm, type, and 

attribute-based 

routing algorithm, 
service agents, 
AIXO, WS2A, 

OMSA, lightTS-SA 

Heartbeats, 

RabbitMQ, Java 

Message Service 

(JMS), BKS+99, 

information flow 
graph, publisher-

hosting broker, 

Java 

management 

extensions, 

object-oriented 

API, IMyPub, 
SetCurrency,  

FIWARE Context Broker, 

eProsima Fast-RTPS 

Service 

discovery 

Environment manager  Calvin control 
APIs 

Bonjour / Avahi Discovery.js  
discovery function  

Akka discovery 
method, Kubernetes 

API, AWS, Consul, 

Marathon API 

Service agents, 
yellow page service, 

discovery 

component, 
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 Privacy and security: Most of the middleware solutions restrict the application of security mechanisms in authentication 

and authorization, this is due to the resource-constrained devices in the IoT environment. Thus, privacy and security issues 

need to be end-to-end and lightweight to suit the communication between cloud, gateway, and sensors.   

 

7. Simulation tools of IoT Networks 

Simulations are utilized to model system behavior at a certain time, where the simulation environment mimics and evaluates 

a realistic scenario before building or implementing it in a real-life environment. Simulations are commonly used to estimate easily 

the performance and cost effects on complicated systems. Using simulation tools to emulate IoT context is indispensable as it 

supports assessing efficiently the performance of any application, because of the accuracy and the reliability of the results that are 

provided. Diverse simulators have been built and proposed to mimic the behavior of mobile and distributed applications with several 

approaches, by making them compatible with many operating systems as Linux and Windows. However, every simulator has its 

particular configuration requirements, which permits distinctive application aspects to be simulated. In general, any IoTs simulator 

should offer high reliability when it simulates the scenarios that include heterogeneous sensors, provides computation or energy 

efficiency estimation, supports scalability, and be able to support new requirements such as any new protocol [286]. Specifying a 

suitable tool to simulate the IoTs environment is a challenging task since there are only a few simulation tools that have been 

designed for IoT applications. IoT simulators are classified according to the level of architectural layer and to the scope, they cover 

into three categories [287]: 

1. Full Stack Simulators: These simulators have been developed as a consequence of IoT revolution to provide users with the 

ability to simulate IoT elements and devices. The main simulators in this category are Devices Profile for Web Services 

Simulator (DPWSim) and iFogSim [288] [289].  

 

 DPWSim: It is a cross-platform simulator that enables the development and the simulation of different IoT applications, 

where the essential role of this platform is to create virtual IoT devices that can be discovered on IoT networks and can 

also communicate with each other through DPWS protocols [288]. Besides that, this simulator has a management tool that 

allows users to create, load, store, and manage their applications with high flexibility. The graphical user interface of 

DPWSim is designed by Java language, which permits IoT users of interacting with their virtual environments smoothly. 

Finally, this toolkit helps in developing, prototyping and testing the DPWSim functionalities, but the main drawback of 

this simulator that it has no support for new technologies and protocols [286].  

 IFogSim: This platform was emerged through upgrading and extending the capabilities of the CloudSim simulator [290]. 

It allows the simulation of different IoT applications and the management of diverse resources that are distributed across 

the cloud and the edge of the network under various conditions and scenarios [289]. IFogSim permits users to evaluate 

different resources management that is applicable in Fog environments according to their influence on energy consumption, 

latency, operational cost, and network congestion. Furthermore, it supports the simulation process of different types of 

actuators and sensors by enabling the developer to build realistic network topologies.  

 

2. Big Data Processing Simulators: These simulators concentrate on processing big data and evaluating the performance of 

cloud resources, where the main simulators in this category are CloudSim [291], SimIoT [292], and IoTSim [293]. 

 

Cloudsim: It is a toolbox utilized for modeling, experimenting, and simulating a cloud-computing environment. 

Developers and researchers can design a particular cloud system via this toolkit without any concern about low-level 

details of the cloud environments and the services they provide [291]. The library functions of the cloudsim is written 

using Java programming language and it consists of the main classes that are needed to mimic virtual machines, servers, 

and clients to perform computational assets and to build applications. Furthermore, in order to set up a cloud environment, 

designers must utilize many simulation components such as virtual machines, data-centers, cloudlets, cloud coordinators, 

and data center brokers [294]. 

 SimIoT: It is derived from SimIC simulator and has been developed to mimic large-scale resources management [292] 

[295]. SimIoT is used to estimate the time needed for processing data that is submitted either by IoT users or sensors to a 

particular cloud, which is done by using numerous methods to simulate the communication between the cloud and IoT 

sensors [296]. 

 IoTSim: This simulator was developed by [297] to simulate the behavior of IoT applications that are responsible for 

processing big data that is produced from various devices using the MapReduce framework. The vital contributions of 

this simulator lie in allowing simulation and modeling of a network using virtual machines, permitting the processing of 

IoT data through using big data framework (MapReduce), and supporting the IoT applications model. 

 

3. Network Simulators: The growing of interest toward the field of WSNs has led to the booming of current simulators [298]. 

The election process of a suitable simulator is a critical and time-consuming mission, particularly in the WSNs domain, since 

there are many complicated scenarios and numerous protocols utilized in this domain that need specific features to exist in a 

network simulator. Particular requirements of WSNs and the availability of a vast number of simulators make it difficult to 

select a suitable simulator. Numerous WSNs simulators have been adapted to suit the simulation process of IoT environments 

such as Cooja [299], QualNet [300], CupCarbon [301], OMNeT++ [302], and NS-3 [303]. 

 Cooja:  It is a discrete event and a flexible simulator, since several parts of Cooja functions can be extended or replaced 

by new functionalities such as OS, sensor node platforms, radio transmission models, and radio transceivers [298] [299]. 

Cooja is developed and written in java language and runs over the Contiki operating system. However, this simulator is 

not very efficient for many reasons as it requires a lot of calculations to deal with cross-level simulations, there is no GUI 

interface, and the simulation process supports up to 10000 nodes only. 



 

 

 

 QualNet: It is a tool that allows network designers to create a virtual scenario of all forms of video, data and voice networks. 

Any network scenario consists of nodes that represent WSNs elements and endpoints (switches, routers, ground stations, 

access points, mobile phones, satellites, firewalls, radios, servers, sensors, and other security equipment) and links that 

connect these nodes (Wi-Fi signals, internet circuits, LAN segments, LTE connections radio transmissions, etc.) [300]. The 

graphical user interface permits network designers to build their projects in 2D and 3D environments. Also, it allows the 

analysis of statistical data and packet tracing for debugging purposes [298].  

 CupCarbon: It is an IoTs WSN and smart city simulator that aims to visualize, design, compile and validate the algorithms 

that are required for monitoring and collecting environmental data [304]. Furthermore, this simulator helps the researchers 

to test their wireless models and protocols. CupCarbon provides two simulation environments; the first one permits the 

generation of natural events like fires and it also supports the simulation of mobile entities such as flying objects and 

vehicles. On the other hand, the second simulation environment allows designers to represent discrete event scenarios of 

WSNs. Also, it grants WSNs designers the ability to simulate scenarios and algorithms in many steps as the following; a 

step for specifying designated nodes, another step to determine the communication types between these nodes, and finally 

determining routing to the base station. This simulator supports many IoTs communication protocols such as Lora, ZigBee, 

and WiFi.   

 OMNeT++: It is a discrete event network simulator that is developed using C++ language by OpenSim company [302]. 

This simulator consists of GUI libraries for tracing, debugging and animating any network scenario. It also has graphical 

tools that enable building simulations and performing results computations. OMNet++ permits the hierarchical 

organization of any simulation scenario, because the number of layers is not restricted. The processes inside the virtual 

network such as drawing data flow charts, illustrating network graphics and displaying variables or objects during 

simulation are visualized through a graphical user interface [305]. The structure of the scenario is defined by using network 

description files (NED) that can be modified by the user via a graphical interface or a text file, where NED files are 

separated from the simulator to efficiently support the simulation of large topologies. Further, OMNeT++ is distinguished 

from other simulators in its ability to modify topologies in run time. 

  NS-3: It is a discrete event simulator that is developed by C++ and Python language [286]. NS-3 permits researchers to 

analyze large-scale systems and different internet protocols in a controlled environment. This simulator has been improved 

to provide an open-source and an enormous network simulation platform, for the sake of supporting the education and the 

research in wireless networks. Concisely, NS-3 provides users with a simulation engine to conduct their simulation 

experiments and provide them with models that show how data packets perform and work. Furthermore, this simulator 

supports having multiple radio interfaces and channels for the same node [306]. Many wireless communication protocols 

can be implemented via NS-3 such as 802.15.4 and 6LoWPAN, but it does not support the protocols of the application 

layer [287]. 

 

To the best of our knowledge, there is no simulator that can be used to build a fully detailed representation of any IoT 

project until now. Consequently, to simulate a complete IoT project, multiple simulators should be used together such as data 

generation, big data processing, and packet tracing simulators. Table 8 shows a comparison between different IoT simulators based 

on popular IoT criteria and features, where the justification for each selected criterion is explained as follows: 

 Scope: This criterion specifies the level of coverage for different architectural layers of IoT, where (IoT) means that 

the simulator has full coverage. 

 Last update: It represents the time of the last maintenance or upgrading that is performed on the simulator. 

 Language: It refers to the programming language of the simulator and reflects the portability degree of the simulated 

primitives to be used in subsequent hardware models. 

 Type: It illustrates basic assumptions regarding the simulated entities and the relationships among them. 

 Layer of IoT architecture: Represents the architectural layer(s) components, standards, and parameters that are 

supported by a specific simulator.  

 Evaluated scale: The maximum network scale that can be simulated and provided through performing simulator 

evaluations. 

  Mobility: Determines whether the simulator supports objects mobility or not.   

 Built-in IoT standards: Specifies different protocols that are supported by a simulator. 

 Overall practicality: It is a specific measure to indicate the utility behind simulating all components and services in 

the IoT environment.   

 Target domain: Indicates specialization degree.  

 Cyberattack simulation: It indicates if the simulator supports security simulations. 

Table 8: Comparison between different IoT simulators 

Simulator Scope Last 

Update 

Language Type Layer(s) of 

IoT 

Architecture 

 

Evaluated 

Scale 

Mobility Built-in 

IoT 

Standards 

Overall 

Practicality 

Target 

Domain 

Cyber 

Attack 

Simulation 

DPWSim  

[288] 

IoT 2016 Java Event-driven 

scenarios, 

resource-
constrained 

environments| 

 

Application 

Small 

scale 

No Devices 

Profile for 

Web 
Services 

(DPWS) 

Medium Generic No 



 

 

 

and service-
oriented 

[307] 

iFogSim 

[289] 
IoT 2018 Java Discrete 

event 
Perceptual 
Network/ 

Application 

Large 
scale 

No No Medium Generic No 

Cloudsim 

[291] 

Data 

analysis 

2016 Java Discrete 

event 

Application large scale Yes Yes High Cloud 

Analyst 

Yes 

SimIoT 

[292] 

Data 

analysis 

2014 Java Discrete 

event 

Application Small 

scale 

No No Medium Generic No 

IoTSim 

[297] 

Data 

analysis 

2017 Java MapReduce 

model 

Application Large 

scale 

No No Medium Generic No 

Cooja 

[298] 

Network 2018 C /C++ Discrete 

event 

Perceptual 

Network 

Small 

scale 

Yes Supports all 

IoT 

protocols 

High Generic 

with 

Focus on 
power 

constrained 

sensors 

Using 

custom 

extension-
ns 

QualNet 

[300] 

Network 2017 C /C++ Discrete 

event 

Perceptual 

Network 

Large 

scale 

Yes Zigbee 

/802.15.4 

 

Medium Smart 

city 

Yes 

CupCarbon 

[304] 
Network 2017 Sen Script Discrete 

event and 

agent-based 

 

Perceptual 
Network 

Large 
scale 

Yes LoRaWAN/ 
802.15.4 

High Generic No 

OMNeT++ 

[302] 

Network 2018 C++ Discrete 

event 

Perceptual 

Network 

Large 

scale 

Yes Manual 

extension 

Medium Generic Using 

custom 

extension-
ns 

NS-3 

[286] 

Network 2018 C++/ 

Python 

Discrete 

event 

Perceptual 

Network 

Large 

scale 

Yes LoRaWAN 

802.15.4 

6LoWPAN 
 

High Generic No 

 

8. IoT Applications  

The Internet of Things is a modern communication model that envisions a close future, where devices of everyday life will 

be equipped with transceivers, microcontrollers, sensors, actuators, and appropriate communication protocols that will allow them 

to communicate with each other and with other clients [308] [309] [310] [311]. IoT aims to make the internet immersive and 

pervasive through enabling easy access and interaction with a wide diversity of IoT devices as surveillance cameras, monitoring 

sensors, and home appliances. IoT will promote the development of several applications that utilize the gigantic and diverse amount 

of data, which is generated by smart devices to provide modern services for companies, citizens and organizations [312] [313].  

 

8.1 Sensors in IoT Applications 

An IoT network can commonly be described as an area that is occupied by smart sensors, which sense and control the IoT 

environment [314] [315] [316] [317]. A sensor node is defined from an engineering point of view as an object that converts 

chemical, biological, physical or mechanical parameters into an electrical signal. These sensors are used to measure differen t 

parameters like wind speed (an anemometer), solar radiation or temperature (thermometer), where an IoT application requires 

to include at least one type of sensors to collect data from the IoT environment [314]. Sensor technology is continually 

improving, accordingly these devices become cheaper, smaller, more energy-efficient, and more intelligent. This will enable 

more applications to be implemented and disseminated such as; environmental monitoring, disaster management, domestic, 

human health, public security and early warning systems. Van Laerhoven and Schmidt provided an overview of diverse types 

of sensors that can be utilized in constructing IoT applications. The following section provides a concise preview of these 

sensors: 

1. Light sensor: It is an electronic device used to detect light. The main function of these sensors is to provide information 

about the light density, intensity, type (artificial, sunlight), color temperature (wavelength), and light reflection. There are 

many types of light sensors like photodiode, UV-sensors, color sensors, IR sensors, etc. The light sensor is considered to 

be a rich source of data at a very low cost, as it has low energy consumption. 

2. Audio and microphone sensor: It provides information about various sound types (noise, music, speaking) with minimum 

processing capabilities. 

3. Accelerometer sensor: It provides information about the motion, the acceleration or the inclination of any mobile device, 

where angular sensors, accelerometers, and mercury switches are examples of this type of sensors. 

4. Location sensors: These sensors provide important information about collocation, location, proximity, and position of 

devices, users or environment. Many applications can be applied using this type of sensors such as GPS, GSM, and active 

badge systems [4] [318] [319].   

5. Touch sensors: Smart devices, which are handled by users, could profit from this type of sensors, as it can be implemented 

directly with a specific conductive surface, such as skin conductance or indirectly via temperature sensors or light sensors. 

These sensors tend to reduce energy consumption significantly, particularly for devices that operate in the user’s hand. 



 

 

 

6. Temperature sensors: These sensors are distinctive as they are easy to use and very cheap. Thus, they can be implemented 

in many applications such as temperature measurement, fumes and flue gases, body heat detection, and applications of 

rubber and plastic manufacturing processes, etc. 

7. Pressure sensor: It is utilized to measure many parameters such as the pressure of liquids or gases, altitude or water level. 

8. Medical Sensors: Improving the efficiency of biomedical systems and the healthcare infrastructure is one of the most 

challenging objectives in this era, due to the need of offering quality care to patients with low costs, as well as tackling the 

shortage problem in nursing staff. IoT sensors can be utilized to resolve the aforementioned issues through monitoring and 

measuring several medical parameters like blood glucose levels, heart rate, blood pressure, respiration rate, pulse rate and 

body temperature in the patient’s body without any human interference. Medical applications aim to remotely monitor a 

patient’s health and consequently, transfer the sensed data directly to the doctors to take a proper decision [28].   

9. Neural Sensors: Nowadays, it is easy to comprehend neural signals that come from the human brain, deduce the brain 

state and train it for a better focus and attention. These operations are known as neuron feedback, while the technology 

utilized in this operation is called Electroencephalography or also known as a brain-computer interface and totally depends 

on the electromagnetic field that surrounds humans’ brains. This field is generated as a result of the communication between 

the neurons of the human brain and it is measured in terms of frequencies. Human brain signals can be classified according 

to their frequencies into gamma, theta, beta, delta, and alpha. Depending on the signal type, it can be concluded whether 

the brain is wandering in thoughts, calm, etc. in order to train the brain later on to be more focused, have better mental 

well-being, manage stress and to pay better attention towards things [27] [28]. 

10. Environmental and Chemical Sensors: These sensors are utilized to detect physical, biological, and chemical 

environmental parameters such as pressure, temperature, humidity, air pollution, and water pollution [320]. A barometer 

and a thermometer measure the pressure and the temperature parameters, while the air quality is measured through sensors 

that detect the presence of gases and other polluters in the air. Chemical sensors comprise of transducer and recognition 

part, where electronic tongue (e-tongue) and electronic nose (e-nose) are examples of applications that are developed 

depending on this technology [321]. Both of e-nose and e-tongue applications are based on the data generated by chemical 

sensors, which will be then analyzed by different pattern recognition to identify the stimulus. Furthermore, environmental 

and chemical sensors play a major role in monitoring the level of pollution in smart city applications [28].   

11. Mobile Phone-Based Sensors: Today smartphones not only serve as a means of communications and computing 

operations, but they also provide a valuable set of embedded sensors [322]. These sensors enable the deployment of many 

applications in various domains, such as accelerometer, camera and microphone, magnetometer, GPS and light sensor.  

8.2 Recent IoT Applications 

This paradigm finds applications in many distinctive aspects such as medical aids, home automation, mobile healthcare, 

industrial automation, elderly assistance, smart city, smart grid and many other applications [42]. In this section, some of these 

applications will be summarized as follows: 

 

8.2.1 Smart Cities  

The application of the IoT field toward urban domains is of particular interest. This is coming from a strong motivation of 

numerous national governments to adopt information and communication technology (ICT) in the management of public affairs, 

hence realizing the so-called Smart City concept [323]. Smart city aims to make superior utilization of public resources as shown in 

Figure 16 and to decrease operational costs of public management on many traditional public services such as lighting, transporting 

and parking. Also, it supports the surveillance of public areas and garbage collection, while it increases the QoS that is offered to 

the citizens. Furthermore, the collected information from urban environments could be used to improve the awareness of the citizens 

about the status of their city. Despite the aforementioned benefits, the smart city market has not truly taken off yet, for a number of 

technical, political, and budgetary obstacles. 

Table 9 shows different types of services with their appropriate communication protocols, expected traffic, maximum 

acceptable delay, source of energy for each service and finally an estimation on the feasibility of each service based on the 

technology it implements. The following subsections explain different services that can be deployed in a smart city.      

Table 9: Services specification for the smart city project [323] 

Service Network types(S) Traffic rate Tolerable delay Energy Source Feasibility 

Structural health 802.15.4; Wi-Fi and 

Ethernet 

1 packet every 10 min per 

device 

30 min for data;10 sec 

for alarms 

Mostly battery 

powered 

Easy to achieve but seismograph 

could be difficult to integrate 

Waste management Wi-Fi;3G and 4G 1 packet every hour per 

device 

30 min for data Battery-powered or 

energy harvesters 

Possible to achieve but needs smart 

bins 

Air quality 

monitoring 

802.15.4; Bluetooth 

and Wi-Fi 

1 packet t every 30 min per 

device 

5 min for data Photovoltaic panels 

for each device 

Easy to realize however greenhouse 

sensors may be from the cost wise 
expensive 

Noise monitoring 802.15.4 and 

Ethernet 

1 packet every 10 min per 

device 

5 min for data;10 sec 

for alarms 

Battery-powered or 

energy harvesters 

Sound pattern recognition is difficult 

to be implemented on resource-
constrained devices 

Traffic congestion 802.15.4; Bluetooth; 

Wi-Fi and Ethernet 

1 packet every 10 min per 

device 

5 min for data Battery-powered or 

energy harvesters 

Needs the realization of both noise 

monitoring and air quality 

City energy 

consumption 

PLC and Ethernet 1 packet every 10 min per 

device 

5 min for data; tighter 

requirements for 

control 

Mains powered Simple to achieve, but requires the 

permission of power operators 



 

 

 

Smart parking 802.15.4 and 
Ethernet 

On-demand 1 min energy harvester Smart car parking systems are 
available on the markets, so these 

projects are easy to be implemented 

Smart lighting 802.15.4; Wi-Fi and 

Ethernet 

On-demand 1 min Mains powered Requires upgrading the existing 

infrastructure 

Automation and 
salubrity of public 

buildings 

802.15.4; Bluetooth; 
Wi-Fi and Ethernet 

1 packet every 10 min for 
remote monitoring,1 packet 

kt every 30 min for local 

control 

5 min for remote 
monitoring, few 

seconds for local 

control 

Mains powered, and 
battery-powered 

Needs intervention on the existing 
infrastructure 
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Figure 16: Smart city applications 

8.2.1.1 Structural Health of Buildings 

This service requires continual monitoring of the specifications of the areas that are prone to the effects of outside agents 

and the conditions of every building. IoT sensors that are deployed in these buildings should construct a database containing 

information about the measurement of building structural integrity [324]. There are many types of IoT sensors that can be deployed 

in this area such as distortion and vibration, which are responsible for measuring buildings stress, atmospheric sensors for sensing 

pollution level of the surrounding area and the sensors that are responsible for measuring the temperature and the humidity of the 

environment [323]. Employing IoT technology in this field reduces the cost of human periodic checking on building health through 

deploying a number of wireless sensors on the building and the surrounding area. 

 

8.2.1.2 Waste Management  

Waste disposal is an essential problem in many modern cities, because of both the storage constraints of garbage in landfills 

and the cost of this service. Applying IoT in this domain will lead to significant ecological advantages and significant cost savings. 

For example, the utilization of smart garbage collection to detect waste level and to optimize the garbage truck route will decrease 

the cost of the garbage collection process and will enhance the quality of recycling. To attain these objectives, IoT must connect the 

smart garbage collectors with a control center that processes the sensed data by an optimization software and then determine the 

best management of this operation [323]. 

 

8.2.1.3 Air Quality and Noise Monitoring 

Sound and air pollution are escalating problems nowadays. It is important to monitor air quality and keep it within 

acceptable limits for a healthy living and a better future for all organisms. Air quality monitoring gives estimations of gases and 

toxic concentrations to be then analyzed and interpreted, allowing authorities to monitor air pollution in distinctive zones, 

consequently taking action against any pollution. In such a way, individuals can find the healthiest places to practice outdoor 

exercises, also they can access their favoured training applications that are connected to IoT infrastructure [325] [326]. 

 

8.2.1.4 Traffic Congestion 

Traffic management is an issue that most cities confront today. Investing in smart traffic solutions makes sense, as more 

than half of the world’s population were reported living in cities in 2012 [28]. Hence, many cities try to improve transportation by 

deploying smart services like smart traffic signals and developing applications for smart parking. Furthermore, improving smart 

transportation systems will increase transportation capacity and make traveling safer, efficient, and secure [327]. 

 Embedding IoT sensors in smart traffic areas will alleviate congestion, respond rapidly to any accident or incident, and manage the 

daily traffic in smart transportation environments. The major objectives of smart transportation systems are to minimize traffic 

congestion and provide the individual with hassle-free and easy parking. Furthermore, it will help to avoid accidents by properly 

routing the traffic and informing the drivers about other bad drivers [28]. Sensors technologies that control these applications are 



 

 

 

accelerometers for speed, RFIDs for vehicle identification, GPS sensors for location, gyroscopes for direction, and cameras for 

recording traffic and vehicle movements. The aforementioned sensors are utilized in the following applications: 

1. Traffic monitoring and management applications: Each vehicle in a smart city that is connected to other vehicles and a 

cloud in a wireless network must be occupied with at least one IoT sensor such as RFID, GPS, cameras to assess traffic 

conditions in distinctive areas. Traffic congestion is detected using smartphone sensors like GPS and accelerometers, where 

these sensors are used to detect vehicle movement patterns while the individual is driving. The sensed data then will be 

sent to map applications in order to be analyzed and subsequently guides the drivers to select the best-uncrowded paths 

[28] [328]. 

2.  Applications to ensure safety: Several IoT applications have been created to help drivers become safer through monitoring 

their driving behavior and subsequently guiding them to drive safely, this is done through determining when they are 

feeling tired or drowsy and aiding them to deal with such situations or suggesting taking a rest. There are many IoT 

applications that monitor drivers’ behaviors such as eye movement recognition, face detection, and pressure detection on 

the steering wheel [329] [330]. Such applications can be deployed on a smartphone that is occupied by a gyroscope, GPS 

and accelerometer sensors, which allow analyzing the sensed data to take a suitable decision for safer driving. 

3. Parking Guidance and Information (PGI) systems: In order to solve vehicle parking issues, different kinds of PGI 

applications have been proposed. These systems supply vehicle drivers with the data that help them in finding available 

parking places in their controlled zones, via virtual message signs on the street or via web applications [331] [332]. PGI 

systems try to reduce traffic congestion by helping drivers find free parking places without squandering time in looking for 

a vehicle park. The parking application consists of four primary components, which are parking space information 

distribution, parking surveillance instrument, control center, and communications network. Also, it uses bar-code machines 

and barriers to count the number of vehicles that are entering and departing specific park region. Thus, by using PGI 

applications neither parking supervisor nor drivers are required to know the occupancy status of a particular parking space. 

Furthermore, PGI systems set up cameras and sensors near the parking zone for vehicle detection and monitoring. These 

sensors are classified into two types; the on-Roadway and the off-Roadway sensors, where on-Roadway sensors are 

implemented on the road surface, while the other type sensors are distributed above the road as shown in Figure 17 [333]. 

4. Smart traffic lights: These sensors are prepared with sensing, processing, and communication abilities, which allow them 

to sense the traffic jam and the amount of activity going on a specific way. The sensed data will be analyzed and then will 

be transmitted to a contiguous traffic light or a central controller in order to take suitable action, for instance in an 

emergency circumstance the traffic lights allocate a lane to an ambulance. Briefly, technologies that are required to build 

smart traffic lights applications are communication protocols, cameras, and data analysis systems [28]. 

5. Accident detection applications: Smartphone applications can detect the occurrence of any road incident with the assistance 

of acoustic information and accelerometer sensors. It instantly transmits the data with additional circumstantial data, such 

as onsite and area images to the closest hospital. Subsequently, the first responder will know about the whole situation and 

the degree of medical assistance that is required to present an appropriate degree of help. 

 

 

Figure 17: PGI system architecture 

8.2.1 5 Smart Grid 

It is an electrical network that smartly connects and integrates the activities of many users, whether they are producers or 

consumers or those that do both, to effectively afford economic, sustainable and secure power resources. A Smart Grid employs 

inventive services and products with intelligent surveillance, self-healing technologies, communication, and control to accomplish 

the following purposes [334]: 

1. Permitting customers to optimize the operations of the smart grid system. 



 

 

 

2. Providing customers with more data and choices of power supply. 

3. Significantly diminishing the environmental effect on the entire power supply systems. 

4. Providing enhanced levels of security and reliability on power supply systems. 

5. Enabling distribution of the generation and utilization processes of renewable energy resources. 

 

8.2.1.6 Automation and Salubrity of Public Buildings 

This significant application aims to achieve salubrity of the environment and to alleviate energy consumption problem in 

public buildings such as museums, administration offices and schools [323], which improves the level of comfort for the individuals, 

enhances the efficiency, while it decreases the costs of heating and cooling [335]. This is accomplished by utilizing appropriate 

types of actuators and sensors that control humidity, temperature, and lights.  

8.2.1.7 Smart Water Systems 

It develops a modern approach that promotes water security from significant future risks such as rapid urbanization, 

population growth, weak policies, aging infrastructure and climate changes, where these factors will increase the burdens on water 

resources. Water is delivered to consumers through complex distribution systems. Thus, these systems should supply potable and 

safe water with adequate pressure. Nevertheless, any failure that infects these systems will lead to waste and declination of the 

quality of water. Hence, a novel water management procedure is robustly required to carefully control water distribution network 

and to detect any deficiencies promptly. The primary objectives of Smart Water Networks (SWNS) are to construct a complete 

surveillance system, data acquisition, integrating sensors technology, securing the gathered information, information analysis, and 

take decisions in real-time [336]. SWN operation comprises of many steps, where the first step is to have a schematic visualization 

to collect full information of water network, like pipes, tanks, air valves, pumps, and stabilizers, in order to group them in the next 

step in geographic information framework. After that, a set of sensors will be deployed to continuously sense many water parameters 

such as pressure, quality, and flow. Finally, the sensed data will be transmitted through communication channels to be analyzed by 

an information system to take a suitable action [337]. 

8.2.2 Medical and Healthcare Applications  

Wireless body area networks and WSNs that are utilized in both healthcare and medical applications have received an 

important interest, as they have major roles in remote monitoring of a patient's situation in real-time, life quality enhancement of 

the elderly via smart environment, drugs and medical database administrator, avoidance of critical patient situations, welfare 

services, etc. According to that, it is clear that applying IoT in medical applications will improve radically medical environments 

[313]. For example, smart health applications allow elderly and patients who are suffering from serious health conditions to live 

independently apart from hospital restrictions, through utilizing IoT sensors, which continually monitor and record different 

parameters of their health conditions. Subsequently, delivering warnings in case of finding any unusual indicator. Smart sensors, 

which are dedicated, for healthcare can measure, monitor and analyze different health status conditions such as heart rate, blood 

pressure, oxygen saturation in the blood and glucose levels. After measuring the aforementioned parameters, the sensed data will 

be transmitted to a specific database in order to be analyzed and accordingly to take a proper action, which will enhance the patient’s 

health as shown in Figure 18 [28] [313]. 

Stress recognition is another healthcare application that is based on sensors of smartphones, which sense the stress level of 

an individual. This can be achieved through measuring physiological and behavioral data such as blood pressure, skin conductance, 

heart rate, pupil diameter, and cortisol level to identify whether the person is feeling stress or not [338].  

8.2.3 Agricultural Applications 

Agriculture plays an important role in any country’s economy as it provides extensive employment opportunities for 

individuals. However, numerous factors affect this field such as soil moisture, carbon dioxide and changes in temperature, which 

affect the crops, yield. Thus, it is vital to have surveillance systems on these factors to manage harvest growth and to raise agricultural 

production yield by deploying IoT sensors in agricultural areas [339]. These sensors are able to monitor different environmental 

parameters such as humidity, temperature, barometric pressure, and luminosity. Any agricultural smart application comprises of 

two sides, the transmitter side and the gateway receiver side. The transmitter side consists of many sensors that are connected to a 

wireless network in order to sense different agricultural parameters, while the receiver side monitors and analyzes the sensed 

parameters, which will be displayed by a user through a web interface as shown in Figure 19. 

 

8.2.4 Smart Home (SH) 

SH technology has changed individual life by providing connectivity between everyone and everything regardless of the 

place and the time. This application changes a traditional home into an automated building with installed and controlled smart 

devices such as heating, air conditioning, ventilation, security systems and lightings as shown in Figure 20. These systems, which 

consist of sensors and switches that are sometimes called gateways, communicate with a central station that can be controlled 

through a user interface installed in a mobile phone, tablet or computer and managed by IoT technology [340]. Smart home system 

aims to improve domestic comfort, security, leisure, and convenience, while minifying energy consumption through optimizing 

domestic energy management techniques [341]. SH applications are characterized by the following features: 

1. Compatibility with distinctive communication protocols: It can merge numerous heterogeneous communication 

techniques through installing different communication interfaces on a home gateway. 

2. Widespread services: With the utilization of widespread access networks, real-time smart home data can be obtained 

easily regardless of where the clients are. 

3. Comprehensive perception: Real-time surveillance of domestic and comprehensive perception can be attained by 

deploying an assortment of physical and logical sensors. 



 

 

 

4. Easily to be controlled: Since SH applications can be managed via mobile phones, PCs and other communication 

devices. 

8.2.5 Smart Manufacturing System (SMS) 

Maintainable manufacturing competitiveness relies on its capabilities with respect to quality, cost, delivery, and flexibility 

[342]. SMS tries to maximize those capabilities through utilizing advanced technologies, which promote quick flow and widespread 

utilization of digital data inside and among manufacturing systems. Also, it integrates information and communication technologies 

with smart software applications to:  

1. Enhance the utilization of material, energy, and labor to produce high quality and customized items to be delivered on time. 

2. Rapidly respond to changes in supply chains and mart demands. 

Smart manufacturing model is distinctive from other manufacturing paradigms as it determines a vision of the next 

manufacturing generation with improved capabilities [343]. SMS adapts to any new circumstances by utilizing real-time information 

for intelligent decision-making and by predicting and preventing any failure proactively.  
 

8.2.6 Internet of Robotics Things (IoRT) 

In diverse industries or even in offices or homes, robotics come in all sizes and shapes from greeting robotics in restaurants, 

retail stores or hotels to heavy robot arms in factories. The internet of robotics is an emerging technology that integrates robots as 

an object into an IoT environment to enable connections through different protocols. IoRT integrates smart robots through the 

internet to perform personal activities or different professional operations as monitoring activities and events, controlling objects in 

the real-world and manufacturing. In IoRT application, multiple intelligent sensors and smaller robots are connected and 

collaborated in an orchestrated manner to achieve the goal of large robotic. There are many applications that are implemented 

through IoRT such as a self-driving vehicle, software robots to avoid human errors and save time, Smart Manufacturing (Industry 

4.0), adaptive digital factory and automated IT processing applications  
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Figure 19: IoT agricultural application 

 

Figure 20:  Applications of smart home technology [344] 

 

 

8.2.7 Oil and Gas 

IoT paradigm has found its way through the oil and gas domain. As of now, many IoT companies help factory managers, 

field staff and machine operators to improve production, protect the safety of employees in work environments and predict the time 

at which machines require maintenance. IoT technology permits machines, devices, and equipment to collaborate and communicate 

with each other, which will enable oil and gas companies to create applications, manage and store data and utilize suitable security 

protocols based on scientific methodologies.      

 

9. Broad and Open Research Challenges 

IoT is a fabulous technology concept that for a long period was merely a dream. Nowadays, IoT has taken the world by the 

storm and it is expanding with an unbelievable rate. Morgan Stanley predicted that the number of smart and heterogeneous devices 

that will be connected to the internet would exceed 75 billion devices in 2020 [41] [345]. However, IoT services, applications, and 

devices face numerous issues and challenges that are deemed to be a primary hindrance in the implementation of IoT from different 



 

 

 

aspects, such as coverage and protocols, communication technology, energy-saving, bandwidth efficiency, interoperability and 

integration, memory management, signal acquisition and processing, scalability, deployment, security, fog computing, and 

computational limitations [346]. Further details are provided below [12] [21] [347]:   

1. Building smart environments based on IoT paradigm: The first defiance in creating an intelligent environment is to 

embed countless smart devices, sensors and supplementary technologies in that environment and setting up communication 

between them. Another issue is to gather and transform massive amounts of data between smart things, which leads to 

medium contentions and collisions issues.  

2. Privacy and security of IoT applications: The heterogeneity of IoT communication technologies and the diversity of its 

applications and services will lead to various sets of security challenges. Protecting the security of IoT architecture from 

different attacks and potentially malicious software necessitates utilizing many security measures. Those measures are 

relevant to protection laws, privacy enhancement technologies, privacy tools and standards to control individual 

information (data privacy), personal physical location movement (location privacy), and various security methodologies. 

3. Compatibility: Devices from diverse vendors will be connected and embedded to the IoT network, so issues regarding 

monitoring and tagging will arise. These issues can be solved under the condition that all manufacturers agree on the same 

standards, which is impossible to be attained [348].   

4. Scalability: IoT is expected to face a lot of challenges associated with the probable abundant number of co-operating 

entities besides the major differences in the interaction behaviors and patterns. Thus, current IoT architecture requires to 

be scaled up in order to accommodate the rising of intelligent devices number. 

5. Energy Efficiency: Small smart devices that compose IoT systems, suffer from limited battery power that is impossible to 

be replaced, which will lead to ultimately global energy crisis and heavy power consumption, memory and processing 

capabilities. Based on that, routing processes and compute-intensive applications cannot run appropriately on these devices. 

Keeping in mind the constrained energy of smart devices is not adequate to suit the utilization of WSN routing protocols. 

Even though some routing protocols support low-power communication, but they are at the infancy stage of development. 

6. Mobility Management: Mobile nodes in IoT environments can create many confrontations in terms of the efficiency of 

routing protocols and IoT networks. The existing mobility protocols of sensor networks, mobile ad hoc networks, and 

vehicular ad hoc networks cannot cope with different routing issues, due to the limited processing and energy capabilities 

of these sensors. 

7. Cost of maintenance and services: IoT environments contain an extensive number of connected devices, which will, in 

turn, increase the cost required for maintenance and servicing. One solution to mitigate this problem is to produce devices 

and sensors in such a way that they require less maintenance.   

8. Internet disconnection problem: Since the internet connection is the soul of IoT, thereby the disconnections in internet 

services will degrade the performance of IoT devices and lead to poor QoS. Also, a limited number of concurrent devices 

that can communicate with the base station will reduce the number of service recipients. 

 

10. Conclusions  

The emerging notion of IoTs technology has swiftly disseminated throughout our contemporary life, where it aims to 

optimize the quality of our life by embedding smart things, applications, and technologies to automate all things in the environment 

that surrounds us. What distinguishes our survey paper from other works is that it covers the most important sides of the IoT 

paradigm, with a concentration on what has been done and what has required more research. Specifically, this paper presents an 

overview of IoT evolution, its stack’s protocols, technologies, applications, and the research challenges facing the implementation 

of this technology. This, in turn, provides a good ground for the researchers who are whether interested in designing realistic IoT 

projects or developing novel theoretical approaches in the IoT field by acquiring deep knowledge in different IoT aspects. 

Furthermore, some of the prevalent issues and challenges that face the deployment and the design of IoT applications were 

discussed. Future research directions have been further described considering IoT stack and middleware architectures. Additionally, 

this paper presents the interaction between different IoT network components, which are smart nodes, fog nodes, and cloud 

computing nodes. Lastly, details of IoT application domains were demonstrated followed by not only open research issues, but also 

rigorous analysis of the research history along with efficient recommendations.    

   

10.1 Research History Analysis and Recommendations 

The motivation behind this research is to inform the researcher’s community with depth and breadth of recent and future 

works in different IoT domains. A massive number of researches in different IoT fields have been published in different conferences 

and journals. The explosive expansion of IoT technology has opened many scientific and engineering opportunities and issues, 

which will require huge research efforts from different sectors such as industries, communications, academics, etc. The collaborative 

efforts and works of these sectors will create novel services, technologies, architectures and protocols, which are necessary to face 

the challenges of IoT. To demonstrate the ongoing research work in IoT stack architecture and middleware, we used Scopus database 

to extract the number of publications from 2011 until 2020. Figure 21 displays the distribution of ongoing researches and 

developments in various layers of IoT architecture, where it denotes a trend towards research in the network layer as it has the 

largest number of researches compared to other layers with 1183 publications. Network layer developments and enhancements have 

taken the attention of the researchers’ community since it confronts many focal emerging design challenges that require to be tackled 

and ameliorated swiftly, as specifying the optimal route that guarantees the security and accuracy of IoT data transmission. Other 

issues that may encounter this layer include finding the best procedures to control network bottlenecks and congestions, appropriate 

management for different IoT QoS metrics (i.e. transmit time, throughput and efficiency, delay, availability, jitter, etc.), and 

overcoming issues caused by networks heterogeneity such as various routing protocols, distinct identity techniques, etc. In other 

words, coping with the network layer security challenges is as important as solving the above issues, where these challenges can be 



 

 

 

a denial of service attack, a man in the middle attack, a storage attack, and an exploit attack. The number of researches and 

publications of data link layer and communication protocols was 931, where numerous traditional enterprise communication 

technologies, such as Ethernet and Wi-Fi, have been adopted or evolved to be utilized in IoT environments. Simultaneously, many 

new communication protocols have been developed to face the challenges and requirements of harsh IoT environments, where 

devices, distances, and bandwidth challenges have to be considered. They also, find new mechanisms to detect and correct the 

corrupted data, control medium access for broadcast networks, and keep both transmitter and receiver synchronous in data 

transmission to avoid overwhelming the receiving side with data (i.e. flow control). Similar to a network layer, the data link layer 

is prone to many security problems that need to be faced and solved by researchers such as address resolution protocol spoofing that 

permits an attacker to masquerade as a legal host and subsequently intercept, alter or stop data, in addition to MAC flooding and 

dynamic host configuration protocol attacks. The application layer occupied the third rank in the number of researches with 561 

publications. In fact, the bulk of the responsibility for the development and improvement of this layer lies on the programmers and 

developers. As they are in charge of ensuring that all IoT devices present a consistent interface that abstracts their internal and 

heterogeneous details, which will guarantee to organize and transfer data smoothly among these devices. On the other hand, they 

should continually improve and provide users with applications interfaces (i.e. API) that permit them to control, calibrate, and 

diagnose their devices, which will promote the integrity of control applications. However, the application layer is exposed to many 

attacks, that endeavor to adversely affect the normal operation of the system, such as physical attacks by overwhelming devices 

with dummy stimuli, eavesdropping, reprogramming, denial of service attacks and physical capture. Hence, more research efforts 

are needed to produce new methods that detect and mitigate such attacks. The transport layer came in last in the number of researches 

as it got 231 publications. This layer is responsible for describing the nature and the quality of delivering data, as well ensuring that 

messages are transmitted in-order, error-free with no duplications or losses, and establishing an end to end connection. Thus, it 

requires more attention to fabricate novel methods and procedures that conquer many transport layer issues such as high packet loss, 

low bandwidth requirement, error control, flow control, congestion control, low power, low memory availability alongside the 

prevalent security issues. 

 

Figure 21: Number of publications in IoT layers from 2011 until 2020 

As previously mentioned in section 6, middleware can be defined as a set of sublayers or a software layer interposed 

between the application and the technological layers. Interestingly, the essential role of this model is to hide the different 

technologies of IoT assets, which will consequently keep programmers away from problems that are not pertinent to their concern. 

It also prevents them from having to be aware of rigorous details related to the heterogeneous technologies in the lower layer. 

Middleware acquires more prominence and attention owing to its primary role in simplifying the creation of services and 

applications as well as integrating conventional technologies into new ones. However, the nature of the IoT environment makes the 

role of middleware challenging and difficult since the services that are provided by smart things are usually device-dependent, less 

reliable, mobile and dynamic. Moreover, middleware solutions have to address functional components such as service composition, 

registration and discovery and non-functional needs, such as ease of deployment, privacy, security, availability, reliability, 

timeliness, and scalability. Furthermore, IoT middleware must include architectural properties that offer programming 

distributiveness, autonomy, context awareness, adaptability, interoperability, and abstraction. It can be seen from Figure 22 that a 

few contemporary studies have been qualitatively evaluated and surveyed in different architectures of IoT middleware, especially 

in actor-based architecture which only has 5 publications regarding it. This model was proposed to cope with parallel programming 

and processing (i.e concurrent programming) in high-performance environments. Despite the widespread availability of multi-core 

processors with high capabilities, minimal research was found in this field due to the fact that the concurrent programming used in 

this model is error-prone, complicated to implement, and exhibits indecisive behaviors that make it difficult to predict and address. 



 

 

 

Based on the above, the major issues need to be addressed by the research community are the lack of progress (i.e. deadlocks, 

livelocks) and message protocol violations (i.e. message order violation, bad message interleaving, memory inconsistency). Event-

based and cloud-based architectures are not much better in this regard, with the former having 21 publications and the latter having 

75. The event-based model, as we stated in section 6, presents interesting features to build highly decoupled and distributed 

applications, where each of them assumes a specific structure of notifications, application scalability degree and on the way that 

permit consumers to announce their interest regarding some event. In spite of that, this architecture faces many challenges such as 

events delivery guarantee, lack of operational tools, and data and transaction management along with processing events in order, 

particularly when the same consumer runs over multiple instances. As illustrated previously, cloud-based architecture was proposed 

to meet several requirements of complex analytical services. Today, the emergence of new services and applications that implement 

time-critical control loops and cannot be performed in the cloud because of insufficient bandwidth or unpredictable delays, creates 

new challenges that need to be solved. Furthermore, one of the most critical issues that requires further research efforts is the limited 

security support provided by the cloud-based architecture, since it cannot be applied in resource-constrained IoT devices. Service-

based architecture is considered to be one of the most efficient designing styles, as it provides many interesting features for 

applications and users such as availability, scalability, reusability, and platform independence, which is why the number of 

publications in this field reached a high of 421 published papers as compared to the lesser amount of research done regarding its 

brethren subjects. Despite the above features, this architecture endures many open research issues such as delays, service 

identification, service discovery, complex service management, and it does not suit GUI applications that require heavy data traffic 

besides homogeneous applications.   

 

Figure 22: Number of publications in different middleware architectures from 2011 to 2020 
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